JP2000068159A - Solid electrolytic capacitor electrode foil therefor and its manufacture - Google Patents

Solid electrolytic capacitor electrode foil therefor and its manufacture

Info

Publication number
JP2000068159A
JP2000068159A JP11160276A JP16027699A JP2000068159A JP 2000068159 A JP2000068159 A JP 2000068159A JP 11160276 A JP11160276 A JP 11160276A JP 16027699 A JP16027699 A JP 16027699A JP 2000068159 A JP2000068159 A JP 2000068159A
Authority
JP
Japan
Prior art keywords
foil
chemical conversion
film
cut
barrier film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11160276A
Other languages
Japanese (ja)
Other versions
JP3411237B2 (en
Inventor
Yuji Furuta
雄司 古田
Katsuhiko Yamazaki
勝彦 山崎
Atsushi Sakai
厚 坂井
Hiroshi Konuma
博 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP16027699A priority Critical patent/JP3411237B2/en
Publication of JP2000068159A publication Critical patent/JP2000068159A/en
Application granted granted Critical
Publication of JP3411237B2 publication Critical patent/JP3411237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a voltage- and heat-resistant film only in the cut end portion of an aluminum electrode foil for solid electrolytic capacitors, by forming a barrier film on the roughened surface of the aluminum electrode foil, cutting the obtained formation foil in a predetermined size subjecting it to a chemical processing, and subjecting further the cut formation foil to another formation processing to form in the cut end portion thereof a porous film having a specific thickness. SOLUTION: Subjecting an aluminum foil 1 to a formation processing after applying a roughening 2 to its surface by etching, a barrier film 3 is formed as a dielectric on its surface subjected to the roughening 2 and it is changed into a formation foil to cut the obtained formation foil in a predetermined size. Then, subjecting further this cut formation foil to another formation processing, there is formed in its cut end portion 5 a porous oxide film 11 having a thickness within the scope of 5-100 times as large as the thickness of its barrier film 3. Also, after forming the porous film 11 in the cut end portion 5, another barrier film (a cut end barrier film) is further formed in the base layer of the porous film 11. Then, this electrode foil 10 is applied to a solid electrolytic capacitor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム化成
箔からなり、その切り口部の耐電圧性及び耐熱性が改善
された固体電解コンデンサ用電極箔、その製造方法及び
この電極箔を用いた固体電解コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode foil for a solid electrolytic capacitor which is made of an aluminum conversion foil and whose cut-off portion has improved withstand voltage and heat resistance, a method for manufacturing the same, and a solid electrolytic capacitor using this electrode foil. Related to capacitors.

【0002】[0002]

【従来の技術】固体電解コンデンサには、アルミニウム
箔の表面に陽極酸化皮膜からなる誘電体層が形成された
電極箔が用いられている。一般にこの電極箔は、アルミ
ニウム箔を酸性電解液に浸漬し、このアルミニウム箔を
陽極とする陽極酸化法により表面を化成処理し、次いで
所定のサイズに切断して製造される。近年は特に電子機
器分野において低圧用電解コンデンサの小型化が進み、
面積当り高い静電容量が求められるので、低電圧用の前
記電極箔の製造に際しては従来より、図3に示すよう
に、アルミニウム箔の有効表面積を拡大するために例え
ば塩素イオンを含む電解液中で交流エッチングし、その
表面に例えば口径0.2μm程度の細孔2を多数形成す
る粗面化処理が行われ、その後にこれらの細孔内面を含
むアルミニウム箔の表面に0.01μm〜0.1μm程
度の薄くて、高密度で均一なバリアー皮膜(陽極酸化皮
膜)3を形成する化成処理が行われている。得られた化
成箔には、アルミニウム地金からなる芯部1の両側表面
に多数の細孔2が形成され、この細孔により有効面積が
拡大された表面に、前記のバリアー皮膜3が誘電体層と
して形成されている。
2. Description of the Related Art A solid electrolytic capacitor uses an electrode foil in which a dielectric layer made of an anodic oxide film is formed on the surface of an aluminum foil. Generally, this electrode foil is manufactured by immersing an aluminum foil in an acidic electrolyte, subjecting the surface to a chemical conversion treatment by an anodic oxidation method using the aluminum foil as an anode, and then cutting the aluminum foil into a predetermined size. In recent years, especially in the field of electronic equipment, the miniaturization of low-voltage electrolytic capacitors has progressed,
Since a high capacitance per area is required, when manufacturing the electrode foil for low voltage, conventionally, as shown in FIG. 3, in order to enlarge the effective surface area of the aluminum foil, for example, an electrolytic solution containing chlorine ions is used. , And a surface roughening process for forming a large number of pores 2 having a diameter of, for example, about 0.2 μm is performed on the surface thereof. A chemical conversion treatment for forming a thin, high-density and uniform barrier film (anodic oxide film) 3 of about 1 μm is performed. In the obtained chemical conversion foil, a large number of pores 2 are formed on both surfaces of a core portion 1 made of aluminum ingot, and the barrier film 3 is coated with a dielectric material on a surface having an effective area enlarged by the pores. It is formed as a layer.

【0003】ここに得られた化成箔は、次にそれぞれの
低圧用小型固体電解コンデンサに求められる所定のサイ
ズに切断され、電極箔とされる。この際、前記電極箔の
切り口部5は、アルミニウム地金が露出しているのでこ
のまま固体電解コンデンサに組込むことはできず、絶縁
する必要がある。この切り口部5の絶縁化は普通、切断
後の化成箔を再度化成処理し(以下、「切り口化成」と
いう)、この切り口部5にバリアー皮膜を形成すること
により行われる。
[0003] The chemical conversion foil obtained here is then cut into a predetermined size required for each small-sized solid electrolytic capacitor for low voltage, and used as an electrode foil. At this time, the cut portion 5 of the electrode foil cannot be assembled into the solid electrolytic capacitor as it is because the aluminum base metal is exposed, and thus needs to be insulated. Insulation of the cut section 5 is usually performed by subjecting the cut chemical conversion foil to a chemical conversion treatment again (hereinafter referred to as “cut formation”) and forming a barrier film on the cut section 5.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記の化成箔
の切断は通常ナイフエッジの剪断力により行われるの
で、切り口部5にはアルミニウムの地金が露出して尖塔
化した尖塔部6が形成される。この状態で切り口化成を
行い、切り口部5にバリアー皮膜を形成させると、電圧
負荷時にその尖塔形状から電流集中によって局部的に発
熱し、熱応力によってバリアー皮膜の破壊が起こる等、
固体電解コンデンサの耐電圧性や耐熱性を著しく低下さ
せるという問題が起こる。切り口部5における誘電体層
を強化する場合、例えば前記と同様な粗面化処理や高電
圧下の切り口化成を行うと、何れも、すでに化成箔の表
面に形成されているバリアー皮膜3を破壊する可能性が
ある。
However, since the chemical conversion foil is cut by the shearing force of a knife edge, an aluminum base metal is exposed at the cut portion 5 to form a spire portion 6 which is spun. Is done. In this state, a cut film is formed and a barrier film is formed on the cut portion 5. When a voltage is applied, heat is locally generated from the spire shape due to current concentration, and the barrier film is broken by thermal stress.
There is a problem that the voltage resistance and heat resistance of the solid electrolytic capacitor are significantly reduced. When the dielectric layer in the cut portion 5 is strengthened, for example, when the same surface roughening treatment or cut formation under high voltage is performed as described above, the barrier film 3 already formed on the surface of the chemical conversion foil is destroyed. there's a possibility that.

【0005】そこで、切り口部を陽極酸化皮膜によら
ず、樹脂等で被覆絶縁する方法(例えば実公平6−14
465号公報等)も提案されているが、これらの方法で
は樹脂層が電極箔の表面にも回り込んでコンデンサとし
ての静電容量を減少させるので小型化の要求に反するこ
ととなり、また工程が煩雑となるので製造コストも上昇
する。本発明は、上記の課題を解決するためになされた
ものであって、従ってその目的は、電極箔の有効面積を
減少させることなく、切り口部にのみ耐電圧性及び耐熱
性の皮膜を形成する安価な固体電解コンデンサ用電極箔
の製造方法、この製造方法により製造された固体電解コ
ンデンサ用電極箔、及びこの電極箔を用いた固体電解コ
ンデンサを提供することにある。
Therefore, a method of covering and insulating the cut portion with a resin or the like without using an anodic oxide film (for example, Japanese Utility Model Publication No. 6-14)
No. 465) has been proposed, but in these methods, the resin layer goes around the surface of the electrode foil and reduces the capacitance as a capacitor, which is against the demand for miniaturization, and the process is difficult. The production cost increases because of the complexity. The present invention has been made in order to solve the above-mentioned problems, and therefore, an object of the present invention is to form a voltage-resistant and heat-resistant film only on a cut portion without reducing an effective area of an electrode foil. An object of the present invention is to provide a method of manufacturing an inexpensive electrode foil for a solid electrolytic capacitor, an electrode foil for a solid electrolytic capacitor manufactured by the manufacturing method, and a solid electrolytic capacitor using the electrode foil.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
めに本発明は、アルミニウム箔の表面をエッチングして
粗面化した後に化成処理し、この粗面化した表面に誘電
体層としてバリアー皮膜を形成した化成箔を所定のサイ
ズに切断し、この切断された化成箔を化成処理してその
切り口部に、多孔質酸化皮膜であって厚さが前記バリア
ー皮膜の厚さの5倍〜100倍の範囲内とされたポーラ
ス皮膜を形成する固体電解コンデンサ用電極箔の製造方
法を提供する。前記において、ポーラス皮膜を形成した
後に、更に化成処理してこのポーラス皮膜の基層に切り
口バリアー皮膜を形成することが好ましい。本発明はま
た、前記の何れかの製造方法により製造された固体電解
コンデンサ用電極箔、及びこの固体電解コンデンサ用電
極箔を用いて製造された固体電解コンデンサを提供す
る。以下、固体電解コンデンサ用電極箔を「電極箔」、
固体電解コンデンサを「コンデンサ」と称する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method of forming a surface of an aluminum foil by etching and roughening the surface, forming a dielectric layer on the roughened surface. The chemical conversion foil on which the film is formed is cut into a predetermined size, and the cut chemical conversion foil is subjected to a chemical conversion treatment, and a cut portion thereof is a porous oxide film having a thickness of 5 times or more the thickness of the barrier film. Provided is a method for manufacturing an electrode foil for a solid electrolytic capacitor that forms a porous film having a thickness of 100 times. In the above, it is preferable that after forming the porous film, a chemical conversion treatment is further performed to form a cut barrier film on the base layer of the porous film. The present invention also provides an electrode foil for a solid electrolytic capacitor manufactured by any of the above manufacturing methods, and a solid electrolytic capacitor manufactured using the electrode foil for a solid electrolytic capacitor. Hereinafter, the electrode foil for solid electrolytic capacitors is referred to as "electrode foil",
A solid electrolytic capacitor is called a “capacitor”.

【0007】[0007]

【発明の実施の形態】次に本発明を好ましい実施の形態
により説明する。本電極箔の製造に際しては、先ず従来
と同様にしてアルミニウム箔をエッチングして粗面化す
る。この後に化成処理を行い、粗面化したアルミニウム
箔の表面に誘電体層としてバリアー皮膜を形成し化成箔
とし、得られた化成箔を、コンデンサの電極箔として要
求される所定のサイズに切断する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to preferred embodiments. When manufacturing the present electrode foil, first, the aluminum foil is etched and roughened as in the conventional case. Thereafter, a chemical conversion treatment is performed, a barrier film is formed as a dielectric layer on the surface of the roughened aluminum foil to form a chemical conversion foil, and the obtained chemical conversion foil is cut into a predetermined size required as an electrode foil of a capacitor. .

【0008】次に、この切断された化成箔を化成処理
(切り口化成)してその切り口部に、多孔質酸化皮膜で
あって厚さが前記バリアー皮膜の厚さの5倍〜100倍
の範囲内とされたポーラス皮膜を形成する。より好まし
くは前記バリアー皮膜の厚さの20倍〜100倍の範囲
内とされたポーラス皮膜を形成する。
[0008] Next, the cut chemical conversion foil is subjected to a chemical conversion treatment (cut formation), and the cut portion has a porous oxide film having a thickness of 5 to 100 times the thickness of the barrier film. A porous film formed inside is formed. More preferably, a porous film having a thickness in the range of 20 to 100 times the thickness of the barrier film is formed.

【0009】本発明における前記の切り口化成は、切断
された化成箔を例えばリン酸、シュウ酸、硫酸等の酸を
含む電解液に浸漬し、そのアルミニウム地金からなる芯
部を陽極として定電流を印加することにより行うことが
できる。
In the present invention, the cut chemical conversion foil is formed by immersing a cut chemical conversion foil in an electrolytic solution containing an acid such as phosphoric acid, oxalic acid, sulfuric acid or the like, and using the aluminum core as an anode for a constant current. Is applied.

【0010】図1に示すように、ここに得られた本発明
の電極箔10は、アルミニウム地金からなる芯部1の表
面に多数の細孔2が形成され、この細孔によって有効面
積が拡大された両側表面に、前記のバリアー皮膜3が誘
電体層として形成されている。そして、アルミニウムの
地金が露出した面を覆う酸化皮膜とこの酸化皮膜から中
心部に孔を持ち柱列状に成長した酸化アルミニウムから
なるポーラス皮膜11が、切り口部5の上に形成され、
このポーラス皮膜11が厚く切り口部5を覆っている。
このポーラス皮膜11の厚さtp は、前記バリアー皮膜
3の厚さtb の5倍〜100倍、好ましくは20倍〜1
00倍の範囲内とされている。
As shown in FIG. 1, in the electrode foil 10 of the present invention obtained here, a large number of pores 2 are formed on the surface of a core portion 1 made of aluminum metal, and the effective area is formed by the pores. The barrier film 3 is formed as a dielectric layer on both enlarged surfaces. Then, an oxide film covering the surface where the aluminum base metal is exposed and a porous film 11 made of aluminum oxide having a hole in the center and grown in a columnar shape from the oxide film are formed on the cut portion 5,
The porous film 11 covers the cut portion 5 thickly.
The thickness tp of the porous film 11 is 5 to 100 times, preferably 20 to 1 times the thickness tb of the barrier film 3.
It is within the range of 00 times.

【0011】前記の切り口化成処理を施すことによっ
て、本電極箔10の切り口部5から図3に示した尖塔部
6の一部が消失し、切り口部の尖塔形状が緩和されるこ
とがわかった。これは、本発明における切り口化成の際
に、切り口部5にポーラス皮膜11が形成されるに先立
って尖塔部の少なくとも一部が酸性電解液に溶解するた
めと考えられる。
It has been found that by performing the above-mentioned cut chemical conversion treatment, a part of the spire portion 6 shown in FIG. 3 disappears from the cut portion 5 of the present electrode foil 10, and the spire shape of the cut portion is relaxed. . It is considered that this is because at the time of the cut formation in the present invention, at least a part of the spire portion is dissolved in the acidic electrolyte before the porous film 11 is formed on the cut portion 5.

【0012】このポーラス皮膜11は、化成箔のアルミ
ニウム芯部1を陽極とする通電により形成されるので、
通電条件を適当に選択すれば、化成箔の有効表面に形成
されたバリアー皮膜3に損傷を与えることなく、切り口
部5のアルミニウム地金が露出した部分にのみ選択的に
形成することができる。従ってポーラス皮膜11が形成
されても、本電極箔10のコンデンサとしての有効面積
が減少したり絶縁性が低下したりすることはない。
The porous film 11 is formed by energization using the aluminum core 1 of the chemical conversion foil as an anode.
By properly selecting the energization conditions, the barrier film 3 formed on the effective surface of the chemical conversion foil can be selectively formed only on the exposed portion of the cut metal 5 without damaging the barrier film 3. Therefore, even if the porous film 11 is formed, the effective area of the present electrode foil 10 as a capacitor does not decrease and the insulating property does not decrease.

【0013】本電極箔10においては、切り口部5の尖
塔形状が緩和され、さらに、切り口部5に形成されるポ
ーラス皮膜11が通常のバリアー皮膜に比べ十分に厚
く、かつこれら皮膜の上に形成される固体電解質層及び
導電層に対して緩衝性を有する。そのため、本電極箔1
0は絶縁性が高いばかりでなく機械的応力や熱的応力に
対する耐性も高く、切り口部5に起因するコンデンサの
耐電圧性や耐熱性の低下を防止することができる。
In the present electrode foil 10, the spire shape of the cut portion 5 is relaxed, and the porous film 11 formed on the cut portion 5 is sufficiently thicker than a normal barrier film and formed on these films. It has a buffering property for the solid electrolyte layer and the conductive layer to be formed. Therefore, the present electrode foil 1
A value of 0 is not only high in insulation properties but also high in resistance to mechanical stress and thermal stress, and can prevent deterioration of the withstand voltage and heat resistance of the capacitor caused by the cut portion 5.

【0014】本発明の更に好ましい実施形態において
は、図2に電極箔15として示すように、切り口部5に
ポーラス皮膜11を形成した後に、更に化成処理してポ
ーラス皮膜11の基層にバリアー皮膜(切り口バリアー
皮膜)12を形成する。この化成処理は、例えばポーラ
ス皮膜11が形成された前記の電極箔10を、アジピン
酸、ホウ酸、リン酸等の酸を含む電解液に浸漬し、アル
ミニウム芯部1を陽極として定電流を印加することによ
り行うことができる。この陽極酸化に際して、電解液は
ポーラス皮膜11の柱列の孔13に浸透し、ポーラス皮
膜11の基層に切り口バリアー皮膜12を形成する。形
成された切り口バリアー皮膜12は、実質的にバリアー
皮膜3と同等の耐電圧性を示す。
In a further preferred embodiment of the present invention, as shown as an electrode foil 15 in FIG. 2, a porous film 11 is formed on the cut portion 5 and then subjected to a chemical conversion treatment to form a barrier film ( A cut barrier film 12 is formed. In this chemical conversion treatment, for example, the electrode foil 10 on which the porous film 11 is formed is immersed in an electrolytic solution containing an acid such as adipic acid, boric acid or phosphoric acid, and a constant current is applied using the aluminum core 1 as an anode. Can be performed. During this anodic oxidation, the electrolyte penetrates into the holes 13 in the column of the porous film 11 and forms a cut barrier film 12 in the base layer of the porous film 11. The formed cut barrier film 12 has substantially the same withstand voltage as the barrier film 3.

【0015】得られた電極箔15は、切り口部5が先ず
高密度で均一な切り口バリアー皮膜12で、次いでその
外側が厚みの厚い緩衝性のポーラス皮膜11で二重に覆
われているので、膜の保護性が強化され、耐電圧性と耐
熱性が共に著しく向上する。この膜の保護性の強化は、
電解液を用いない固体電解コンデンサにあっては、バリ
アー皮膜の自己補修があまり期待できないところから特
に重要である。
In the obtained electrode foil 15, the cut portion 5 is firstly covered with a high-density and uniform cut barrier film 12, and then the outside thereof is double-covered with a thick cushioning porous film 11. The protection of the film is enhanced, and both the voltage resistance and the heat resistance are significantly improved. The enhanced protection of this membrane
This is particularly important for a solid electrolytic capacitor that does not use an electrolytic solution, since self-repair of the barrier film cannot be expected very much.

【0016】前記の本電極箔10又は本電極箔15を用
いて製造された本コンデンサは、製造工程が簡単な陽極
酸化の繰り返しのみによって切り口部5の尖塔形状が緩
和され、厚くて緩衝性の高いポーラス皮膜11と更に好
ましくはその基層に高密度で均一で高強度の切り口バリ
アー皮膜12が形成される。その結果、本コンデンサは
安価に製造できて、しかも耐電圧性、耐熱性及び耐衝撃
性に優れ、静電容量を減少させないので小型化の要求に
も対応できるものとなる。
In the capacitor manufactured using the present electrode foil 10 or the present electrode foil 15, the spire shape of the cut portion 5 is relaxed only by repeating the anodic oxidation, which is a simple manufacturing process. A high density, uniform and high strength cut barrier coating 12 is formed on the high porous coating 11 and more preferably on its base layer. As a result, the present capacitor can be manufactured at low cost, and is excellent in voltage resistance, heat resistance and impact resistance, and can meet the demand for miniaturization because the capacitance is not reduced.

【0017】本発明の電極箔は、固体電解コンデンサに
適用できるが、固体電解質を形成させるには公知の方法
に従って実施できる。好ましくは、導電性重合体が適し
ており、化学重合法、電解重合法の重合法が利用でき
る。より好ましくは、化学重合法において、重合体のモ
ノマー溶液、酸化剤溶液への浸漬で重合体を形成させる
場合の熱的応力、機械的応力に対する耐性が高くなるこ
とである。
Although the electrode foil of the present invention can be applied to a solid electrolytic capacitor, a solid electrolyte can be formed by a known method. Preferably, a conductive polymer is suitable, and a polymerization method such as a chemical polymerization method or an electrolytic polymerization method can be used. More preferably, in a chemical polymerization method, resistance to thermal stress and mechanical stress when a polymer is formed by immersing the polymer in a monomer solution or an oxidizing agent solution is increased.

【0018】また、ドーパントとしては、ドーピング能
がある化合物なら如何なるものでも良く、例えば有機ス
ルホン酸、無機スルホン酸、有機カルボン酸及びこれら
の塩を使用できる。特に優れたコンデンサ性能を引き出
すことができる化合物として、分子内に一つ以上のスル
ホン酸基とキノン構造を有する化合物、複素環式スルホ
ン酸、アントラセンモノスルホン酸及びこれらの塩を用
いても良い。
The dopant may be any compound as long as it has a doping ability, and examples thereof include organic sulfonic acids, inorganic sulfonic acids, organic carboxylic acids, and salts thereof. As a compound that can bring out particularly excellent capacitor performance, a compound having at least one sulfonic acid group and a quinone structure in a molecule, a heterocyclic sulfonic acid, an anthracene monosulfonic acid, and a salt thereof may be used.

【0019】以下、本発明を更に詳しく説明する。本電
極箔を製造するに際しては先ずアルミニウム箔を粗面化
する。この粗面化の方法は公知であって、特に小型の低
圧用固体電解コンデンサに用いられる電極箔にあって
は、例えば幅500mm、厚さ100μmのアルミニウ
ム箔ロールを塩酸、塩化アルミニウム等の塩素イオンを
含む電解液中で交流エッチングする。これにより、例え
ば深さ約35μm、平均口径約0.2μm程度の細孔が
箔の両面全面に形成され、これによって箔の有効面積は
約100倍に拡大される。
Hereinafter, the present invention will be described in more detail. When manufacturing the present electrode foil, first, the aluminum foil is roughened. This method of surface roughening is known, and particularly for an electrode foil used for a small-sized low-voltage solid electrolytic capacitor, for example, a roll of aluminum foil having a width of 500 mm and a thickness of 100 μm is formed by using a chlorine ion such as hydrochloric acid or aluminum chloride. AC etching in an electrolytic solution containing Thereby, for example, pores having a depth of about 35 μm and an average diameter of about 0.2 μm are formed on both surfaces of the foil, whereby the effective area of the foil is enlarged about 100 times.

【0020】次に、この粗面化されたアルミニウム箔
を、常法に従い、例えばアジピン酸、ホウ酸、リン酸等
の比較的穏和な酸性電解液を用いて化成処理し、拡大さ
れた表面に例えば厚さ約0.03μmのバリアー皮膜2
を形成する。得られた化成箔は、電極箔として所定のサ
イズに切断される。
Next, the roughened aluminum foil is subjected to a chemical conversion treatment using a relatively mild acidic electrolytic solution such as adipic acid, boric acid, phosphoric acid or the like according to a conventional method, so that the enlarged surface is formed. For example, a barrier film 2 having a thickness of about 0.03 μm
To form The obtained chemical conversion foil is cut into a predetermined size as an electrode foil.

【0021】次に、切断された化成箔に切り口化成処理
を施す。本発明においては、この切り口化成を、アルミ
ニウム地金が露出した面に厚さがバリアー皮膜3の5倍
〜100倍、好ましくは20倍〜100倍の範囲内とな
るようにポーラス皮膜11が形成される条件で行う。ポ
ーラス皮膜11を形成する化成条件は特に限定されるも
のではないが、例えば、リン酸、シュウ酸、硫酸等の少
なくとも1種を含む電解液を用い、その電解液濃度が
0.1重量%〜30重量%、温度が0℃〜80℃、電流
密度が0.1mA/cm2〜1000mA/cm2、化成
時間が100分以内の条件で化成箔の芯部1を陽極とし
て定電流化成を行う。更に好ましくは、電解液濃度が1
重量%〜20重量%、温度が20℃〜50℃、電流密度
が1mA/cm2〜400mA/cm2、化成時間が60
分以内の範囲内で条件を選定する。これにより厚さが
0.5μm〜数μm程度のポーラス皮膜11が形成され
る。
Next, the cut chemical conversion foil is subjected to a cut chemical conversion treatment. In the present invention, the porous film 11 is formed on the surface where the aluminum base metal is exposed such that the thickness is within a range of 5 to 100 times, preferably 20 to 100 times the barrier film 3 on the exposed surface of the aluminum metal. Perform under the conditions that The formation conditions for forming the porous film 11 are not particularly limited. For example, an electrolytic solution containing at least one of phosphoric acid, oxalic acid, and sulfuric acid is used, and the concentration of the electrolytic solution is 0.1% by weight or more. for 30 wt%, temperature of 0 ° C. to 80 ° C., a current density of 0.1mA / cm 2 ~1000mA / cm 2 , the constant current conversion core portion 1 of the foil in the chemical conversion time is within hundredths conditions as the anode . More preferably, the electrolyte concentration is 1
% To 20 wt%, temperature of 20 ° C. to 50 ° C., a current density is 1mA / cm 2 ~400mA / cm 2 , the chemical conversion time 60
Select conditions within the range of minutes. Thereby, the porous film 11 having a thickness of about 0.5 μm to several μm is formed.

【0022】前記の化成条件は工業的方法として好適な
ものではあるが、電解液の種類、電解液濃度、温度、電
流密度、化成時間等の諸条件は、前記化成箔表面にすで
に形成されているバリアー皮膜3を破壊又は劣化させな
い限り、任意に選定することができる。
Although the above-mentioned chemical conversion conditions are suitable for an industrial method, various conditions such as the type of the electrolytic solution, the electrolytic solution concentration, the temperature, the current density, the chemical conversion time and the like have already been formed on the surface of the chemical conversion foil. The barrier film 3 can be arbitrarily selected as long as the barrier film 3 is not destroyed or deteriorated.

【0023】形成するポーラス皮膜11の厚さは、化成
箔の表面に形成されたバリアー皮膜3の5倍〜100倍
の範囲内とされる。5倍未満の薄い皮膜ではポーラス皮
膜を形成する効果が期待できない。膜厚が100倍を越
える場合は、効果が更に向上することはなく、逆に、化
成箔のバリアー皮膜を破壊又は劣化させずに厚い皮膜を
形成する条件の設定が困難になるので工業的に不利とな
る。特にポーラス皮膜11の膜厚は、バリアー皮膜3の
20倍〜100倍の範囲内となるように選定すると、得
られた電極箔の耐電圧性と耐熱性とが共に著しく向上す
る。
The thickness of the porous film 11 to be formed is in the range of 5 to 100 times the thickness of the barrier film 3 formed on the surface of the chemical conversion foil. If the thickness is less than 5 times, the effect of forming a porous film cannot be expected. When the film thickness exceeds 100 times, the effect is not further improved, and conversely, it is difficult to set conditions for forming a thick film without destroying or deteriorating the barrier film of the chemical conversion foil, so that it is industrially necessary. Disadvantageous. In particular, when the thickness of the porous film 11 is selected to be in the range of 20 to 100 times the barrier film 3, both the withstand voltage and the heat resistance of the obtained electrode foil are significantly improved.

【0024】ポーラス皮膜は、従来からも特に中〜高圧
用アルミニウム電解コンデンサにおけるアルミニウム箔
の有効表面に耐高圧性のバリアー皮膜を形成する目的で
中間的に用いられている(例えば特開平1−18491
2号公報、特公平3−65010号公報等)。しかしこ
れらは何れも電解液型のコンデンサであり、しかも形成
されたポーラス皮膜の孔13(図2)のほとんどが酸化
物で充填され、ポーラス皮膜としては存在しないので緩
衝性等が期待できず、この点で、ポーラス皮膜がそのま
ま存在して緩衝効果を現す本願発明の電極箔は、従来の
ものと大幅に異なっている。
The porous film has been conventionally used in the past for the purpose of forming a high-pressure resistant barrier film on the effective surface of an aluminum foil particularly in an aluminum electrolytic capacitor for medium to high pressures (for example, JP-A-1-18491).
No. 2, Japanese Patent Publication No. 3-65010, etc.). However, all of these are electrolytic solution type capacitors, and most of the pores 13 (FIG. 2) of the formed porous film are filled with oxide and do not exist as a porous film. In this regard, the electrode foil of the present invention, in which the porous film is present as it is and has a buffering effect, is significantly different from the conventional one.

【0025】本発明の請求項2の発明によれば、前記の
ポーラス皮膜11を形成した後の切り口部5に、更に化
成処理してポーラス皮膜の基層に切り口バリアー皮膜1
2を形成する。この化成処理の条件は特に限定されるも
のではないが、例えばアジピン酸、ホウ酸、リン酸等の
少なくとも1種を含む電解液を用い、その電解液濃度が
0.05重量%〜20重量%、温度が0℃〜90℃、電
流密度が0.1mA/cm2〜2000mA/cm2、化
成時間が60分以内の条件で化成箔の芯部1を陽極とし
て定電流化成を行う。更に好ましくは前記電解液濃度が
0.1重量%〜15重量%、温度が20℃〜70℃、電
流密度が1mA/cm2〜1200mA/cm2、化成時
間が30分以内の範囲内で条件を選定する。
According to the invention of claim 2 of the present invention, the cut portion 5 after the formation of the porous film 11 is further subjected to a chemical conversion treatment to form a base layer of the porous film with the cut barrier film 1.
Form 2 The conditions for this chemical conversion treatment are not particularly limited, but for example, an electrolytic solution containing at least one of adipic acid, boric acid, phosphoric acid and the like is used, and the concentration of the electrolytic solution is 0.05% by weight to 20% by weight. , the temperature is 0 ° C. to 90 ° C., a current density makes the constant current conversion 0.1mA / cm 2 ~2000mA / cm 2 , the core 1 of the foil under the conditions of within 60 minutes Chemical time as an anode. More preferably the electrolyte solution concentration is 0.1% by weight to 15% by weight, temperature is 20 ° C. to 70 ° C., conditions within a current density of 1mA / cm 2 ~1200mA / cm 2 , the chemical conversion time is within 30 minutes Is selected.

【0026】前記の化成条件は工業的方法として好適な
ものではあるが、要は前記電極箔の有効表面に形成され
たバリアー皮膜3と同等以上の耐電圧性を持つバリアー
皮膜12が切り口部5に形成されればよいのであるか
ら、電解液の種類、電解液濃度、温度、電流密度、化成
時間等の諸条件は、前記化成箔表面にすでに形成されて
いるバリアー皮膜3を破壊又は劣化させない限り、任意
に選定することができる。
The above-mentioned chemical conversion conditions are suitable for an industrial method, but the point is that the barrier film 12 having a withstand voltage equal to or higher than that of the barrier film 3 formed on the effective surface of the electrode foil is formed in the cut portion 5. Therefore, various conditions such as the type of the electrolytic solution, the concentration of the electrolytic solution, the temperature, the current density, and the formation time do not destroy or deteriorate the barrier film 3 already formed on the surface of the formation foil. As long as it can be selected arbitrarily.

【0027】前記の何れかの化成処理の前後に、必要な
ら、例えば耐水性の向上のためのリン酸浸漬処理、皮膜
強化のための熱処理又は沸騰水への浸漬処理等を行なう
ことができる。またこれらの付帯的な処理や前記の何れ
かのバリアー皮膜化成処理、ポーラス皮膜化成処理は、
それぞれ単独に又は組合せて繰り返し行うこともでき
る。また、前記の各説明は低圧用固体電解コンデンサを
対象としたが、本発明が中〜高圧用の固体電解コンデン
サにも適用できることはいうまでもない。
Before or after any of the above chemical conversion treatments, if necessary, for example, a phosphoric acid immersion treatment for improving water resistance, a heat treatment for strengthening the film, or a immersion treatment in boiling water can be performed. In addition, these ancillary treatments and any of the above barrier film conversion treatments, porous film conversion treatments,
Each of them can be repeated alone or in combination. Although the above description has been directed to a low-voltage solid electrolytic capacitor, it goes without saying that the present invention can also be applied to a medium to high-voltage solid electrolytic capacitor.

【0028】[0028]

【実施例】(実施例1)交流エッチングにより粗面化し
たアルミニウム箔をアジピン酸アンモニウム水溶液中、
電圧32Vで化成処理し、得られた低圧コンデンサ用化
成箔を3×7mmのサイズに切断した。この化成箔片の
一方の短辺部を電極バーに溶接し、溶接部の反対の端か
ら5mmのところの箔全周を絶縁性樹脂で0.6mmの
幅でマスキングを実施した。そして、そのマスキング下
の3辺を下記条件で化成処理し、ポーラス皮膜を形成し
た。 電解液 ;シュウ酸7.5重量%水溶液 温度 ;35℃ 電圧 ;32V 電流密度;電流密度180mA/cm2 化成時間;13分
(Example 1) An aluminum foil roughened by AC etching was placed in an aqueous solution of ammonium adipate.
A chemical conversion treatment was performed at a voltage of 32 V, and the resulting chemical conversion foil for a low-voltage capacitor was cut into a size of 3 × 7 mm. One short side of this chemical conversion foil piece was welded to an electrode bar, and the entire periphery of the foil at a distance of 5 mm from the opposite end of the weld was masked with an insulating resin to a width of 0.6 mm. Then, the three sides under the mask were subjected to a chemical conversion treatment under the following conditions to form a porous film. Electrolyte solution; 7.5% by weight oxalic acid aqueous solution Temperature; 35 ° C. Voltage; 32 V Current density; Current density 180 mA / cm 2 Formation time: 13 minutes

【0029】次いで350℃で30分の熱処理を行った
後に、下記条件で化成処理し、ポーラス皮膜の基層に切
り口バリアー皮膜を形成した。 電解液 ;アジピン酸10重量%水溶液 温度 ;45℃ 電圧 ;32V 電流密度;電流密度180mA/cm2 化成時間;10分
Next, after a heat treatment at 350 ° C. for 30 minutes, a chemical conversion treatment was carried out under the following conditions to form a cut barrier film on the base layer of the porous film. Electrolyte solution; adipic acid 10% by weight aqueous solution temperature; 45 ° C. voltage; 32 V current density; current density 180 mA / cm 2 formation time; 10 minutes

【0030】水洗、乾燥後、得られた電極箔の表面に、
3,4−エチレンジオキシチオフエンのイソプロピルア
ルコール溶液1mol/lに浸漬後、2分間放置し、次
いで、酸化剤(過硫酸アンモニウム;1.8mol/
l)とドーパント(4−モルホリンプロパンスルホン酸
ナトリウム;0.06mol/l)の混合水溶液に浸漬
し、45℃、5分間放置する。この工程を25回繰り返
し、水洗し、導電性重合体層を形成し、その上にカーボ
ンペースト、銀ぺ一ストを順次積層して導電層を形成し
た。次にこの箔片を電極バーから分離し、銀ペースト塗
布部で4枚積層し陰極部とし、リ一ドフレームに接着
し、反対側の導電性重合体を形成しない部分をリードフ
レームに溶接し陽極部とした。そして、コンデンサ素子
全体をエポキシ樹脂で封止して105℃、20Vで3時
間エージングを実施し、コンデンサを製造した。
After washing with water and drying, the surface of the obtained electrode foil is
After immersion in a 1 mol / l solution of 3,4-ethylenedioxythiophene in isopropyl alcohol, the mixture is allowed to stand for 2 minutes, and then oxidized (ammonium persulfate; 1.8 mol / l).
1) and a dopant (sodium 4-morpholinepropanesulfonate; 0.06 mol / l) in a mixed aqueous solution and left at 45 ° C. for 5 minutes. This step was repeated 25 times and washed with water to form a conductive polymer layer, on which a carbon paste and a silver paste were sequentially laminated to form a conductive layer. Next, this foil piece is separated from the electrode bar, and four sheets are laminated on the silver paste application part to form a cathode part, which is adhered to a lead frame, and the opposite side where a conductive polymer is not formed is welded to a lead frame. The anode was used. Then, the entire capacitor element was sealed with an epoxy resin and aged at 105 ° C. and 20 V for 3 hours to manufacture a capacitor.

【0031】(実施例2)実施例1のポーラス皮膜化成
処理における化成時間13分の代わりに、化成時間を1
0分とした以外は、実施例1と同様にして実施例2のコ
ンデンサを製造した。
(Example 2) Instead of the chemical conversion time of 13 minutes in the porous film chemical conversion treatment of Example 1, the chemical conversion time was set to 1
A capacitor of Example 2 was manufactured in the same manner as in Example 1 except that the time was 0 minutes.

【0032】(実施例3)実施例1のポーラス皮膜化成
処理における化成時間13分の代わりに、化成時間を7
分とした以外は、実施例1と同様にして実施例3のコン
デンサを製造した。
(Example 3) Instead of the chemical conversion time of 13 minutes in the porous film chemical conversion treatment of Example 1, the chemical conversion time was 7
A capacitor of Example 3 was manufactured in the same manner as in Example 1 except that the amount was changed.

【0033】(実施例4)実施例1のポーラス皮膜化成
処理における化成時間13分の代わりに、化成時間を4
分とした以外は、実施例1と同様にして実施例4のコン
デンサを製造した。
(Example 4) Instead of the chemical conversion time of 13 minutes in the porous film chemical conversion treatment of Example 1, the chemical conversion time was set to 4
A capacitor of Example 4 was manufactured in the same manner as Example 1 except that the amount was changed.

【0034】(実施例5)実施例1のポーラス皮膜化成
処理における化成時間13分の代わりに、化成時間を2
分とした以外は、実施例1と同様にして実施例5のコン
デンサを製造した。
(Example 5) Instead of the chemical conversion time of 13 minutes in the porous film chemical conversion treatment of Example 1, the chemical conversion time was changed to 2
A capacitor of Example 5 was manufactured in the same manner as Example 1 except that the amount was changed.

【0035】(実施例6)交流エッチングにより粗面化
したアルミニウム箔をアジピン酸アンモニウム水溶液
中、電圧23Vで化成処理し、かつ前記のポーラス皮膜
化成処理において化成時間を9分とした以外は、実施例
1と同様にして実施例6のコンデンサを製造した。
EXAMPLE 6 An aluminum foil roughened by AC etching was subjected to a chemical conversion treatment in an aqueous solution of ammonium adipate at a voltage of 23 V, and the chemical conversion treatment for the porous film was performed except that the chemical conversion time was 9 minutes. A capacitor of Example 6 was manufactured in the same manner as in Example 1.

【0036】(実施例7)実施例6のポーラス皮膜化成
処理における化成時間9分の代わりに、化成時間を7分
とした以外は、実施例6と同様にして実施例7のコンデ
ンサを製造した。
Example 7 A capacitor of Example 7 was manufactured in the same manner as in Example 6, except that the chemical conversion time in the porous film chemical conversion treatment of Example 6 was changed to 7 minutes instead of 9 minutes. .

【0037】(実施例8)実施例6のポーラス皮膜化成
処理における化成時間9分の代わりに、化成時間を4分
とした以外は、実施例6と同様にして実施例8のコンデ
ンサを製造した。
Example 8 The capacitor of Example 8 was manufactured in the same manner as in Example 6, except that the chemical conversion time in the porous film chemical conversion treatment of Example 6 was changed to 4 minutes instead of 9 minutes. .

【0038】(実施例9)実施例6のポーラス皮膜化成
処理における化成時間9分の代わりに、化成時間を2分
とした以外は、実施例6と同様にして実施例9のコンデ
ンサを製造した。
(Example 9) The capacitor of Example 9 was manufactured in the same manner as in Example 6, except that the chemical conversion time in the porous film chemical conversion treatment of Example 6 was changed to 2 minutes instead of 9 minutes. .

【0039】(実施例10)実施例6のポーラス皮膜化
成処理における化成時間9分の代わりに、化成時間を1
分とした以外は、実施例6と同様にして実施例10のコ
ンデンサを製造した。
(Example 10) Instead of the chemical conversion time of 9 minutes in the porous film chemical conversion treatment of Example 6, the chemical conversion time was set to 1
A capacitor of Example 10 was manufactured in the same manner as Example 6 except that the amount was changed.

【0040】(実施例11)実施例1のドーパントにお
ける4−モルホリンプロパンスルホン酸ナトリウムの代
わりに、アントラキノン−2−スルホン酸ナトリウムを
用いた以外は、実施例1と同様にして実施例11のコン
デンサを製造した。
Example 11 A capacitor of Example 11 was prepared in the same manner as in Example 1 except that sodium anthraquinone-2-sulfonate was used instead of sodium 4-morpholinepropanesulfonate in the dopant of Example 1. Was manufactured.

【0041】(実施例12)実施例1の3,4−エチレ
ンジオキシチオフエンの代わりに、N−メチルピロール
を用い、ドーパントにおける4−モルホリンプロパンス
ルホン酸ナトリウムの代わりに1−ナフタレンスルホン
酸ナトリウムを用いた以外は、実施例1と同様にして実
施例12コンデンサを製造した。
(Example 12) N-methylpyrrole was used in place of 3,4-ethylenedioxythiophene in Example 1, and sodium 1-naphthalenesulfonate was used instead of sodium 4-morpholinepropanesulfonate in the dopant. Example 12 A capacitor of Example 12 was manufactured in the same manner as Example 1 except for using.

【0042】(実施例13)実施例1の3,4−エチレ
ンジオキシチオフエンの代わりに、イソチアナフテンを
用い、酸化剤(過硫酸アンモニウム;1.8mol/
l)とドーパント(4−モルホリンプロパンスルホン酸
ナトリウム;0.06mol/l)の混合水溶液の代わ
りに、酸化剤(2,3−ジクロロ−5,6−ジシアノベ
ンゾキノン;1.8mol/l)のジオキサン溶液とド
ーパント(アントラセン−1−スルホン酸ナトリウム;
0.06mol/l)の水溶液の混合液を用いた以外
は、実施例1と同様にして実施例13のコンデンサを製
造した。
Example 13 Isothianaphthene was used in place of 3,4-ethylenedioxythiophene of Example 1, and an oxidizing agent (ammonium persulfate; 1.8 mol /
l) and an aqueous solution of a dopant (sodium 4-morpholinepropanesulfonate; 0.06 mol / l) instead of an aqueous solution of an oxidizing agent (2,3-dichloro-5,6-dicyanobenzoquinone; 1.8 mol / l) Solution and dopant (sodium anthracene-1-sulfonate;
A capacitor of Example 13 was produced in the same manner as in Example 1, except that a mixture of aqueous solutions of 0.06 mol / l) was used.

【0043】(実施例14)交流エッチングにより粗面
化したアルミニウム箔をアジピン酸アンモニウム水溶液
中、電圧23Vで化成処理し、かつ前記のポーラス皮膜
化成処理において化成時間を9分とした以外は、実施例
11と同様にして実施例14のコンデンサを製造した。
Example 14 An aluminum foil roughened by AC etching was subjected to a chemical conversion treatment in an aqueous solution of ammonium adipate at a voltage of 23 V, and the chemical conversion treatment for the porous film was performed except that the chemical conversion time was 9 minutes. The capacitor of Example 14 was manufactured in the same manner as in Example 11.

【0044】(実施例15)交流エッチングにより粗面
化したアルミニウム箔をアジピン酸アンモニウム水溶液
中、電圧23Vで化成処理し、かつ前記のポーラス皮膜
化成処理において化成時間を9分とした以外は、実施例
12と同様にして実施例15のコンデンサを製造した。
Example 15 An aluminum foil roughened by AC etching was subjected to a chemical conversion treatment in an aqueous solution of ammonium adipate at a voltage of 23 V, and the chemical conversion treatment for the porous film was performed except that the chemical conversion time was 9 minutes. The capacitor of Example 15 was manufactured in the same manner as in Example 12.

【0045】(実施例16)交流エッチングにより粗面
化したアルミニウム箔をアジピン酸アンモニウム水溶液
中、電圧23Vで化成処理し、かつ前記のポーラス皮膜
化成処理において化成時間を9分とした以外は、実施例
13と同様にして実施例16のコンデンサを製造した。
Example 16 An aluminum foil roughened by AC etching was subjected to a chemical conversion treatment in an aqueous solution of ammonium adipate at a voltage of 23 V and the chemical conversion treatment for the porous film was performed except that the chemical conversion time was 9 minutes. A capacitor of Example 16 was manufactured in the same manner as in Example 13.

【0046】(比較例1)実施例1のポーラス皮膜化成
処理を省略した以外は、実施例1と同様にして比較例1
のコンデンサを製造した。
Comparative Example 1 Comparative Example 1 was performed in the same manner as in Example 1 except that the porous film conversion treatment of Example 1 was omitted.
Was manufactured.

【0047】(比較例2)実施例1のポーラス皮膜化成
処理における化成時間13分の代わりに、化成時間を2
0秒とした以外は、実施例1と同様にして比較例2のコ
ンデンサを製造した。
(Comparative Example 2) Instead of the formation time of 13 minutes in the porous film conversion treatment of Example 1, the formation time was changed to 2
A capacitor of Comparative Example 2 was manufactured in the same manner as in Example 1, except that the time was set to 0 second.

【0048】(比較例3)実施例1のポーラス皮膜化成
処理における化成時間13分の代わりに、化成時間を2
0分とした以外は、実施例1と同様にして比較例3のコ
ンデンサを製造した。
(Comparative Example 3) Instead of the formation time of 13 minutes in the porous film conversion treatment of Example 1, the formation time was changed to 2
A capacitor of Comparative Example 3 was manufactured in the same manner as in Example 1, except that the time was 0 minutes.

【0049】得られた各コンデンサについて、ポーラス
皮膜の膜厚(走査電子顕微鏡観察により測定した)、バ
リアー皮膜に対するポーラス皮膜の膜厚倍率、耐電圧不
良率、及びリフロー不良率を測定した。ここで、耐電圧
不良率は、20個のコンデンサについて、85℃におい
て、定格の1.25倍の電圧をかけ充電時間30秒、放
電時間30秒のサイクルを1000回繰り返した後、漏
れ電流が0.04CV[CVは、公称静電容量C(μ
F)と定格電圧V(v)との積]以上となったものを不
良とし、(不良個数/試験個数)で表した。またリフロ
ー不良率は、30個のコンデンサについて、リフロー炉
を用い230℃で30秒間処理した後、漏れ電流が0.
04CV以上となったものを不良とし、(不良個数/試
験個数)で表した。試験結果を表1に示す。
For each of the obtained capacitors, the thickness of the porous film (measured by scanning electron microscope observation), the ratio of the thickness of the porous film to the barrier film, the withstand voltage failure rate, and the reflow failure rate were measured. Here, the withstand voltage failure rate is as follows. After applying a voltage of 1.25 times the rated voltage to 85 capacitors at 85 ° C. and repeating a cycle of charging time 30 seconds and discharging time 30 seconds 1,000 times, 0.04 CV [CV is the nominal capacitance C (μ
F) and the rated voltage V (v)] or more, and the result was expressed as (defective number / test number). In addition, the reflow defect rate was such that after 30 capacitors were treated at 230 ° C. for 30 seconds using a reflow furnace, the leakage current was 0.1%.
Those having a value of 04 CV or more were regarded as defective, and represented by (number of defectives / number of tests). Table 1 shows the test results.

【0050】[0050]

【表1】 [Table 1]

【0051】表1において、実施例1〜実施例5、実施
例11〜実施例13、及び比較例1〜比較例3は何れも
箔表面のバリアー皮膜化成電圧が32Vであり、実施例
6〜実施例10、及び実施例14〜実施例16は何れも
箔表面のバリアー皮膜化成電圧が23Vの低圧用化成箔
を用いたコンデンサであるが、ポーラス皮膜の膜厚倍率
がバリアー皮膜の5倍〜100倍の範囲内にある実施例
1〜実施例16は、何れもポーラス皮膜を有しない比較
例1及び膜厚倍率が5倍未満の比較例2に比べ、優れた
耐電圧不良率及びリフロー不良率を示した。特に膜厚倍
率が20倍〜100倍の範囲内である実施例1〜実施例
4、及び実施例6〜実施例16にあっては、耐電圧不良
率及びリフロー不良率が何れもゼロであり、比較例1及
び比較例2に比べ顕著な効果が認められた。比較例3は
長時間のポーラス皮膜化成処理を行ったもので、膜厚倍
率が100倍を越えている。この比較例3は性能面では
実施例との差が認められないが、この皮膜形成条件はコ
ストが性能に見合うものではないので、工業的に採用で
きない。
In Table 1, Examples 1 to 5, Example 11 to Example 13, and Comparative Examples 1 to 3 all have a barrier film formation voltage of 32 V on the foil surface and Examples 6 to Each of Example 10 and Examples 14 to 16 is a capacitor using a low-voltage conversion foil having a barrier film formation voltage of 23 V on the foil surface, and the film thickness ratio of the porous film is 5 times that of the barrier film. Examples 1 to 16 in the range of 100 times have better withstand voltage failure rate and reflow failure than Comparative Example 1 having no porous film and Comparative Example 2 having a film thickness magnification of less than 5 times. Rate. In particular, in Examples 1 to 4 and Examples 6 to 16 in which the film thickness magnification is in the range of 20 to 100 times, both the withstand voltage failure rate and the reflow failure rate are zero. A remarkable effect was observed as compared with Comparative Examples 1 and 2. In Comparative Example 3, the porous film conversion treatment was performed for a long time, and the film thickness magnification exceeded 100 times. Although there is no difference in the performance of Comparative Example 3 from that of the embodiment, the film forming conditions cannot be industrially employed because the cost is not suitable for the performance.

【0052】[0052]

【発明の効果】本発明の固体電解コンデンサ用電極箔
は、その切り口部に、この電極箔の表面に形成されたバ
リアー皮膜の厚さの5倍〜100倍の範囲内の厚さのポ
ーラス皮膜が形成されているので、簡単で安価な製造方
法により、電極箔の有効面積を減少させることなく、電
極箔の耐電圧性及び耐熱性が著しく改善された固体電解
コンデンサを得ることができる。
According to the electrode foil for a solid electrolytic capacitor of the present invention, a porous film having a thickness in the range of 5 to 100 times the thickness of the barrier film formed on the surface of the electrode foil is provided at the cut portion. Is formed, a solid electrolytic capacitor with significantly improved withstand voltage and heat resistance of the electrode foil can be obtained by a simple and inexpensive manufacturing method without reducing the effective area of the electrode foil.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例を示す断面図FIG. 1 is a sectional view showing one embodiment of the present invention.

【図2】 本発明の他の一実施例を示す断面図FIG. 2 is a sectional view showing another embodiment of the present invention.

【図3】 切断された化成箔を示す断面図FIG. 3 is a sectional view showing a cut chemical conversion foil.

【符号の説明】[Explanation of symbols]

1…芯部 2…細孔 3…バリアー皮膜 5…切り口部 6…尖塔部 10…電極箔 11…ポーラス皮膜 12…切り口バリアー皮膜 13…(ポーラス皮膜の)孔 15…電極箔 tb …バリアー皮膜厚さ tp …ポーラス皮膜厚さ DESCRIPTION OF SYMBOLS 1 ... Core part 2 ... Pore 3 ... Barrier film 5 ... Cut part 6 ... Spire part 10 ... Electrode foil 11 ... Porous film 12 ... Cut-off barrier film 13 ... Hole (of porous film) 15 ... Electrode foil tb ... Barrier film thickness Sa tp… porous film thickness

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂井 厚 長野県大町市大字大町6850番地 昭和電工 株式会社大町工場内 (72)発明者 小沼 博 千葉県市原市八幡海岸通5ー1 昭和電工 株式会社HD工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Atsushi Sakai 6850 Omachi Omachi, Omachi City, Nagano Prefecture Showa Denko Corporation Omachi Plant (72) Inventor Hiroshi Onuma 5-1 Yawata Kaigandori, Ichihara City, Chiba Prefecture Showa Denko KK HD factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム箔の表面をエッチングして
粗面化した後に化成処理し、この粗面化した表面に誘電
体層としてバリアー皮膜を形成した化成箔を所定のサイ
ズに切断し、この切断された化成箔を化成処理してその
切り口部に、多孔質酸化皮膜であって厚さが前記バリア
ー皮膜の厚さの5倍〜100倍の範囲内とされたポーラ
ス皮膜を形成することを特徴とする固体電解コンデンサ
用電極箔の製造方法。
An aluminum foil surface is etched and roughened to form a surface, and then subjected to a chemical conversion treatment. The formed foil having a barrier film formed as a dielectric layer on the roughened surface is cut into a predetermined size. Forming a porous oxide film having a thickness in the range of 5 to 100 times the thickness of the barrier film on the cut portion of the formed chemical conversion foil. Of manufacturing an electrode foil for a solid electrolytic capacitor.
【請求項2】 前記のポーラス皮膜を形成した後に、更
に化成処理してこのポーラス皮膜の基層に切り口バリア
ー皮膜を形成することを特徴とする請求項1に記載の固
体電解コンデンサ用電極箔の製造方法。
2. The production of an electrode foil for a solid electrolytic capacitor according to claim 1, wherein after forming the porous film, a chemical conversion treatment is further performed to form a cut barrier film on a base layer of the porous film. Method.
【請求項3】 請求項1又は請求項2に記載の製造方法
により製造されたことを特徴とする固体電解コンデンサ
用電極箔。
3. An electrode foil for a solid electrolytic capacitor manufactured by the manufacturing method according to claim 1.
【請求項4】 請求項3に記載の固体電解コンデンサ用
電極箔を用いて製造されたことを特徴とする固体電解コ
ンデンサ。
4. A solid electrolytic capacitor manufactured using the electrode foil for a solid electrolytic capacitor according to claim 3.
JP16027699A 1998-06-09 1999-06-07 Electrode foil for solid electrolytic capacitor, method for producing the same, and solid electrolytic capacitor Expired - Lifetime JP3411237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16027699A JP3411237B2 (en) 1998-06-09 1999-06-07 Electrode foil for solid electrolytic capacitor, method for producing the same, and solid electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16113398 1998-06-09
JP10-161133 1998-06-09
JP16027699A JP3411237B2 (en) 1998-06-09 1999-06-07 Electrode foil for solid electrolytic capacitor, method for producing the same, and solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2000068159A true JP2000068159A (en) 2000-03-03
JP3411237B2 JP3411237B2 (en) 2003-05-26

Family

ID=26486830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16027699A Expired - Lifetime JP3411237B2 (en) 1998-06-09 1999-06-07 Electrode foil for solid electrolytic capacitor, method for producing the same, and solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3411237B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299174A (en) * 2001-03-29 2002-10-11 Nippon Chemicon Corp Manufacturing method for solid electrolytic capacitor
JP2006210837A (en) * 2005-01-31 2006-08-10 Nichicon Corp Solid electrolytic capacitor and method for manufacturing the same
WO2007020969A1 (en) * 2005-08-18 2007-02-22 Showa Denko K. K. Method for chemical conversion treatment of valve action metal material
JP2007095934A (en) * 2005-09-28 2007-04-12 Showa Denko Kk Conversion treatment method of valve action metal material
JP2007109722A (en) * 2005-10-11 2007-04-26 Showa Denko Kk Process for fabricating solid electrolytic capacitor element
JP2008045190A (en) * 2006-08-21 2008-02-28 Showa Denko Kk Method for forming oxide film on valve action metal material
JPWO2007020969A1 (en) * 2005-08-18 2009-02-26 昭和電工株式会社 Chemical conversion treatment method for valve action metal material
WO2010013701A1 (en) 2008-07-29 2010-02-04 昭和電工株式会社 Method for manufacturing niobium solid electrolytic capacitor
JP6060381B2 (en) * 2011-02-18 2017-01-18 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299174A (en) * 2001-03-29 2002-10-11 Nippon Chemicon Corp Manufacturing method for solid electrolytic capacitor
JP4639504B2 (en) * 2001-03-29 2011-02-23 日本ケミコン株式会社 Manufacturing method of solid electrolytic capacitor
JP2006210837A (en) * 2005-01-31 2006-08-10 Nichicon Corp Solid electrolytic capacitor and method for manufacturing the same
WO2007020969A1 (en) * 2005-08-18 2007-02-22 Showa Denko K. K. Method for chemical conversion treatment of valve action metal material
JPWO2007020969A1 (en) * 2005-08-18 2009-02-26 昭和電工株式会社 Chemical conversion treatment method for valve action metal material
JP2007095934A (en) * 2005-09-28 2007-04-12 Showa Denko Kk Conversion treatment method of valve action metal material
JP2007109722A (en) * 2005-10-11 2007-04-26 Showa Denko Kk Process for fabricating solid electrolytic capacitor element
JP2008045190A (en) * 2006-08-21 2008-02-28 Showa Denko Kk Method for forming oxide film on valve action metal material
WO2010013701A1 (en) 2008-07-29 2010-02-04 昭和電工株式会社 Method for manufacturing niobium solid electrolytic capacitor
US8257449B2 (en) 2008-07-29 2012-09-04 Showa Denko K.K. Method for manufacturing niobium solid electrolytic capacitor
JP6060381B2 (en) * 2011-02-18 2017-01-18 パナソニックIpマネジメント株式会社 Electrolytic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP3411237B2 (en) 2003-05-26

Similar Documents

Publication Publication Date Title
KR100532686B1 (en) Solid electrolytic capacitor electrode foil, method of producing it and solid electrolytic capacitor
TWI416558B (en) Solid electrolytic capacitor and manufacturing method thereof
US7859829B2 (en) Electrolytic capacitor and method of producing the same
US7780835B2 (en) Method of making a capacitor by anodizing aluminum foil in a glycerine-phosphate electrolyte without a pre-anodizing hydration step
JP2009016770A (en) Method for manufacturing electrolytic capacitor, and electrolytic capacitor
JP4947150B2 (en) Manufacturing method of solid electrolytic capacitor
JP3119604B2 (en) Method for manufacturing solid electrolytic capacitor
JP3411237B2 (en) Electrode foil for solid electrolytic capacitor, method for producing the same, and solid electrolytic capacitor
JP2007173454A (en) Solid electrolytic capacitor
JP7227870B2 (en) Manufacturing method of electrode foil for aluminum electrolytic capacitor
JP3582451B2 (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JP4660884B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2008091358A (en) Solid-state electrolytic capacitor, and its manufacturing process
JPH1187186A (en) Etching method for electrode foil for aluminum electrolytic capacitor
WO2022118785A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2002246274A (en) Electrode foil for aluminum electrolytic capacitor and its producing method
JP3483681B2 (en) Method of manufacturing tab terminal for electrolytic capacitor
MXPA00001076A (en) Solid electrolytic capacitor electrode foil, method of producing it and solid electrolytic capacitor
JPH0774055A (en) Electrolytic capacitor and its tab terminal
JP2001223139A (en) Solid electrolytic capacitor and method of manufacturing it
JPH06132172A (en) Manufacture of tab terminal for electrolytic capacitor
JPH06132174A (en) Manufacture of tab terminal for electrolytic capacitor
JPH06132173A (en) Manufacture of tab terminal for electrolytic capacitor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030304

R150 Certificate of patent or registration of utility model

Ref document number: 3411237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120320

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130320

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140320

Year of fee payment: 11

EXPY Cancellation because of completion of term