KR101273348B1 - Electrode for aluminun electrolytic condenser and method thereof - Google Patents

Electrode for aluminun electrolytic condenser and method thereof Download PDF

Info

Publication number
KR101273348B1
KR101273348B1 KR1020110130693A KR20110130693A KR101273348B1 KR 101273348 B1 KR101273348 B1 KR 101273348B1 KR 1020110130693 A KR1020110130693 A KR 1020110130693A KR 20110130693 A KR20110130693 A KR 20110130693A KR 101273348 B1 KR101273348 B1 KR 101273348B1
Authority
KR
South Korea
Prior art keywords
aluminum
foil
aluminum foil
chemical conversion
weak acid
Prior art date
Application number
KR1020110130693A
Other languages
Korean (ko)
Inventor
김성수
김현기
박강용
전병문
최형선
Original Assignee
삼영전자공업(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼영전자공업(주) filed Critical 삼영전자공업(주)
Priority to KR1020110130693A priority Critical patent/KR101273348B1/en
Application granted granted Critical
Publication of KR101273348B1 publication Critical patent/KR101273348B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors

Abstract

PURPOSE: An electrode foil for an aluminum electrolytic condenser and a manufacturing method thereof are provided to improve crystallization by removing a micro pore and a deformity of an oxide film. CONSTITUTION: A method of manufacturing an electrode foil for an aluminum electrolytic condenser comprises the following steps: a step(S21) aims to hydration-process an etched aluminum foil; a step(S22) aims to deposition-process an aluminum foil with a weak acid aqueous solution; a step(S23) aims to process a deposited aluminum foil with a first chemical conversion treatment; a step(S24) aims to heat-treat an aluminum foil; and a step(S25) aims to process an aluminum foil passing through the heat treatment step with a second chemical conversion treatment. [Reference numerals] (AA) Aluminum etching foil; (S21) Hydration process; (S22) Deposition process with weak acid; (S23) First chemical conversion treatment; (S24) Heat treatment; (S25) Second chemical conversion treatment; (S26) Drying

Description

알루미늄 전해 콘덴서용 전극박 및 그 제조방법{Electrode for Aluminun Electrolytic Condenser and Method thereof}Electrode foil for aluminum electrolytic capacitor and its manufacturing method {Electrode for Aluminun Electrolytic Condenser and Method}

본 발명은 알루미늄 전해 콘덴서용 전극박 및 그 제조방법에 관한 것으로서, 에칭된 알루미늄박을 수화 처리 후, 약산 수용액에서 산성처리 하는 공정을 추가하여 산화 피막에 형성될 수 있는 결함 및 미세기공을 제거하여 산화 피막의 안정성을 향상시키고 누설전류를 저감시킨 알루미늄 전해 콘덴서용 전극박 및 그 제조방법에 관한 것이다.
The present invention relates to an electrode foil for an aluminum electrolytic capacitor and a method of manufacturing the same, after the hydration treatment of the etched aluminum foil, by adding an acid treatment in a weak acid aqueous solution to remove defects and micropores that may be formed in the oxide film The electrode foil for aluminum electrolytic capacitor which improved the stability of an oxide film, and reduced the leakage current, and its manufacturing method are provided.

현재 일반적으로 사용되고 있는 전해 콘덴서(Electrolytic Condenser)는 크게 탄탈륨 전해 콘덴서(Tantalum Electrolytic Condenser)와 알루미늄 전해 콘덴서(Aluminun Electrolytic Condenser)로 구분될 수 있다. 이 중 알루미늄 전해 콘덴서는 탄탈륨 전해 콘덴서에 비해 제조비용이 저렴하고, 내전압이 높으며, 우수한 자기 회복능력을 갖고 있어 선호되고 있다. Electrolytic capacitors (Electrolytic Condenser) commonly used at present can be largely divided into tantalum electrolytic condenser and aluminum electrolytic condenser. Among them, aluminum electrolytic capacitors are preferred because they have lower manufacturing cost, higher breakdown voltage, and excellent self-healing capability than tantalum electrolytic capacitors.

통상적으로 알루미늄 전해 콘덴서는 알루미늄의 산화피막을 유전체로 사용하고 있으며, 그 표면이 유전체 산화피막으로 덮여진 양극 알루미늄박(10)과 전해지(30)를 경계로 한 음극 알루미늄박(20)을 구비하고 있으며, 구동전해액인 페이스트(paste)가 포함되어 있다. 이 때, 양극의 산화 피막은 요구되는 사용전압에 매칭되도록 전기 화학적 산화반응에 의하여 제조되게 된다. In general, an aluminum electrolytic capacitor uses an oxide film of aluminum as a dielectric, and includes an anode aluminum foil 10 whose surface is covered with a dielectric oxide film and a cathode aluminum foil 20 bounded by an electrolytic cell 30. And a paste, which is a driving electrolyte. At this time, the anode oxide film is produced by an electrochemical oxidation reaction so as to match the required voltage.

한편, HD TV 등 다양한 첨단 기술이 요구되는 전자 제품의 소형화에 따라 알루미늄 전해 콘덴서 또한 소형화 요구가 증대되고 있다. 알루미늄 전해 콘덴서의 소형화를 위해서는 산화 피막의 안정성과 특성 유지가 필수적인 바, 알루미늄 전해 콘덴서용 전극박의 정전 용량 증대와 피막의 특성을 향상시킬 필요가 있다. Meanwhile, with the miniaturization of electronic products requiring various advanced technologies such as HD TVs, the demand for miniaturization of aluminum electrolytic capacitors is also increasing. In order to reduce the size of the aluminum electrolytic capacitor, it is necessary to maintain the stability and characteristics of the oxide film. Therefore, it is necessary to increase the capacitance of the electrode foil for the aluminum electrolytic capacitor and to improve the characteristics of the film.

이를 위해 종래기술은 알루미늄 에칭박을 단순히 고온의 순수한 물(H2O) 에 침적해 수화 피막을 생성시킨 후 화성처리하여 알루미늄 전해 콘덴서용 전극박을 제조하고 있었다. To this end, in the prior art, an aluminum etched foil was simply deposited on high-temperature pure water (H 2 O) to form a hydrated film, and then chemically processed to produce an electrode foil for an aluminum electrolytic capacitor.

하지만, 이와 같은 방식은 전력 감소의 장점이 있는 반면, 피막 내부에 결함 및 미세기공이 발생되어 산화물의 성질에 치명적인 결점을 주는 문제점이 있었다. 즉, 화성처리에 의해 충분한 내전압을 갖는다고 신뢰된 피막이 그 내부의 결함 및 미세기공에 의해 갑자기 내전압의 소멸 현상을 일으키는 원인이 되고 있다. 또한 종래기술에 의하면, 콘덴서의 사용 중 또는 방치 후에 누설 전류가 증가되는 단점도 보고 되고 있다. However, this method has the advantage of reducing the power, there is a problem in that defects and micropores are generated inside the film to give a fatal defect in the properties of the oxide. In other words, a film that is trusted to have sufficient withstand voltage by the chemical conversion treatment causes sudden breakdown of the breakdown voltage due to defects and micropores therein. In addition, according to the prior art, the disadvantage that the leakage current increases during or after the use of the capacitor has been reported.

따라서, 알루미늄 전해 콘덴서의 소형화에 발맞추어, 피막의 안정성 및 고신뢰성의 요구도 높아지고 있어, 이에 대응되는 향상된 특성을 가진 알루미늄 전해 콘덴서용 전극박이 요구되고 있다.
Accordingly, in keeping with the miniaturization of aluminum electrolytic capacitors, the demand for stability and high reliability of the film is also increasing, and an electrode foil for aluminum electrolytic capacitors with improved characteristics corresponding thereto is demanded.

본 발명은 전술한 종래기술의 문제점을 해결하기 위해 도출된 것으로서, 알루미늄 전해 콘덴서용 전극박의 산화 피막의 결함 및 미세기공을 제거하여 결정성이 높은 유전체 피막을 형성함으로서, 산화 피막의 안정성을 확보하고 누설전류를 저감시킨 알루미늄 전해 콘덴서용 전극박 및 그 제조방법을 제공하는데 그 목적이 있다. The present invention was derived to solve the above-described problems of the prior art, and by removing defects and micropores of the oxide film of the electrode foil for aluminum electrolytic capacitors to form a dielectric film with high crystallinity, thereby ensuring the stability of the oxide film It is an object of the present invention to provide an electrode foil for an aluminum electrolytic capacitor, and a method of manufacturing the same, which reduce leakage current.

본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 본 발명의 기재로부터 당해 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
The technical objects to be achieved by the present invention are not limited to the above-mentioned technical problems, and other technical subjects which are not mentioned can be clearly understood by those skilled in the art from the description of the present invention .

전술한 종래기술의 문제점을 해결하기 위한 본 발명에 의하면, 에칭된 알루미늄 박을 수화 처리하는 단계; 상기 수화 처리된 알루미늄 박을 약산 수용액에 의한 산성 침적 처리 공정을 거치는 단계; 상기 침적처리된 알루미늄 박을 소정의 정전류로 전압처리를 실시하는 제 1차 화성처리 단계; 상기 제 1차 화성처리 단계를 거친 알루미늄 박을 열처리하는 단계; 상기 열처리 단계를 거친 알루미늄 박을 재차 소정의 정전류로 전압처리를 실시하는 제 2차 화성처리 단계; 및 상기 제 2차 화성처리된 알루미늄 박을 건조시키는 단계;를 포함하는 알루미늄 전해 콘덴서용 전극박의 제조방법을 제공한다. According to the present invention for solving the above-mentioned problems of the prior art, the step of hydrating the etched aluminum foil; Subjecting the hydrated aluminum foil to an acidic deposition process using a weak acid solution; A first chemical conversion treatment step of subjecting the deposited aluminum foil to a predetermined constant current by voltage treatment; Heat-treating the aluminum foil subjected to the first chemical conversion treatment step; A second chemical conversion treatment step of subjecting the aluminum foil subjected to the heat treatment step to voltage treatment at a predetermined constant current again; It provides a method for producing an electrode foil for an aluminum electrolytic capacitor comprising a; and drying the secondary chemically processed aluminum foil.

본 발명에서 상기 약산은, 인산, 아디핀산, 주석산 또는 구연산 중에서 선택된 어느 하나 이상의 물질인 것이 바람직하다. In the present invention, the weak acid is preferably any one or more substances selected from phosphoric acid, adipic acid, tartaric acid or citric acid.

본 발명에서 상기 약산 수용액의 pH는, pH 4 내지 pH 6인 것이 바람직하다. In the present invention, the pH of the weak acid aqueous solution is preferably pH 4 to pH 6.

본 발명에서 상기 약산 수용액 중 약산의 농도는, 0.5g/L 내지 25g/L 인 것이 바람직하다. In the present invention, the concentration of the weak acid in the weak acid aqueous solution is preferably 0.5g / L to 25g / L.

전술한 종래기술의 문제점을 해결하기 위한 본 발명에 의하면, 에칭된 알루미늄 박을 수화 처리한 후 약산 수용액에 의한 산성 침적 공정을 거쳐서 제조되는 것을 특징으로 하는 알루미늄 전해 콘덴서용 전극박을 제공한다.
According to the present invention for solving the above-described problems of the prior art, an electrode foil for an aluminum electrolytic capacitor, characterized in that the etched aluminum foil is hydrated and then produced through an acidic deposition process with a weak acid aqueous solution.

본 발명의 알루미늄 전해 콘덴서용 전극박 및 그 제조방법에 의하면, 알루미늄 전해 콘덴서용 전극박의 산화 피막의 결함 및 미세기공을 제거하여 결정성이 높은 유전체 피막을 형성함으로서, 산화 피막의 안정성을 확보하고 누설전류를 저감시키는 효과가 있다. According to the electrode foil for aluminum electrolytic capacitors of the present invention and a method for manufacturing the same, the dielectric film having a high crystallinity is formed by removing defects and micropores of the oxide film of the electrode foil for aluminum electrolytic capacitors, thereby ensuring stability of the oxide film. There is an effect of reducing the leakage current.

또한, 본 발명에 의하면, 알루미늄 전해 콘덴서용 전극박의 누설전류를 저감시키고, 산화 피막의 신뢰성을 향상시킴으로서, 장수명화 및 소형화된 알루미늄 전해 콘덴서의 제조가 가능한 효과와 더불어 각종 전자제품의 소형화에 일조하는 효과가 있다.
Further, according to the present invention, by reducing the leakage current of the electrode foil for aluminum electrolytic capacitors and improving the reliability of the oxide film, it is possible to manufacture a long life and miniaturized aluminum electrolytic capacitors, and contribute to the miniaturization of various electronic products. It is effective.

도 1은 종래기술에 따른 알루미늄 전해 콘덴서의 예시도.
도 2는 본 발명의 실시예에 따른 알루미늄 에칭박 제조방법의 순서도.
도 3은 본 발명의 실시예에 따른 알루미늄 전해 콘덴서용 전극 박의 제조방법의 순서도.
1 is an illustration of an aluminum electrolytic capacitor according to the prior art.
2 is a flow chart of the aluminum etching foil manufacturing method according to an embodiment of the present invention.
3 is a flow chart of a manufacturing method of an electrode foil for an aluminum electrolytic capacitor according to an embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention. Therefore, the embodiments described in the present specification and the configurations shown in the drawings are merely the most preferred embodiments of the present invention and are not intended to represent all of the technical ideas of the present invention. Therefore, various equivalents It should be understood that water and variations may be present.

본 발명은, 기존의 알루미늄 전해 콘덴서의 누설전류 저감 및 내전압 소멸현상을 방지하기 위해 고안된 것으로서, 에칭된 알루미늄 박의 수화처리 공정시 유사 베마이트(boehmite)피막을 형성할 때 발생되는 내부의 결함 및 미세기공을 감소시키기(제거하기) 위해, 수화처리 공정 후 약산성 수용액에 침척 처리를 하여 양극 산화시킨 알루미늄 전해 콘덴서용 전극박 및 그 제조방법을 제안하였다. The present invention is designed to prevent leakage current reduction and withstand voltage dissipation of existing aluminum electrolytic capacitors. In order to reduce (remove) the micropores, an electrode foil for an aluminum electrolytic capacitor, which has been anodized by a weak acidic aqueous solution after a hydration process, and a manufacturing method thereof have been proposed.

도 1은 종래기술에 따른 알루미늄 전해 콘덴서의 예시도이다. 1 is an exemplary view of an aluminum electrolytic capacitor according to the prior art.

도 1에서는 통상적인 형태의 권취형 알루미늄 전해 콘덴서를 도시하고 있는데, 콘덴서 소자(40)을 중심으로 알루미늄 양극박(10)과 화성을 실시하지 않은 알루미늄 재질의 음극박(20)사이에 전해지(30)를 삽입시켜 권취시킨 다음 이 소자에 구동용 전해액을 이용하여 전해질층을 형성하게 된다. FIG. 1 illustrates a winding type aluminum electrolytic capacitor of a conventional type, wherein an electrolytic cell 30 is formed between an aluminum anode foil 10 and an aluminum cathode foil 20 which is not chemically formed around the capacitor element 40. ) Is wound up and wound up to form an electrolyte layer using the driving electrolyte solution.

즉, 유전체 피막이 형성된 알루미늄 양극박(10)과 화성을 실시하지 않은 알루미늄 음극박(20) 사이에 양극박(10)과 음극박(20)이 권취될 경우에도 서로 접촉되지 않게 전해지(30)를 삽입시킨다. 상기 권회된 양극박(10)으로부터는 양극 리드선을 인출하고, 음극박(20)으로부터 음극리드선을 인출하는 구조를 취하고 있으며, 상기 양극박(10)의 표면에 형성되어 있는 유전체 피막층에 전해질 층을 형성하여 전해 콘덴서의 전기적 특성을 향상시키고 있는 것이다.That is, even when the positive electrode foil 10 and the negative electrode foil 20 are wound between the aluminum positive electrode foil 10 having the dielectric film formed thereon and the aluminum negative electrode foil 20 which is not chemically formed, the electrolytic cell 30 is not contacted with each other. Insert it. A positive electrode lead wire is drawn out from the wound positive electrode 10, and a negative lead wire is drawn out from the negative electrode foil 20. An electrolyte layer is formed on the dielectric film layer formed on the surface of the positive electrode foil 10. To improve the electrical characteristics of the electrolytic capacitor.

본 발명에서는 상기 양극박(10)의 표면에 형성되는 유전체 피막층 내부의 결함 및 미세기공을 최대한 제거하여 누설전류 저감 및 내전압 소멸현상을 방지하기 위해 고안되었다. In the present invention, it is designed to reduce leakage current and withstand voltage disappearance by removing defects and micropores in the dielectric film layer formed on the surface of the anode foil 10 to the maximum.

도 2는 본 발명의 실시예에 따른 알루미늄 에칭박 제조방법의 순서도이다. 2 is a flow chart of the aluminum etching foil manufacturing method according to an embodiment of the present invention.

먼저, 순도 99.99%, 두께 0.115mm의 알루미늄 박을 60℃, 8% 인산 수용액에서 2분 동안 침지하여 전처리를 실시한다(S11). 이후 상기 전처리된 알루미늄 박을 염산 및 황산 혼합 용액을 이용하여 1차 에칭을 실시하고(S12), 질산 수용액을 이용하여 2차 에칭을 실시한다(S13). 상기 에칭 공정은 공지의 공정기술을 이용하여 실시할 수 있다. First, aluminum foil having a purity of 99.99% and a thickness of 0.115 mm is immersed in an aqueous solution of 60 ° C. and 8% phosphoric acid for 2 minutes to be pretreated (S11). Thereafter, the pretreated aluminum foil is subjected to primary etching using a mixture of hydrochloric acid and sulfuric acid (S12), and secondary etching is performed using an aqueous nitric acid solution (S13). The said etching process can be performed using a well-known process technique.

이어서, 상기 2차 에칭공정을 거친 알루미늄 박을 황산 수용액 중에 침적하여 후처리한 후(S14), 건조하여 (S15), 본 발명에 이용될 알루미늄 에칭박을 준비하였다. Subsequently, the aluminum foil subjected to the secondary etching process was deposited in an aqueous sulfuric acid solution and then treated (S14), and then dried (S15) to prepare an aluminum etching foil to be used in the present invention.

도 3은 본 발명의 실시예에 따른 알루미늄 전해 콘덴서용 전극박의 제조방법의 순서도이다.
3 is a flowchart of a method of manufacturing an electrode foil for an aluminum electrolytic capacitor according to an embodiment of the present invention.

실시예Example 1 One

먼저, 에칭된 알루미늄 박을 순수한 물(H2O)에 18분간 침적하여 수화처리한다(S21).First, the etched aluminum foil is immersed in pure water (H 2 O) for 18 minutes to hydrate (S21).

이후, 형성된 수화물을 pH4~6, 온도45℃의 약산 수용액 중에 침적한 다음 구연산 암모늄 화성, 열처리, 붕산화성 순으로 양극산화를 진행하였다(S22). 상기 약산 수용액은 인산, 아디핀산, 주석산, 구연산의 염 중에서 선택되는 적어도 어느 하나 이상의 염을 이용하고, 각각의 농도를 변화시켜 2.5분(minute)간 침적하였다.Thereafter, the formed hydrate was immersed in a weak acid aqueous solution of pH 4 ~ 6, temperature 45 ℃ and then anodized in order of ammonium citrate, heat treatment, boric acid (S22). The weak acid aqueous solution was used for at least one salt selected from salts of phosphoric acid, adipic acid, tartaric acid, and citric acid, and the concentration of each weak acid was changed for 2.5 minutes.

이후, 약산성 처리된 알루미늄 박을 구연산 암모늄 수용액 중에 전류 밀도 50mA/㎠, 온도85℃에서 300V CV후 15분간 전류를 인가시킨 제 1차 화성처리 단계를 거치게 된다(S23).Thereafter, the weakly acidic aluminum foil is subjected to the first chemical conversion treatment step of applying a current for 15 minutes after 300 V CV at a current density of 50 mA / cm 2 and a temperature of 85 ° C. in an aqueous ammonium citrate solution (S23).

제 1차 화성처리단계를 거친 알루미늄 박은 온도 500℃의 전기로에서 3분(minute)간 처리하였고(S24), 그 다음으로 열처리 단계를 거친 알루미늄 박을 붕산 수용액 중에서 전류 밀도 50mA/㎠, 온도85℃에서 300V CV후 5분간 전류를 인가해 제 2차 화성 처리를 실시했다(S25).The aluminum foil subjected to the first chemical conversion treatment was treated in an electric furnace at a temperature of 500 ° C. for 3 minutes (S24), and the aluminum foil subjected to the heat treatment was then subjected to a heat treatment step in an aqueous solution of boric acid in a current density of 50 mA / cm 2 and a temperature of 85 ° C. The secondary chemical conversion treatment was performed by applying a current for 5 minutes after 300 V CV at (S25).

그 다음으로 제 2차 화성처리단계를 거친 알루미늄 박을 200℃에서 일정시간 건조하였다(S26). Next, the aluminum foil which passed through the 2nd chemical conversion process was dried at 200 degreeC for a predetermined time (S26).

이와 같은 과정을 거쳐서 제조된 알루미늄 전극박을 분석하기 위해, ① 붕산 70g/L, 온도85℃, 수용액에서 2mA/5㎠의 전류를 인가해 240초 후의 내전압을 측정하였고, ② 붕산 70g/L, 온도85℃, 중탕 분위기에서 Vt측정값의 1.3으로 나눈 전압을 인가해 1시간 후의 누설 전류 등을 측정하였다. 하기 표 1에 그 결과치를 도시하였다.
In order to analyze the aluminum electrode foil prepared through such a process, ① bore acid 70g / L, temperature 85 ℃, applying a current of 2mA / 5 ㎠ in an aqueous solution to measure the breakdown voltage after 240 seconds, ② boric acid 70g / L, A voltage divided by 1.3 of the Vt measurement value was applied at a temperature of 85 ° C. and a bath atmosphere, and leakage current after 1 hour was measured. The results are shown in Table 1 below.

비교예Comparative example 1 One

에칭된 알루미늄 박을 순수한 물(H2O)에 18분간 침적하여 수화처리한 후, 상기 약산성 처리단계(S22)를 제외하고, 제 1차 화성처리단계(S23), 열처리단계(S24), 제 2차 화성처리 단계(S24) 및 건조단계(S26)를 거쳐서 제조된 알루미늄 전극 박을 실시예 1에서와 같은 분석방법을 통해 내전압 및 누설전류 등을 측정하였다.
The etched aluminum foil was immersed in pure water (H 2 O) for 18 minutes to be hydrated, and then, except for the weakly acidic treatment step (S22), a first chemical conversion treatment step (S23), a heat treatment step (S24), and a first treatment. The withstand voltage and leakage current of the aluminum electrode foil prepared through the second chemical conversion treatment step (S24) and the drying step (S26) were measured by the same analysis method as in Example 1.

상기 실시예 1과 비교예 1에 대한 내전압, 누설전류, 용량 등의 결과치는 하기의 표 1과 같다.
Results of breakdown voltage, leakage current, capacity, etc. for Example 1 and Comparative Example 1 are shown in Table 1 below.

Figure 112011097419107-pat00001
Figure 112011097419107-pat00001

상기 표 1에서 도시하고 있는 것과 같이, 수화 처리 후 약산성 처리를 하여 양극 산화한 실시예 1의 알루미늄 전해 콘덴서용 전극 박은, 약산성 처리를 하지 않은 비교예 1의 전극 박에 비해 용량은 약 3%증가하고, 누설 전류는 약 13~55%가 감소(저감)되었다. 단 수용액의 특성에 따라 그 차이는 조금씩 다르게 나타나고 있다. As shown in Table 1, the electrode foil for aluminum electrolytic capacitors of Example 1, which was subjected to a weak acid treatment after hydration treatment and anodized, increased about 3% in capacity compared to the electrode foil of Comparative Example 1, which was not subjected to weak acid treatment. Leakage current was reduced (reduced) by about 13 ~ 55%. However, the difference is slightly different depending on the characteristics of the aqueous solution.

상기 수용액의 특성에 따라 차이가 나타나는 것은 특히 수용액의 농도가 낮을 때, 수화 피막 내부에 형성된 결함 및 미세기공까지 용해 또는 개방 시키지 못하였기 때문이라고 판단된다. 표 1의 결과치를 참조해 보면, 상기 수용액의 농도가 0.5g/L ~ 10g/L일 때, 알루미늄 전해 콘덴서용 전극박의 용량 증가 및 누설전류가 저감 효과를 얻을 수 있다.The difference appears depending on the characteristics of the aqueous solution, especially when the concentration of the aqueous solution is low, it is judged that the defects and micropores formed inside the hydrated film could not be dissolved or opened. Referring to the results shown in Table 1, when the concentration of the aqueous solution is 0.5 g / L to 10 g / L, the capacity increase and leakage current of the electrode foil for aluminum electrolytic capacitors can be reduced.

종합하면, 에칭된 알루미늄박은 고온의 순수한 물(H2O)에서 수화 처리하게 되면, 수화처리 과정 중 형성된 유사 베마이트(boehmite) 피막 내부에 결함 및 미세기공을 형성하게 되며, 이와 같은 결함 및 미세기공에 의해 누설전류 증가(발생) 및 내전압 소멸현상이 발생되게 된다. In sum, when the etched aluminum foil is hydrated in high temperature pure water (H 2 O), defects and micropores are formed in the pseudo boehmite film formed during the hydration process. Due to the pores, leakage current increases (occurs) and withstand voltage breakdown occurs.

본 발명에서는 이와 같은 누설전류 증가(발생) 및 내전압 소멸현상을 방지하기 위해 약산성 처리단계(S22)를 실시하는 바, 수화처리 공정 중 약산(인산, 아디핀산, 주석산 또는 구연산의 염) 수용액 중에 수화처리된 알루미늄 에칭박을 침적하여 피막 내의 결함 및 미세 기공을 개방하게 된다. In the present invention, the weak acid treatment step (S22) is performed in order to prevent such leakage current increase (occurrence) and withstand voltage breakdown phenomenon, and thus, hydrate in a weak acid (a salt of phosphoric acid, adipic acid, tartaric acid, or citric acid) aqueous solution during the hydration process. The treated aluminum etching foil is deposited to open defects and fine pores in the coating.

이후 제 1, 2화성공정에서 반응성을 향상시켜 결정성이 높은 유전체 피막이 형성되는 한편, 초기 형성된 결함 및 미세기공이 감소하여 내전압 소멸현상을 방지하고 누설전류를 저감시킨 알루미늄 전해 콘덴서용 전극 박을 얻을 수 있다. After that, the dielectric film with high crystallinity is formed by improving the reactivity in the first and second chemical conversion processes, while defects and micropores formed at the initial stage are reduced, thereby preventing the breakdown voltage withstand voltage and reducing the leakage current. Can be.

이상 본 발명의 구체적 실시형태와 관련하여 본 발명을 설명하였으나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 범위를 벗어나지 않고 설명된 실시형태를 변경 또는 변형할 수 있으며, 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능하다.
Although the present invention has been described in connection with the specific embodiments of the present invention, it is to be understood that the present invention is not limited thereto. Those skilled in the art can change or modify the described embodiments without departing from the scope of the present invention, and within the equivalent scope of the technical spirit of the present invention and the claims to be described below. Various modifications and variations are possible.

10: 양극박
20: 음극박
30: 전해지
40: 콘덴서 소자
50: 리드 와이어
10: anode foil
20: cathode foil
30: Electrolyte
40: capacitor element
50: lead wire

Claims (5)

에칭된 알루미늄 박을 수화 처리하는 단계;
상기 수화 처리된 알루미늄 박을 45℃에서 pH 4 내지 pH 6의 약산 수용액에 의한 산성 침적 처리 공정을 거치는 단계;
상기 침적처리된 알루미늄 박을 소정의 정전류로 전압처리를 실시하는 제 1차 화성처리 단계;
상기 제 1차 화성처리 단계를 거친 알루미늄 박을 열처리하는 단계;
상기 열처리 단계를 거친 알루미늄 박을 재차 소정의 정전류로 전압처리를 실시하는 제 2차 화성처리 단계; 및
상기 제 2차 화성처리된 알루미늄 박을 건조시키는 단계;를 포함하되,
상기 약산은 주석산 또는 구연산 중에서 선택된 어느 하나의 물질을 이용하고,
상기 약산 수용액 중 약산의 농도는 10g/L 인 것을 특징으로 하는 알루미늄 전해 콘덴서용 전극박의 제조방법.
Hydrating the etched aluminum foil;
Subjecting the hydrated aluminum foil to an acidic deposition process using a weak acid aqueous solution of pH 4 to pH 6 at 45 ° C .;
A first chemical conversion treatment step of subjecting the deposited aluminum foil to a predetermined constant current by voltage treatment;
Heat-treating the aluminum foil subjected to the first chemical conversion treatment step;
A second chemical conversion treatment step of subjecting the aluminum foil subjected to the heat treatment step to voltage treatment at a predetermined constant current again; And
And drying the second converted aluminum foil.
The weak acid is any one selected from tartaric acid or citric acid,
The concentration of the weak acid in the weak acid aqueous solution is a manufacturing method of the electrode foil for aluminum electrolytic capacitors, characterized in that 10g / L.
삭제delete 삭제delete 삭제delete 제 1항의 알루미늄 전해 콘덴서용 전극박의 제조방법의 의해 제조되는 것을 특징으로 하는 알루미늄 전해 콘덴서용 전극박.It is manufactured by the manufacturing method of the electrode foil for aluminum electrolytic capacitors of Claim 1, The electrode foil for aluminum electrolytic capacitors characterized by the above-mentioned.
KR1020110130693A 2011-12-08 2011-12-08 Electrode for aluminun electrolytic condenser and method thereof KR101273348B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110130693A KR101273348B1 (en) 2011-12-08 2011-12-08 Electrode for aluminun electrolytic condenser and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110130693A KR101273348B1 (en) 2011-12-08 2011-12-08 Electrode for aluminun electrolytic condenser and method thereof

Publications (1)

Publication Number Publication Date
KR101273348B1 true KR101273348B1 (en) 2013-06-11

Family

ID=48866716

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110130693A KR101273348B1 (en) 2011-12-08 2011-12-08 Electrode for aluminun electrolytic condenser and method thereof

Country Status (1)

Country Link
KR (1) KR101273348B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539860B1 (en) * 2013-10-30 2015-07-27 인하대학교 산학협력단 Method of manufacturing capacitor
US11626257B2 (en) * 2017-07-28 2023-04-11 Nippon Light Metal Company, Ltd. Electrode for aluminum electrolytic capacitor and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246110A (en) * 1996-03-13 1997-09-19 Matsushita Electric Ind Co Ltd Method transforming aluminum electrolytic capacitor anode foil
JPH10172868A (en) * 1996-12-13 1998-06-26 Matsushita Electric Ind Co Ltd Aluminum electrode foil for electrolytic capacitor and its manufacture
JP2000003835A (en) * 1998-06-15 2000-01-07 Japan Capacitor Industrial Co Ltd Manufacture of electrode foil for aluminum electrolytic capacitor
JP2009246103A (en) * 2008-03-31 2009-10-22 Nichicon Corp Manufacturing method of cathode foil for aluminum electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246110A (en) * 1996-03-13 1997-09-19 Matsushita Electric Ind Co Ltd Method transforming aluminum electrolytic capacitor anode foil
JPH10172868A (en) * 1996-12-13 1998-06-26 Matsushita Electric Ind Co Ltd Aluminum electrode foil for electrolytic capacitor and its manufacture
JP2000003835A (en) * 1998-06-15 2000-01-07 Japan Capacitor Industrial Co Ltd Manufacture of electrode foil for aluminum electrolytic capacitor
JP2009246103A (en) * 2008-03-31 2009-10-22 Nichicon Corp Manufacturing method of cathode foil for aluminum electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539860B1 (en) * 2013-10-30 2015-07-27 인하대학교 산학협력단 Method of manufacturing capacitor
US11626257B2 (en) * 2017-07-28 2023-04-11 Nippon Light Metal Company, Ltd. Electrode for aluminum electrolytic capacitor and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP4660222B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2663544B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
KR20140001991A (en) Manufacturing method for anode foil of aluminum electrolytic capacitor
CN103310981A (en) Producing method for full-tantalum-gas sealed capacitor
JP4653687B2 (en) Method for producing electrode foil for electrolytic capacitor
KR101273348B1 (en) Electrode for aluminun electrolytic condenser and method thereof
JP2000348984A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
CN104103428B (en) A kind of manufacture method of aluminium electrolutic capacitor high pressure high-dielectric formed foil
KR101415641B1 (en) Producting method for electrode foil for stacked type aluminium capacitor
JP7181358B2 (en) Electrodes for aluminum electrolytic capacitors
JP2663541B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JP7227870B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP3295841B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JP2010003996A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
KR20150045051A (en) Producting method for electrode foil for accunulated type aluminum electrolytic capacitor
JPH09246111A (en) Formation of electrode foil for aluminum electrolytic capacitor
JP2007036043A (en) Method for manufacturing electrode foil for aluminum electrolytic capacitor
JP2010196131A (en) Method of manufacturing electrode foil for electrolytic capacitor
JP3976534B2 (en) Anode foil for aluminum electrolytic capacitor and chemical conversion method thereof
JP6675996B2 (en) Method for manufacturing electrode for aluminum electrolytic capacitor
JP2007067172A (en) Manufacturing method of aluminum electrode foil for electrolytic capacitor
JP2013247203A (en) Method of manufacturing aluminum electrode plate for electrolytic capacitor
JP2005347681A (en) Method of manufacturing anode foil for aluminum electrolytic capacitor
JPH07272985A (en) Manufacturing method for anode foil for aluminum electrolytic capacitor
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160411

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170517

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180516

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190509

Year of fee payment: 7