JP5262238B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP5262238B2
JP5262238B2 JP2008085970A JP2008085970A JP5262238B2 JP 5262238 B2 JP5262238 B2 JP 5262238B2 JP 2008085970 A JP2008085970 A JP 2008085970A JP 2008085970 A JP2008085970 A JP 2008085970A JP 5262238 B2 JP5262238 B2 JP 5262238B2
Authority
JP
Japan
Prior art keywords
dopant
electrolytic capacitor
solid electrolytic
conductive polymer
polymer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008085970A
Other languages
Japanese (ja)
Other versions
JP2009239170A (en
Inventor
拓哉 鈴木
和彦 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2008085970A priority Critical patent/JP5262238B2/en
Publication of JP2009239170A publication Critical patent/JP2009239170A/en
Application granted granted Critical
Publication of JP5262238B2 publication Critical patent/JP5262238B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-state electrolytic capacitor excellent in humidity resistance property, suppressing damage on dielectric oxide film and conductive high polymer frame caused by free dopant. <P>SOLUTION: The method for manufacturing the solid-state electrolytic capacitor includes: a step for forming a conductive high polymer layer in an element by carrying out a chemical oxidation polymerization reaction of a polymerizable monomer and an oxidant containing dopant at a temperature at which the dopant in the oxidant does not carry out heat fixing into the element; and a step for applying a heat treatment to the element at a temperature which promotes the heat fixing of the dopant in the element after removing the dopant remained in the element by washing the element, wherein the dopant remaining after washing is made to be heat-fixed in the element by the step for applying the heat treatment, the rate of content of the free dopant in the conductive high polymer layer is adjusted. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、導電性高分子を用いた固体電解コンデンサに関し、特に耐湿特性の優れた固体電解コンデンサの製造方法に関する。  The present invention relates to a solid electrolytic capacitor using a conductive polymer, and more particularly to a method of manufacturing a solid electrolytic capacitor having excellent moisture resistance.

電解コンデンサの陽極電極は、アルミニウム、タンタル、ニオブなどの弁作用金属からなるが、この陽極電極はエッチングピットや微細孔を持ち、陽極電極表面に誘電体となる酸化皮膜層を形成し、この酸化皮膜層上に電解質層を形成し、電極を引出して形成される。この電解質層は、電解コンデンサにおいて真の陰極としての役割を担い、電解コンデンサの電気特性に大きな影響を及ぼす。   The anode electrode of an electrolytic capacitor is made of a valve metal such as aluminum, tantalum, or niobium. This anode electrode has etching pits and fine holes, and forms an oxide film layer as a dielectric on the anode electrode surface. An electrolyte layer is formed on the coating layer, and the electrode is drawn out. This electrolyte layer plays a role as a true cathode in the electrolytic capacitor, and greatly affects the electrical characteristics of the electrolytic capacitor.

近年、電子機器の小型・高性能化に伴い、製品体積あたりの静電容量が大きく、かつESRの低い固体電解コンデンサが求められるようになってきた。このようなことを考慮して、固体電解質としてポリピロール、ポリチオフェン、ポリフラン、ポリアニリン等の導電性高分子を用いた固体電解コンデンサが開発されている。これらの導電性高分子は、従来の固体電解コンデンサに用いられてきた電解質である二酸化マンガンやTCNQ錯塩等に比べて高い導電率を有し、耐熱安定性も高いことから、固体電解コンデンサの低ESR化および高信頼性化に大きく寄与している。   In recent years, with the downsizing and high performance of electronic devices, there has been a demand for solid electrolytic capacitors having a large capacitance per product volume and low ESR. In consideration of the above, a solid electrolytic capacitor using a conductive polymer such as polypyrrole, polythiophene, polyfuran, polyaniline as a solid electrolyte has been developed. These conductive polymers have high conductivity and high heat stability compared to manganese dioxide, TCNQ complex salt, etc., which are electrolytes used in conventional solid electrolytic capacitors. It greatly contributes to ESR and high reliability.

この導電性高分子の生成方法として様々なものが提案されているが、予め重合性モノマーと酸化剤の混合液を調整しておき、この混合液にコンデンサ素子を浸漬する方法、または、コンデンサ素子を酸化剤、重合性モノマーにそれぞれ浸漬するなどの化学酸化重合により生成する方法が用いられている(例えば、特許文献1、特許文献2参照)。   Various methods for generating this conductive polymer have been proposed. A method of preparing a mixed liquid of a polymerizable monomer and an oxidizing agent in advance and immersing a capacitor element in this mixed liquid, or a capacitor element Is produced by chemical oxidative polymerization such as immersing each in an oxidizing agent and a polymerizable monomer (see, for example, Patent Document 1 and Patent Document 2).

そしてこれら化学酸化重合では、酸化剤中に導電性高分子のドーパントとなる物質が含有されていることが一般的であり、特に芳香族スルホン酸などのスルホン酸化合物イオンをドーパントとして分子内に取り込んだ導電性高分子は導電性が高く、固体電解コンデンサの固体電解質として広く用いられている(例えば、特許文献3参照)。   In these chemical oxidative polymerizations, the oxidant generally contains a substance that becomes a conductive polymer dopant. In particular, a sulfonic acid compound ion such as aromatic sulfonic acid is incorporated into the molecule as a dopant. The conductive polymer has high conductivity and is widely used as a solid electrolyte of a solid electrolytic capacitor (see, for example, Patent Document 3).

一方で、重合性モノマーと酸化剤との化学酸化重合反応自体は、例えば室温でも進行することが知られているものの(例えば、3,4−エチレンジオキシチオフェンについて、特許文献4、特許文献5参照)、重合反応が長時間にわたるため、工業的には100℃以上の熱処理を施すなどして化学酸化重合反応を促進させていた(例えば特許文献6、特許文献7、特許文献8参照)。
特開2001−196279号公報 特開平10−50559号公報 特開平10−32145号公報 特許第2721700号公報 特許第3040113号公報 特開平10−340831号公報 特許第3296724号公報 特許第3454733号公報
On the other hand, although the chemical oxidative polymerization reaction itself between the polymerizable monomer and the oxidizing agent is known to proceed even at room temperature, for example, Patent Document 4 and Patent Document 5 describe 3,4-ethylenedioxythiophene. Since the polymerization reaction takes a long time, the chemical oxidative polymerization reaction was promoted industrially by performing a heat treatment at 100 ° C. or more (see, for example, Patent Document 6, Patent Document 7, and Patent Document 8).
JP 2001-196279 A Japanese Patent Laid-Open No. 10-50559 Japanese Patent Laid-Open No. 10-32145 Japanese Patent No. 2721700 Japanese Patent No. 3040113 JP-A-10-340831 Japanese Patent No. 3296724 Japanese Patent No. 3454733

しかしながら、これらのスルホン酸化合物イオン等のドーパントをドーピングした導電性高分子層を固体電解質とした固体電解コンデンサは、耐湿特性ならびにその長期安定性においてなお充分ではなく、化学酸化重合反応を熱処理等により促進させても、素子内にモノマーや酸化剤中のドーパントが残留してしまい、特に導電性高分子層に残留する遊離のスルホン酸イオン等のドーパントが悪影響を及ぼしていることが明らかとなった。 However, solid electrolytic capacitors using a conductive polymer layer doped with a dopant such as sulfonic acid compound ions as a solid electrolyte are still not sufficient in terms of moisture resistance and long-term stability. Even if promoted, it became clear that the dopant in the monomer or oxidizing agent remained in the device, and in particular, the dopant such as free sulfonate ions remaining in the conductive polymer layer had an adverse effect. .

すなわち、従来の固体電解コンデンサの素子を煮沸してドーパントであるスルホン酸イオンを測定したところ、少ないものでも4000ppmを越えるスルホン酸イオンが検出された。この結果から、煮沸程度で溶出してしまうスルホン酸イオン、すなわち素子中に残留し、遊離してしまうスルホン酸イオンが存在し、この遊離するスルホン酸イオンの酸化作用によって誘電体酸化皮膜や導電性高分子骨格が損傷を受け、結果として電気的特性、特に耐湿性能が劣化しているものと考えられた。   That is, when the element of the conventional solid electrolytic capacitor was boiled and the sulfonic acid ion as the dopant was measured, the sulfonic acid ion exceeding 4000 ppm was detected even with a small amount. From this result, there are sulfonate ions that are eluted at the boiling level, that is, sulfonate ions that remain in the device and are released. It was considered that the polymer skeleton was damaged, and as a result, the electrical characteristics, particularly the moisture resistance, were degraded.

本発明は、この遊離のドーパントによる誘電体酸化皮膜や導電性高分子骨格の損傷を抑制し、耐湿特性に優れた固体電解コンデンサを提供することを目的としている。   An object of the present invention is to provide a solid electrolytic capacitor having excellent moisture resistance characteristics by suppressing damage to the dielectric oxide film and the conductive polymer skeleton caused by the free dopant.

この発明は、固体電解コンデンサの製造方法において、重合性モノマーとドーパントを含む酸化剤とを、酸化剤中のドーパントが素子中に熱定着しない温度にて化学酸化重合反応させて素子中に導電性高分子層を生成する工程と、この素子を洗浄して素子中に残留したドーパントを除去した後、ドーパントが素子中に熱定着することを促進する温度にて素子に熱処理を施す工程とを含み、洗浄後に残留したドーパントを、前記熱処理を施す工程により素子中に熱定着させ、導電性高分子層中の遊離ドーパント含有率を3000ppm以下に調整することを特徴としている。また、化学酸化重合反応においてドーパントが素子中に熱定着しない温度は120℃以下であることが好ましく、また、ドーパントが素子中に熱定着することを促進する温度は150℃以上であることが好ましいが、これら遊離ドーパント含有率や温度は、素子構造や素子形状などの様々な条件により変動することも判明している。 The present invention relates to a method for producing a solid electrolytic capacitor, wherein a polymerizable monomer and an oxidant containing a dopant are subjected to a chemical oxidative polymerization reaction at a temperature at which the dopant in the oxidant is not thermally fixed in the element. A step of forming a polymer layer, and a step of washing the device to remove the dopant remaining in the device and then subjecting the device to heat treatment at a temperature that promotes thermal fixation of the dopant in the device. The dopant remaining after washing is thermally fixed in the device by the heat treatment step, and the free dopant content in the conductive polymer layer is adjusted to 3000 ppm or less . Also, it is preferable that the dopant is a temperature that does not thermally fixed in the device at 120 ° C. or less in the chemical oxidative polymerization reaction, also, the temperature that facilitates dopant is thermally fixed in the element is to be at 0.99 ° C. or higher Although preferred, these free dopant contents and temperatures have also been found to vary with various conditions such as device structure and device shape.

このような製造方法によれば、酸化剤中のドーパントが素子中に熱定着しない温度にて化学酸化重合反応による導電性高分子層を生成することにより、重合性モノマーと酸化剤による酸化重合反応を促進しつつ、残留する酸化剤中のスルホン酸イオン等のドーパントが素子内に熱定着することを防ぐ。その上で、この素子を洗浄して素子中に残留した遊離ドーパントを除去し、その後、ドーパントが素子中に熱定着することを促進する温度にて素子に熱処理を施すことにより、洗浄でもなお残留した遊離ドーパントを素子中に熱定着させ、いわば封じ込めることにより誘電体酸化皮膜や導電性高分子骨格の損傷を招く導電性高分子層中の遊離ドーパントの含有率を調整することができる。   According to such a manufacturing method, a conductive polymer layer is formed by a chemical oxidative polymerization reaction at a temperature at which the dopant in the oxidant is not thermally fixed in the device, whereby the oxidative polymerization reaction by the polymerizable monomer and the oxidant is performed. In this case, dopants such as sulfonate ions in the remaining oxidizing agent are prevented from being thermally fixed in the device. The device is then cleaned to remove any free dopant remaining in the device, and then subjected to a heat treatment at a temperature that promotes the thermal fixation of the dopant into the device, so that the device still remains after cleaning. The content of the free dopant in the conductive polymer layer that causes damage to the dielectric oxide film and the conductive polymer skeleton can be adjusted by thermally fixing the released free dopant in the device, and so on.

なお、導電性高分子層中のスルホン酸イオン等の遊離ドーパントの含有率が3000ppm以下であれば、従来の固体電解コンデンサに比して誘電体酸化皮膜や導電性高分子骨格の損傷を抑制することが期待できる。   In addition, if the content rate of free dopants, such as a sulfonate ion in a conductive polymer layer, is 3000 ppm or less, compared with the conventional solid electrolytic capacitor, a damage to a dielectric oxide film or a conductive polymer skeleton will be suppressed. I can expect that.

本発明によれば、導電性高分子層中の遊離ドーパントの含有量を調整することが容易となり、誘電体酸化皮膜や導電性高分子骨格の損傷が抑制されるため、耐湿特性に優れ、かつ長期にわたり安定した特性を維持する固体電解コンデンサを得ることができる。   According to the present invention, it becomes easy to adjust the content of the free dopant in the conductive polymer layer, and damage to the dielectric oxide film and the conductive polymer skeleton is suppressed. A solid electrolytic capacitor that maintains stable characteristics over a long period of time can be obtained.

本発明を実施するための形態は、重合性モノマーとドーパントを含む酸化剤とを、酸化剤中のドーパントが素子中に熱定着しない温度にて化学酸化重合反応させて素子中に導電性高分子層を生成する工程と、この素子を洗浄して素子中に残留したドーパントを除去した後、ドーパントが素子中に熱定着することを促進する温度にて素子に熱処理を施す工程とを含み、洗浄後に残留したドーパントを、前記熱処理を施す工程により素子中に熱定着させる固体電解コンデンサの製造方法であり、導電性高分子層中の遊離ドーパント含有率を調整することで誘電体酸化皮膜や導電性高分子骨格への影響を抑制できる。そのため、耐湿特性にすぐれ、かつ長期にわたり安定した特性を示す固体電解コンデンサの実現が期待できる。   In the embodiment for carrying out the present invention, a polymerizable monomer and an oxidizing agent containing a dopant are subjected to a chemical oxidative polymerization reaction at a temperature at which the dopant in the oxidizing agent is not thermally fixed in the device, and a conductive polymer in the device. Cleaning the device, and cleaning the device to remove the dopant remaining in the device and then subjecting the device to heat treatment at a temperature that promotes thermal fixation of the dopant in the device. This is a method for producing a solid electrolytic capacitor in which the dopant remaining after the heat treatment is thermally fixed in the device by the heat treatment step. The influence on the polymer skeleton can be suppressed. Therefore, it can be expected to realize a solid electrolytic capacitor having excellent moisture resistance and stable characteristics over a long period of time.

次いで、本発明の実施の形態を図面を用いて説明する。図1は、本発明の実施の形態による固体電解コンデンサの製造方法を示す製造工程図である。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a manufacturing process diagram showing a method of manufacturing a solid electrolytic capacitor according to an embodiment of the present invention.

まずアルミニウム等の弁金属からなる金属箔を用意し、その表面にエッチング処理を施して表面を拡大する。次いで、この金属箔をアジピン酸アンモニウム水溶液中で5Vで30分間化成して表面に誘電体酸化被膜を形成する。   First, a metal foil made of a valve metal such as aluminum is prepared, and the surface is subjected to an etching process to enlarge the surface. Next, this metal foil is formed in an aqueous solution of ammonium adipate at 5 V for 30 minutes to form a dielectric oxide film on the surface.

次に、導電性高分子層の生成工程として、上記金属箔を、重合性モノマーである3,4−エチレンジオキシチオフェン(ブタノール溶液)と酸化剤(p−トルエンスルホン酸第二鉄)とに浸漬し、引き上げた後、60℃ないし100℃程度で約30分間加熱して化学酸化重合を行い誘電体酸化被膜上に導電性高分子層を生成して素子とする。   Next, as a production process of the conductive polymer layer, the metal foil is changed into 3,4-ethylenedioxythiophene (butanol solution) that is a polymerizable monomer and an oxidizing agent (ferric iron p-toluenesulfonate). After dipping and pulling up, chemical oxidation polymerization is performed by heating at about 60 ° C. to 100 ° C. for about 30 minutes to form a conductive polymer layer on the dielectric oxide film to obtain an element.

続いて、この素子を、流水等で洗浄した後、200℃で10分の熱処理を行い、導電性高分子層の上にカーボン層および銀ペースト層を塗布して固体電解コンデンサとした。   Subsequently, the device was washed with running water and then heat-treated at 200 ° C. for 10 minutes, and a carbon layer and a silver paste layer were applied on the conductive polymer layer to obtain a solid electrolytic capacitor.

本発明の実施の別の形態として、いわゆる巻回型の素子を用いても良く、その場合の実施の形態は以下のようになる。すなわち、化成して表面に誘電体酸化被膜を形成した上記金属箔を陽極電極箔とし、エッチング処理を施した別の金属箔を陰極電極箔として、これら両極の電極箔を、例えば合成樹脂を主体とする不織布からなるセパレータを介して重ねて巻回し、その後、上記の実施の形態と同様に、重合性モノマー、酸化剤に浸積(含浸)し、引き上げた後、60℃ないし100℃程度で約30分間加熱して化学酸化重合を行い、導電性高分子層を形成する。その後の洗浄および熱処理を、上記の実施の形態と同様に施して素子とする。   As another embodiment of the present invention, a so-called wound element may be used, and the embodiment in that case is as follows. That is, the metal foil having a dielectric oxide film formed on the surface thereof is used as an anode electrode foil, and another metal foil subjected to etching treatment is used as a cathode electrode foil. These electrode foils are mainly composed of synthetic resin, for example. After being rolled up through a separator made of a non-woven fabric, and then immersed (impregnated) in a polymerizable monomer and an oxidizing agent and pulled up, as in the above embodiment, the temperature is about 60 ° C. to 100 ° C. Chemical oxidation polymerization is performed by heating for about 30 minutes to form a conductive polymer layer. Subsequent cleaning and heat treatment are performed in the same manner as in the above embodiment to obtain an element.

なお、両極電極箔には、電極を引き出すためのリード線が、ステッチ、超音波溶接等の手段で電気的に接続されており、また、この実施の形態による素子は、アルミニウム等からなる有底筒状の金属ケースに収納され、金属ケース開口部を弾性ゴム等からなる封口体で封止する。   In addition, to the bipolar electrode foil, a lead wire for drawing out the electrode is electrically connected by means such as stitching or ultrasonic welding, and the element according to this embodiment has a bottom made of aluminum or the like. The metal case opening is housed in a cylindrical metal case, and the metal case opening is sealed with a sealing member made of elastic rubber or the like.

(実施例1)
10×10mmの平板状のアルミニウム箔にエッチング処理を施し、アジピン酸アンモニウム水溶液中で5Vで30分間化成してアルミニウム箔表面に誘電体酸化皮膜を形成する。しかるのち、酸化剤(p−トルエンスルホン酸第二鉄)と3,4−エチレンジオキシチオフェン(ブタノール溶液)に浸漬し、引き上げた後、60℃で30分間加熱して化学酸化重合を行い誘電体酸化被膜上に導電性高分子層を生成して素子を形成した。次いで、この素子を流水等で洗浄した後、200℃で10分の熱処理を行い、導電性高分子層の上にカーボン層および銀ペースト層を塗布した。
(実施例2)
導電性高分子層を生成した素子を洗浄した後に、150℃で10分の熱処理を行った以外は実施例1と同様にして固体電解コンデンサを得た。
(実施例3)
金属箔を、120℃で10分間加熱して化学酸化重合を行った以外は実施例1と同様にして固体電解コンデンサを得た。
(実施例4)
導電性高分子層を生成した素子を洗浄した後に、150℃で10分の熱処理を行った以外は実施例3と同様にして固体電解コンデンサを得た。
(比較例1)
金属箔を、30℃で90分間加熱して化学酸化重合を行った以外は実施例1と同様にして固体電解コンデンサを得た。
(比較例2)
導電性高分子層を生成した素子を洗浄した後に、100℃で10分の熱処理を行った以外は実施例1と同様にして固体電解コンデンサを得た。
(比較例3)
実施例1と同様に導電性高分子層を生成した素子を洗浄した後、熱処理を施すことなく固体電解コンデンサを得た。
(比較例4)
金属箔を、120℃で10分間加熱して化学酸化重合を行った以外は比較例2と同様にして固体電解コンデンサを得た。
(比較例5)
導電性高分子層を形成したコンデンサ素子を、洗浄することなく150℃で10分の熱処理を行った以外は実施例1と同様にして固体電解コンデンサを得た。
(従来例1)
10×10mmの平板状のアルミニウム箔にエッチング処理を施し、アジピン酸アンモニウム水溶液中で5Vで30分間化成してアルミニウム箔表面に誘電体酸化皮膜を形成する。しかるのち、酸化剤(p−トルエンスルホン酸第二鉄)と3,4−エチレンジオキシチオフェン(ブタノール溶液)に浸漬し、引き上げた後、150℃で10分間加熱して化学酸化重合を行い誘電体酸化被膜上に導電性高分子層を生成して素子を形成した。次いで、この素子を流水等で洗浄した後、150℃で10分の熱処理を行い、導電性高分子層の上にカーボン層および銀ペースト層を塗布した。
(従来例2)
従来例1と同様に導電性高分子層を生成した素子を洗浄した後、熱処理を施すことなく固体電解コンデンサを得た。
(従来例3)
従来例1と同様に導電性高分子層を生成した素子を、洗浄および熱処理を施すことなく固体電解コンデンサを得た。
Example 1
Etching is applied to a 10 × 10 mm flat aluminum foil, and a dielectric oxide film is formed on the surface of the aluminum foil by chemical conversion in an aqueous solution of ammonium adipate at 5 V for 30 minutes. After that, it is immersed in an oxidizing agent (ferric iron p-toluenesulfonate) and 3,4-ethylenedioxythiophene (butanol solution), pulled up, heated at 60 ° C. for 30 minutes to perform chemical oxidative polymerization, and dielectric. A conductive polymer layer was formed on the body oxide film to form a device. Next, this element was washed with running water and then subjected to a heat treatment at 200 ° C. for 10 minutes to apply a carbon layer and a silver paste layer on the conductive polymer layer.
(Example 2)
A solid electrolytic capacitor was obtained in the same manner as in Example 1 except that the element on which the conductive polymer layer was formed was washed and then heat-treated at 150 ° C. for 10 minutes.
(Example 3)
A solid electrolytic capacitor was obtained in the same manner as in Example 1 except that chemical oxidation polymerization was performed by heating the metal foil at 120 ° C. for 10 minutes.
Example 4
A solid electrolytic capacitor was obtained in the same manner as in Example 3 except that the element on which the conductive polymer layer was formed was washed and then heat-treated at 150 ° C. for 10 minutes.
(Comparative Example 1)
A solid electrolytic capacitor was obtained in the same manner as in Example 1 except that the metal foil was heated at 30 ° C. for 90 minutes to perform chemical oxidation polymerization.
(Comparative Example 2)
A solid electrolytic capacitor was obtained in the same manner as in Example 1 except that the element on which the conductive polymer layer was formed was washed and then heat-treated at 100 ° C. for 10 minutes.
(Comparative Example 3)
After washing the element on which the conductive polymer layer was formed as in Example 1, a solid electrolytic capacitor was obtained without performing heat treatment.
(Comparative Example 4)
A solid electrolytic capacitor was obtained in the same manner as in Comparative Example 2 except that the metal foil was heated at 120 ° C. for 10 minutes for chemical oxidation polymerization.
(Comparative Example 5)
A solid electrolytic capacitor was obtained in the same manner as in Example 1 except that the capacitor element on which the conductive polymer layer was formed was heat-treated at 150 ° C. for 10 minutes without washing.
(Conventional example 1)
Etching is applied to a 10 × 10 mm flat aluminum foil, and a dielectric oxide film is formed on the surface of the aluminum foil by chemical conversion in an aqueous solution of ammonium adipate at 5 V for 30 minutes. After that, it is immersed in an oxidizing agent (ferric iron p-toluenesulfonate) and 3,4-ethylenedioxythiophene (butanol solution), pulled up, heated at 150 ° C. for 10 minutes to perform chemical oxidative polymerization, and dielectric. A conductive polymer layer was formed on the body oxide film to form a device. Next, this element was washed with running water and then subjected to heat treatment at 150 ° C. for 10 minutes, and a carbon layer and a silver paste layer were applied on the conductive polymer layer.
(Conventional example 2)
After washing the element on which the conductive polymer layer was formed as in Conventional Example 1, a solid electrolytic capacitor was obtained without performing heat treatment.
(Conventional example 3)
A solid electrolytic capacitor was obtained without washing and heat-treating the element on which the conductive polymer layer was formed as in Conventional Example 1.

各実施例、比較例および従来例の、初期のESR特性(100kHz:mΩ)、LC(2.5V印加:μA)および60℃95%RH、2.5V印加の条件で耐湿負荷試験後のESR特性、漏れ電流特性(LC)をそれぞれ試料20個の平均値として(表1)に示す。   ESR after the moisture resistance load test under the conditions of initial ESR characteristics (100 kHz: mΩ), LC (2.5 V applied: μA) and 60 ° C. 95% RH, 2.5 V applied in each example, comparative example, and conventional example. The characteristics and leakage current characteristics (LC) are shown in Table 1 as average values of 20 samples.

本発明の実施例はいずれも耐湿負荷試験後の変化は小さいが、従来例はいずれも耐湿負荷試験後のESR特性、漏れ電流特性(LC)共に上昇が激しく、遊離のドーパントであるパラトルエンスルホン酸による皮膜と導電性高分子層の劣化が確認された。特に、従来例1のように、導電性高分子層を生成した素子を洗浄し、なおかつドーパントが素子中に熱定着することを促進する温度にて素子に熱処理を施しても、酸化剤中のドーパントが素子中に熱定着しない温度にて化学酸化重合反応をさせない限り、充分な洗浄効果は得られなかった。   In all of the examples of the present invention, the change after the moisture resistance load test is small, but in all of the conventional examples, both the ESR characteristic and the leakage current characteristic (LC) after the moisture resistance load test are greatly increased, and paratoluene sulfone is a free dopant Degradation of the film and the conductive polymer layer due to the acid was confirmed. In particular, even if the device in which the conductive polymer layer is formed as in Conventional Example 1 is cleaned and the device is heat-treated at a temperature that promotes thermal fixing of the dopant in the device, A sufficient cleaning effect could not be obtained unless the chemical oxidative polymerization reaction was performed at a temperature at which the dopant was not thermally fixed in the device.

また比較例のうち、比較例1は結果としては良好であるものの、重合時間が長時間になるため最適ではない。比較例2ないし比較例5は、いずれも従来例よりは良好な結果が得られたが、実施例との比較ではいずれも耐湿負荷試験後のESR特性の上昇が見受けられ、例えば、比較例2ないし比較例4のように、たとえ重合性モノマーとドーパントを含む酸化剤とを、酸化剤中のドーパントが素子中に熱定着しない温度にて化学酸化重合反応させ、なおかつこの素子を洗浄して素子中に残留したドーパントを除去しても、その後にドーパントを素子中に充分に熱定着しなければ所望の結果を得ることはできず、また比較例5のように、ドーパントを素子中に熱定着させる熱処理を施しても、それに先立つ洗浄を行わなければ、良好な結果は得られないことが明らかとなった。   Of the comparative examples, although Comparative Example 1 is satisfactory as a result, it is not optimal because the polymerization time is long. In Comparative Examples 2 to 5, all the results better than the conventional examples were obtained, but in comparison with the Examples, an increase in ESR characteristics after the moisture resistance load test was observed. For example, Comparative Example 2 As in Comparative Example 4, a polymerizable monomer and an oxidizing agent containing a dopant are subjected to a chemical oxidative polymerization reaction at a temperature at which the dopant in the oxidizing agent is not thermally fixed in the device, and the device is washed to obtain a device. Even if the dopant remaining therein is removed, a desired result cannot be obtained unless the dopant is sufficiently heat-fixed in the device thereafter, and the dopant is heat-fixed in the device as in Comparative Example 5. Even if the heat treatment is performed, it has become clear that good results cannot be obtained unless cleaning is performed prior to the heat treatment.

なお、この実施例において、遊離ドーパント(スルホン酸イオン)の測定方法は以下の通りである。なお、「PTS」は遊離p−トルエンスルホン酸を表している。また、PTS濃度は、一定量サンプリングした溶出液を、液体クロマトグラフ法にて測定した。
(1)ポリマー重量(a)=重合後素子重量−重合前素子重量
(2)重合後素子を沸騰水中で30分煮沸(溶出液)
(3)素子中のPTS量(b)=溶出液の総重量×PTS濃度
(4)遊離スルホン酸イオンの含有率=b/a
In this example, the method for measuring free dopant (sulfonate ion) is as follows. “PTS” represents free p-toluenesulfonic acid. The PTS concentration was measured by liquid chromatography using an eluate sampled from a certain amount.
(1) Polymer weight (a) = post-polymerization element weight-pre-polymerization element weight (2) boiling post-polymerization element in boiling water for 30 minutes (eluent)
(3) PTS amount in device (b) = total weight of eluate × PTS concentration (4) free sulfonate ion content = b / a

本発明の実施の形態による固体電解コンデンサの製造方法を示す製造工程図Manufacturing process diagram showing a method of manufacturing a solid electrolytic capacitor according to an embodiment of the present invention

Claims (3)

重合性モノマーとドーパントを含む酸化剤とを、酸化剤中のドーパントが素子中に熱定着しない温度にて化学酸化重合反応させて素子中に導電性高分子層を生成する工程と、
この素子を洗浄して素子中に残留したドーパントを除去した後、ドーパントが素子中に熱定着することを促進する温度にて素子に熱処理を施す工程とを含み、
洗浄後に残留したドーパントを、前記熱処理を施す工程により素子中に熱定着させ、導電性高分子層中の遊離ドーパント含有率を3000ppm以下に調整する固体電解コンデンサの製造方法。
A step of chemical oxidation polymerization reaction of a polymerizable monomer and an oxidant containing a dopant at a temperature at which the dopant in the oxidant is not thermally fixed in the device to form a conductive polymer layer in the device;
Cleaning the element to remove the dopant remaining in the element, and then subjecting the element to heat treatment at a temperature that promotes thermal fixing of the dopant in the element.
The manufacturing method of the solid electrolytic capacitor which heat-fixes the dopant which remains after washing | cleaning in an element by the process of performing the said heat processing, and adjusts the free dopant content rate in a conductive polymer layer to 3000 ppm or less .
ドーパントが素子中に熱定着しない温度が120℃以下である請求項1記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein the temperature at which the dopant is not thermally fixed in the device is 120 ° C. or less. ドーパントが素子中に熱定着することを促進する温度が150℃以上である請求項1記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein a temperature at which the dopant promotes thermal fixing in the device is 150 ° C. or higher.
JP2008085970A 2008-03-28 2008-03-28 Manufacturing method of solid electrolytic capacitor Active JP5262238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085970A JP5262238B2 (en) 2008-03-28 2008-03-28 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085970A JP5262238B2 (en) 2008-03-28 2008-03-28 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2009239170A JP2009239170A (en) 2009-10-15
JP5262238B2 true JP5262238B2 (en) 2013-08-14

Family

ID=41252737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085970A Active JP5262238B2 (en) 2008-03-28 2008-03-28 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5262238B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5609812B2 (en) * 2011-08-01 2014-10-22 日本精工株式会社 Steering device
CN114899010B (en) * 2022-06-06 2024-01-19 中国振华(集团)新云电子元器件有限责任公司(国营第四三二六厂) Capacitor and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4789751B2 (en) * 2005-11-07 2011-10-12 佐賀三洋工業株式会社 Manufacturing method of solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2009239170A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5274268B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP6384896B2 (en) Solid electrolytic capacitor and manufacturing method thereof
WO2017163727A1 (en) Electrolytic capacitor
WO2015198547A1 (en) Method for producing electrolytic capacitor
KR20150048703A (en) Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
JP4823121B2 (en) Manufacturing method of solid electrolytic capacitor
US8513123B2 (en) Method of manufacturing solid electrolytic capacitor
JP6497563B2 (en) Electrolytic capacitor manufacturing method
WO2015198546A1 (en) Method for producing electrolytic capacitor
JP2009246288A (en) Solid-state electrolytic capacitor
JP5262238B2 (en) Manufacturing method of solid electrolytic capacitor
JP4845781B2 (en) Manufacturing method of solid electrolytic capacitor
WO2016002175A1 (en) Method for producing electrolytic capacitor
JP4926131B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2011014590A (en) Method for manufacturing solid electrolytic capacitor
JP4891140B2 (en) Manufacturing method of solid electrolytic capacitor
JP4909246B2 (en) Manufacturing method of solid electrolytic capacitor
JP6395202B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2007305684A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2010177498A (en) Wound type solid electrolyte capacitor
JP4529403B2 (en) Manufacturing method of solid electrolytic capacitor
JP2004128033A (en) Method of manufacturing solid state electrolytic capacitor
JP2008205405A (en) Method for manufacturing solid electrolytic capacitor
JP2008042136A (en) Manufacturing method of solid-state electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5262238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150