JP2002299174A - Manufacturing method for solid electrolytic capacitor - Google Patents

Manufacturing method for solid electrolytic capacitor

Info

Publication number
JP2002299174A
JP2002299174A JP2001097237A JP2001097237A JP2002299174A JP 2002299174 A JP2002299174 A JP 2002299174A JP 2001097237 A JP2001097237 A JP 2001097237A JP 2001097237 A JP2001097237 A JP 2001097237A JP 2002299174 A JP2002299174 A JP 2002299174A
Authority
JP
Japan
Prior art keywords
capacitor element
solid electrolytic
electrolytic capacitor
capacitor
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001097237A
Other languages
Japanese (ja)
Other versions
JP4639504B2 (en
Inventor
Norihito Fukui
典仁 福井
Hidehiko Ito
英彦 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2001097237A priority Critical patent/JP4639504B2/en
Publication of JP2002299174A publication Critical patent/JP2002299174A/en
Application granted granted Critical
Publication of JP4639504B2 publication Critical patent/JP4639504B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for the manufacture of a solid electrolytic capacitor, whereby a solid electrolytic capacitor superior in initial characteristics and reflow characteristics is obtained from a mass production line. SOLUTION: Anode foil and cathode foil are rolled together with separators to form a capacitor element, and the capacitor element is subjected to restoring chemical conversion. Thereafter, the capacitor element is dried at 100 to 150 deg.C for 5 to 30 minutes, and is left in equipment or a workroom conditioned at 60%RH for 0 to 60 minutes. Meanwhile, a specified quantity of EDT and a specified quantity of oxidizer solution are poured into a specified container, to prepared a mixture. The above capacitor element is immersed in the mixture for two or more seconds and is left in equipment or a workroom conditioned at a temperature which is not higher than the polymerization temperature and 10 to 60%RH for 10 to 120 minutes. Thereafter, primary polymerization and secondary polymerization are carried out at a specified temperature to form a solid electrolyte. The capacitor element is placed in a bottomed cylindrical case, and the opening of the case is sealed with rubber. The capacitor element is then subjected to aging, to obtain the solid electrolytic capacitor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解コンデン
サの製造方法に係り、特に、コンデンサ素子にモノマー
溶液と酸化剤溶液を含浸する際の方法及び条件に改良を
施した固体電解コンデンサの製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor in which a method and conditions for impregnating a capacitor element with a monomer solution and an oxidizing agent solution are improved. It is about.

【0002】[0002]

【従来の技術】タンタルあるいはアルミニウム等のよう
な弁作用を有する金属を利用した電解コンデンサは、陽
極側対向電極としての弁作用金属を焼結体あるいはエッ
チング箔等の形状にして誘電体を拡面化することによ
り、小型で大きな容量を得ることができることから、広
く一般に用いられている。特に、電解質に固体電解質を
用いた固体電解コンデンサは、小型、大容量、低等価直
列抵抗であることに加えて、チップ化しやすく、表面実
装に適している等の特質を備えていることから、電子機
器の小型化、高機能化、低コスト化に欠かせないものと
なっている。
2. Description of the Related Art In an electrolytic capacitor using a metal having a valve action such as tantalum or aluminum, a valve action metal as an anode-side counter electrode is formed into a shape of a sintered body or an etching foil to expand a dielectric material. By using such a structure, it is possible to obtain a large capacity with a small size. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has characteristics that it is small, large-capacity, low equivalent series resistance, easy to chip, and suitable for surface mounting. It is indispensable for miniaturization, high performance, and low cost of electronic devices.

【0003】この種の固体電解コンデンサにおいて、小
型、大容量用途としては、一般に、アルミニウム等の弁
作用金属からなる陽極箔と陰極箔をセパレータを介在さ
せて巻回してコンデンサ素子を形成し、このコンデンサ
素子に駆動用電解液を含浸し、アルミニウム等の金属製
ケースや合成樹脂製のケースにコンデンサ素子を収納
し、密閉した構造を有している。なお、陽極材料として
は、アルミニウムを初めとしてタンタル、ニオブ、チタ
ン等が使用され、陰極材料には、陽極材料と同種の金属
が用いられる。
In this type of solid electrolytic capacitor, for small size and large capacity applications, generally, an anode foil and a cathode foil made of valve metal such as aluminum are wound with a separator interposed therebetween to form a capacitor element. The capacitor element is impregnated with a driving electrolyte, and the capacitor element is housed in a metal case such as aluminum or a synthetic resin case, and has a sealed structure. Note that as the anode material, aluminum, tantalum, niobium, titanium, or the like is used, and as the cathode material, the same kind of metal as the anode material is used.

【0004】また、固体電解コンデンサに用いられる固
体電解質としては、二酸化マンガンや7、7、8、8−
テトラシアノキノジメタン(TCNQ)錯体が知られて
いるが、近年、反応速度が緩やかで、かつ陽極電極の酸
化皮膜層との密着性に優れたポリエチレンジオキシチオ
フェン(以下、PEDTと記す)に着目した技術(特開
平2−15611号公報)が存在している。
As a solid electrolyte used for a solid electrolytic capacitor, manganese dioxide, 7, 7, 8, 8-
A tetracyanoquinodimethane (TCNQ) complex is known, but recently, polyethylenedioxythiophene (hereinafter, referred to as PEDT), which has a slow reaction rate and excellent adhesion to an oxide film layer of an anode electrode, has been developed. There is a technique (Japanese Patent Laid-Open No. 2-15611) that has been focused on.

【0005】このような巻回型のコンデンサ素子にPE
DTからなる固体電解質層を形成するタイプの固体電解
コンデンサは、以下のようにして作製される。まず、ア
ルミニウム等の弁作用金属からなる陽極箔の表面を塩化
物水溶液中での電気化学的なエッチング処理により粗面
化して、多数のエッチングピットを形成した後、ホウ酸
アンモニウム等の水溶液中で電圧を印加して誘電体とな
る酸化皮膜層を形成する(化成)。陽極箔と同様に、陰
極箔もアルミニウム等の弁作用金属からなるが、その表
面にはエッチング処理を施すのみである。
[0005] Such a wound-type capacitor element is made of PE.
A solid electrolytic capacitor of the type forming a solid electrolyte layer made of DT is manufactured as follows. First, the surface of the anode foil made of a valve metal such as aluminum is roughened by electrochemical etching treatment in a chloride aqueous solution to form a large number of etching pits, and then, in an aqueous solution such as ammonium borate. A voltage is applied to form an oxide film layer serving as a dielectric (chemical formation). Like the anode foil, the cathode foil is also made of a valve metal such as aluminum, but its surface is only subjected to etching.

【0006】このようにして表面に酸化皮膜層が形成さ
れた陽極箔とエッチングピットのみが形成された陰極箔
とを、セパレータを介して巻回してコンデンサ素子を形
成する。続いて、修復化成を施したコンデンサ素子に、
3,4−エチレンジオキシチオフェン(以下、EDTと
記す)と酸化剤溶液をそれぞれ吐出して、コンデンサ素
子内でEDTの重合反応を促進し、PEDTからなる固
体電解質層を生成する。なお、上記の吐出法だけでな
く、EDTと酸化剤を個別に含浸する方法や、EDT溶
液と酸化剤溶液を予め混合して混合液を調製し、この混
合液をコンデンサ素子に含浸させる方法も用いられてい
る。
[0006] The anode foil having the oxide film layer formed on the surface thereof and the cathode foil having only the etching pits formed thereon are wound through a separator to form a capacitor element. Next, the restoration-formed capacitor element
3,4-Ethylenedioxythiophene (hereinafter referred to as EDT) and an oxidizing agent solution are respectively discharged to accelerate the polymerization reaction of EDT in the capacitor element, and to generate a solid electrolyte layer made of PEDT. In addition to the above-described discharge method, there are also a method of separately impregnating the EDT and the oxidizing agent, and a method of preparing a mixed solution by previously mixing the EDT solution and the oxidizing solution and impregnating the mixed solution into the capacitor element. Used.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、実際の
量産工程において、上記のような製造方法を用いた場
合、ESRがばらつくという問題点があった。また、リ
フロー特性についてもばらつきが生じるという問題点が
あった。すなわち、上述したような従来の製造方法によ
って得られた固体電解コンデンサを、横型又は縦型の表
面実装用チップ部品とし、高温リフロー半田付けを行う
と、リフロー半田時に静電容量が減少し、漏れ電流が上
昇するといった問題点があった。
However, when the above-described manufacturing method is used in an actual mass production process, there is a problem that the ESR varies. Further, there is a problem that the reflow characteristics also vary. That is, when the solid electrolytic capacitor obtained by the conventional manufacturing method as described above is used as a horizontal or vertical surface mounting chip component and subjected to high-temperature reflow soldering, the capacitance decreases during reflow soldering, and the leakage is reduced. There was a problem that the current increased.

【0008】特に、近年、環境問題から高融点の鉛フリ
ー半田が用いられるようになり、半田リフロー温度が2
00〜220℃から、230〜270℃へとさらに高温
化しているため、高温リフロー半田付けを行った場合で
も、金属ケースや封口ゴムの膨れが生じず、特性も劣化
しない固体電解コンデンサの開発が切望されていた。な
お、このような問題点は、重合性モノマーとしてEDT
を用いた場合に限らず、他のチオフェン誘導体、ピロー
ル、アニリン等を用いた場合にも同様に生じていた。
In particular, in recent years, lead-free solders having a high melting point have been used due to environmental problems, and the solder reflow temperature has been reduced to two.
Since the temperature is further increased from 00 to 220 ° C to 230 to 270 ° C, the development of a solid electrolytic capacitor that does not cause swelling of the metal case or the sealing rubber and does not deteriorate the characteristics even when high-temperature reflow soldering is performed. Longed for. Incidentally, such a problem is caused by the fact that EDT is used as a polymerizable monomer.
Not only in the case of using thiophene, but also in the case of using other thiophene derivatives, pyrrole, aniline and the like.

【0009】本発明は、上述したような従来技術の問題
点を解決するために提案されたものであり、その目的
は、量産工程において、初期特性、リフロー特性に優れ
た固体電解コンデンサを得ることができる固体電解コン
デンサの製造方法を提供することにある。
The present invention has been proposed to solve the above-mentioned problems of the prior art, and an object thereof is to obtain a solid electrolytic capacitor having excellent initial characteristics and reflow characteristics in a mass production process. It is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor that can be used.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく鋭意検討を重ねた結果、通常の量産工程に
おける各工程の間で、製品が滞留したり、放置されるこ
とがあり、その時の湿度が15〜70%RHとばらつい
ており、湿度が高くなると特性が劣化することが判明し
たものである。そこで、このような各工程における環境
条件がコンデンサ素子に悪影響を及ぼしているのではな
いかと考え、本発明を完成するに至ったものである。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, during the normal mass-production process, the products may stay or be left unattended. The humidity at that time varied from 15% to 70% RH, and it was found that the characteristics deteriorated as the humidity increased. Thus, the present inventors have completed the present invention by assuming that such environmental conditions in each step may have an adverse effect on the capacitor element.

【0011】(含浸工程前の環境条件)本発明者等は、
まず含浸工程前の条件について検討したところ、コンデ
ンサ素子を修復化成後、乾燥した後、湿度が60%RH
を越える作業工程に放置した場合は、30分程で特性に
悪影響がでることが分かった。なお、この場合には、含
浸工程前に100℃で、60分以上乾燥を行うことによ
り、この悪影響を低減できることが分かった。
(Environmental conditions before the impregnation step)
First, the conditions before the impregnation process were examined. After the capacitor element was repair-formed and dried, the humidity was reduced to 60% RH.
It was found that the characteristics could be adversely affected in about 30 minutes if the apparatus was left in a work process exceeding 30 minutes. In this case, it was found that this adverse effect can be reduced by performing drying at 100 ° C. for 60 minutes or more before the impregnation step.

【0012】また、種々検討したところ、含浸工程前の
湿度条件は60%RH以下の条件下で保持することが望
ましいことが分かった。この湿度条件は、45%RH以
下がさらに好ましく、30%RH以下がさらに好まし
い。この範囲外では、ESRが上昇し、リフロー耐熱性
が低下する。その理由は、コンデンサ素子が吸湿して、
この水分がPEDTの形成を阻害するためであると考え
られる。なお、特性に悪影響がでない条件は、60%R
Hで20分放置、30%RHで半日程度であった。
In addition, various studies have revealed that it is desirable to maintain the humidity conditions before the impregnation step at 60% RH or less. The humidity condition is more preferably 45% RH or less, and further preferably 30% RH or less. Outside this range, the ESR increases and the reflow heat resistance decreases. The reason is that the capacitor element absorbs moisture,
It is considered that this moisture inhibits the formation of PEDT. The condition under which the characteristics are not adversely affected is 60% R
H for 20 minutes and 30% RH for about half a day.

【0013】(含浸工程)このコンデンサ素子にEDT
と酸化剤を含浸する。含浸方法は個別含浸でも、混合液
含浸でも良いが、混合液を含浸する場合は、15〜30
℃が好ましい。また、含浸方法としては、個別含浸より
混合含浸の方が好ましい。
(Impregnation step) EDT is applied to this capacitor element.
And an oxidizing agent. The impregnation method may be either individual impregnation or mixed liquid impregnation.
C is preferred. As the impregnation method, mixed impregnation is more preferable than individual impregnation.

【0014】(含浸工程以後)含浸工程の後は、重合温
度以下、10〜60%RHの条件下で保持することが望
ましい。重合温度は通常60℃前後であるので、保持温
度は60℃以下が好ましい。その理由は、保持している
間に重合が進行し、後の重合工程後のPEDTの形成状
態が悪くなるからである。従って、60℃以下でも長期
保持すると重合が進行するので、長期保持する場合には
30℃以下が好ましい。
(After the impregnating step) After the impregnating step, it is desirable to keep the temperature below the polymerization temperature and under the condition of 10 to 60% RH. Since the polymerization temperature is usually around 60 ° C., the holding temperature is preferably at most 60 ° C. The reason is that the polymerization proceeds during the holding, and the state of formation of PEDT after the subsequent polymerization step deteriorates. Therefore, if the temperature is maintained at 60 ° C. or lower for a long period of time, the polymerization proceeds. If the temperature is maintained for a long period, the temperature is preferably 30 ° C. or lower.

【0015】湿度条件は、15〜45%RHがさらに好
ましく、20〜30%RHがさらに好ましい。この範囲
外では、ESRが上昇し、リフロー耐熱性が低下する。
その理由は、この範囲を超えると、重合液が吸湿して、
重合液の水分率が高くなって、この水分がPEDTの形
成を阻害するためであると考えられる。なお、特性に悪
影響がでない条件は、60%RHで10分程度、10%
RHで2時間程度であった。
The humidity condition is more preferably 15 to 45% RH, and further preferably 20 to 30% RH. Outside this range, the ESR increases and the reflow heat resistance decreases.
The reason is that if it exceeds this range, the polymerization liquid absorbs moisture,
It is considered that the water content of the polymerization liquid was increased, and this water inhibited the formation of PEDT. The conditions under which the characteristics are not adversely affected are as follows: 60% RH for about 10 minutes, 10%
It took about 2 hours at RH.

【0016】従って、修復化成後の乾燥状態に保持した
コンデンサ素子を、上記の各条件を満たす15〜30
℃、10〜60%RHの条件を維持した室内又は装置内
において保存し、その後に含浸し、さらにこのコンデン
サ素子を保存しておくことにより、良好な特性を有する
固体電解コンデンサを製造するための効率の良い一貫ラ
インを形成することができることが分かった。
Therefore, the capacitor element kept in a dry state after the repair formation is replaced with the capacitor element satisfying the above conditions of 15 to 30.
C. and 10% to 60% RH are stored in a room or in an apparatus, then impregnated, and the capacitor element is further stored to produce a solid electrolytic capacitor having good characteristics. It has been found that an efficient integrated line can be formed.

【0017】(固体電解コンデンサの製造方法)陽極箔
と陰極箔をセパレータを介して巻回してコンデンサ素子
を形成し、このコンデンサ素子に修復化成を施した後、
このコンデンサ素子を100〜150℃で5〜30分乾
燥し、60%RHの条件下に保持した装置内あるいは作
業室内で0〜60分間保存する。一方、所定の容器に一
定量のEDTと一定量の酸化剤溶液を注入して混合液を
調製し、この混合液に上記コンデンサ素子を2秒以上浸
漬し、その後、重合温度以下、10〜60%RHの条件
下に保持した装置内あるいは作業室内で10〜120分
間保存し、その後、所定の温度で一次重合及び二次重合
を行い、固体電解質を形成する。そして、このコンデン
サ素子を有底筒状のケースに収納し、開口部をゴム封口
し、エージングを行って、固体電解コンデンサを作成す
る。
(Method of Manufacturing Solid Electrolytic Capacitor) An anode foil and a cathode foil are wound through a separator to form a capacitor element, and after the capacitor element is subjected to restoration formation,
The capacitor element is dried at 100 to 150 ° C. for 5 to 30 minutes, and stored for 0 to 60 minutes in an apparatus or a working room maintained at a condition of 60% RH. On the other hand, a certain amount of EDT and a certain amount of the oxidizing agent solution are poured into a predetermined container to prepare a mixed solution, and the capacitor element is immersed in the mixed solution for 2 seconds or more. The solution is stored for 10 to 120 minutes in an apparatus or a working room maintained under the condition of% RH, and thereafter, primary polymerization and secondary polymerization are performed at a predetermined temperature to form a solid electrolyte. Then, the capacitor element is housed in a bottomed cylindrical case, the opening is sealed with rubber, and aging is performed to produce a solid electrolytic capacitor.

【0018】(EDT及び酸化剤)重合性モノマーとし
てEDTを用いた場合、コンデンサ素子に含浸するED
Tとしては、EDTモノマーを用いることができるが、
EDTと揮発性溶媒とを1:0〜1:3の体積比で混合
したモノマー溶液を用いることもできる。前記揮発性溶
媒としては、ペンタン等の炭化水素類、テトラヒドロフ
ラン等のエーテル類、ギ酸エチル等のエステル類、アセ
トン等のケトン類、メタノール等のアルコール類、アセ
トニトリル等の窒素化合物等を用いることができるが、
なかでも、メタノール、エタノール、アセトン等が好ま
しい。また、酸化剤としては、ブタノールに溶解したパ
ラトルエンスルホン酸第二鉄、過ヨウ素酸もしくはヨウ
素酸の水溶液を用いることができ、酸化剤の溶媒に対す
る濃度は40〜55wt%が好ましい。
(EDT and Oxidizing Agent) When EDT is used as the polymerizable monomer, the
As T, an EDT monomer can be used,
A monomer solution in which EDT and a volatile solvent are mixed at a volume ratio of 1: 0 to 1: 3 can also be used. As the volatile solvent, hydrocarbons such as pentane, ethers such as tetrahydrofuran, esters such as ethyl formate, ketones such as acetone, alcohols such as methanol, and nitrogen compounds such as acetonitrile can be used. But,
Among them, methanol, ethanol, acetone and the like are preferable. Further, as the oxidizing agent, an aqueous solution of ferric paratoluenesulfonate, periodic acid or iodic acid dissolved in butanol can be used, and the concentration of the oxidizing agent in the solvent is preferably 40 to 55 wt%.

【0019】(EDTと酸化剤の混合比)EDTと酸化
剤(溶媒を含まず)の混合比は、重量比で1:0.9〜
1:2.2の範囲が好適であり、1:1.3〜1:2.
0の範囲がより好適である。この範囲外ではESRが上
昇する。その理由は、以下の通りであると考えられる。
すなわち、モノマーに対する酸化剤の量が多過ぎると、
相対的に含浸されるモノマーの量が低下するので、形成
されるPEDTの量が低下してESRが上昇する。一
方、酸化剤の量が少なすぎると、モノマーを重合するの
に必要な酸化剤が不足して、形成されるPEDTの量が
低下してESRが上昇する。
(Mixing ratio of EDT and oxidizing agent) The mixing ratio of EDT and oxidizing agent (not including the solvent) is 1: 0.9 to weight ratio.
A range of 1: 2.2 is preferred, with a ratio of 1: 1.3 to 1: 2.
A range of 0 is more preferred. Outside this range, the ESR increases. The reason is considered as follows.
That is, if the amount of the oxidizing agent relative to the monomer is too large,
As the amount of monomer impregnated relatively decreases, the amount of PEDT formed decreases and the ESR increases. On the other hand, if the amount of the oxidizing agent is too small, the amount of the oxidizing agent necessary for polymerizing the monomer will be insufficient, and the amount of the formed PEDT will decrease and the ESR will increase.

【0020】(浸漬時間)コンデンサ素子を混合液に浸
漬する時間は、コンデンサ素子の大きさによって決まる
が、φ5×2L程度のコンデンサ素子では5秒以上、φ
8×4L程度のコンデンサ素子では10秒以上が望まし
く、最低でも5秒間は浸漬することが必要である。な
お、長時間浸漬しても特性上の弊害はない。
(Immersion time) The time for immersing the capacitor element in the mixed solution is determined by the size of the capacitor element.
For a capacitor element of about 8 × 4 L, the time is preferably 10 seconds or more, and it is necessary to soak for at least 5 seconds. It should be noted that there is no adverse effect on the characteristics even when immersed for a long time.

【0021】(修復化成の化成液)修復化成の化成液と
しては、リン酸二水素アンモニウム、リン酸水素二アン
モニウム等のリン酸系の化成液、ホウ酸アンモニウム等
のホウ酸系の化成液、アジピン酸アンモニウム等のアジ
ピン酸系の化成液を用いることができるが、なかでも、
リン酸二水素アンモニウムを用いることが望ましい。ま
た、浸漬時間は、5〜120分が望ましい。
(Chemical solution for repair chemical formation) As a chemical solution for repair chemical formation, a chemical solution of phosphoric acid such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, a chemical solution of boric acid such as ammonium borate, An adipic acid-based chemical solution such as ammonium adipate can be used.
It is desirable to use ammonium dihydrogen phosphate. Also, the immersion time is desirably 5 to 120 minutes.

【0022】(他の重合性モノマー)本発明に用いられ
る重合性モノマーとしては、上記EDTの他に、EDT
以外のチオフェン誘導体、アニリン、ピロール、フラ
ン、アセチレンまたはそれらの誘導体であって、所定の
酸化剤により酸化重合され、導電性ポリマーを形成する
ものであれば適用することができる。なお、チオフェン
誘導体としては、下記の構造式のものを用いることがで
きる。
(Other Polymerizable Monomers) The polymerizable monomers used in the present invention include, in addition to the above-mentioned EDT, EDT
Any other thiophene derivative, aniline, pyrrole, furan, acetylene or a derivative thereof, which is oxidatively polymerized with a predetermined oxidizing agent to form a conductive polymer, can be applied. As the thiophene derivative, one having the following structural formula can be used.

【化1】 Embedded image

【0023】(作用・効果)上記のように、コンデンサ
素子に重合性モノマーと酸化剤を含浸する工程の前後に
おける環境条件を適切に管理することにより、含浸前に
おいては、コンデンサ素子が吸湿して、この水分がPE
DTの形成を阻害することを防止でき、また、含浸工程
後においては、重合液が吸湿して、重合液の水分率が高
くなることにより、この水分がPEDTの形成を阻害す
ることを防止することができるので、良好な特性を有す
る固体電解コンデンサを得ることができる。
(Operation / Effect) As described above, by properly controlling the environmental conditions before and after the step of impregnating the capacitor element with the polymerizable monomer and the oxidizing agent, the capacitor element absorbs moisture before impregnation. , This water is PE
Inhibition of the formation of DT can be prevented, and after the impregnation step, the polymerization solution absorbs moisture and the water content of the polymerization solution increases, thereby preventing the water from inhibiting the formation of PEDT. Therefore, a solid electrolytic capacitor having good characteristics can be obtained.

【0024】[0024]

【実施例】続いて、以下のようにして製造した実施例及
び比較例に基づいて本発明をさらに詳細に説明する。な
お、実施例1は、含浸前と含浸後の双方において本発明
の最適な製造条件を満たしているものであり、実施例2
及び実施例3は、含浸前においては本発明の製造条件を
満たしているが、含浸後においては本発明の製造条件を
満たしていないものであり、実施例4は、含浸前におい
ては本発明の製造条件を満たしていないが、含浸後にお
いては本発明の製造条件を満たしているものである。一
方、比較例は、含浸前と含浸後の双方において本発明の
製造条件を満たしていないものである。
Next, the present invention will be described in more detail based on examples and comparative examples manufactured as follows. Example 1 satisfies the optimum manufacturing conditions of the present invention both before and after the impregnation.
And Example 3 satisfies the manufacturing conditions of the present invention before impregnation, but does not satisfy the manufacturing conditions of the present invention after impregnation. Although the production conditions are not satisfied, after impregnation, the production conditions of the present invention are satisfied. On the other hand, the comparative examples do not satisfy the production conditions of the present invention both before and after the impregnation.

【0025】(実施例1)表面に酸化皮膜層が形成され
た陽極箔と陰極箔に電極引き出し手段を接続し、両電極
箔をセパレータを介して巻回して、素子形状が6.3φ
×5.4Lのコンデンサ素子を形成した。そして、この
コンデンサ素子をリン酸二水素アンモニウム水溶液に4
0分間浸漬して、修復化成を行った。修復化成後、この
コンデンサ素子を100℃で10分乾燥し、25℃、1
0〜30%RHの条件下に保持した装置内に30分間保
存した。続いて、所定の容器に一定量のEDTと一定量
の45%のパラトルエンスルホン酸第二鉄のブタノール
溶液を注入して混合液を調製し、この混合液にコンデン
サ素子を10秒間浸漬し、その後、25℃、10〜30
%RHの条件下に保持した同装置内に30分間保存し
た。その後、60℃で一次重合を行い、150℃で二次
重合を行い、固体電解質を形成した。その後、このコン
デンサ素子を有底筒状のケースに収納し、開口部をゴム
封口し、エージングを行って、固体電解コンデンサを作
成した。なお、この固体電解コンデンサの定格電圧は
6.3WV、定格容量は100μFである。
(Example 1) An electrode drawing means was connected to an anode foil and a cathode foil each having an oxide film layer formed on the surface, and both electrode foils were wound via a separator to form an element having a shape of 6.3φ.
A × 5.4 L capacitor element was formed. Then, the capacitor element is placed in an aqueous solution of ammonium dihydrogen phosphate for 4 hours.
Restoration was performed by immersion for 0 minutes. After the repair formation, the capacitor element was dried at 100 ° C. for 10 minutes,
It was stored for 30 minutes in an apparatus maintained under the condition of 0 to 30% RH. Subsequently, a certain amount of EDT and a certain amount of a 45% solution of butanol of ferric paratoluenesulfonate in butanol are poured into a predetermined container to prepare a mixed solution, and the capacitor element is immersed in the mixed solution for 10 seconds. Then, at 25 ° C, 10-30
It was stored for 30 minutes in the same apparatus maintained under the condition of% RH. Thereafter, primary polymerization was performed at 60 ° C., and secondary polymerization was performed at 150 ° C. to form a solid electrolyte. Thereafter, the capacitor element was housed in a bottomed cylindrical case, the opening was sealed with rubber, and aging was performed to produce a solid electrolytic capacitor. The solid electrolytic capacitor has a rated voltage of 6.3 WV and a rated capacity of 100 μF.

【0026】(実施例2)上記混合液に含浸した後、2
5℃、5%RHで保存した。その他の条件は上記実施例
1と同様とした。 (実施例3)上記混合液に含浸した後、25℃、70%
RHで保存した。その他の条件は上記実施例1と同様と
した。 (実施例4)上記混合液に含浸する前に、25℃、70
%RHで保存した。その他の条件は上記実施例1と同様
とした。 (比較例)上記混合液に含浸する前に、25℃、70%
RHで保存し、含浸後に25℃、75%RHで保存し
た。その他の条件は上記実施例1と同様とした。
Example 2 After impregnation with the above mixed solution,
Stored at 5 ° C., 5% RH. Other conditions were the same as those in Example 1. (Example 3) After impregnation with the above mixed solution, 25 ° C, 70%
Stored at RH. Other conditions were the same as those in Example 1. Example 4 25 ° C., 70 ° C. before impregnation with the mixed solution
Stored at% RH. Other conditions were the same as those in Example 1. (Comparative Example) 25 ° C., 70%
Stored at RH and after impregnation, stored at 25 ° C., 75% RH. Other conditions were the same as those in Example 1.

【0027】[比較結果]上記の方法により得られた実
施例1〜4及び比較例の各固体電解コンデンサについ
て、初期特性及びリフロー特性を調べたところ、表1に
示したような結果が得られた。なお、リフロー試験条件
は、ピーク温度250℃、230℃以上30秒保持であ
る。
[Comparative Results] The solid electrolytic capacitors of Examples 1 to 4 and Comparative Example obtained by the above method were examined for initial characteristics and reflow characteristics. The results shown in Table 1 were obtained. Was. The reflow test conditions are a peak temperature of 250 ° C. and a holding temperature of 230 ° C. or more for 30 seconds.

【表1】 [Table 1]

【0028】表1から明らかなように、本発明の条件の
範囲外で作成した比較例では、初期特性、リフロー特性
共に所望の特性が得られなかった。これに対して、含浸
前の保持条件を本発明の条件下で行った実施例2及び実
施例3においては、比較例に比べて初期特性は改善さ
れ、リフロー特性も良好なものとなった。また、含浸後
の保持条件を本発明の条件下で行った実施例4において
も、同様の結果となった。さらに、含浸前後の保持条件
を共に本発明の条件下で行った実施例1においては、こ
れらの相乗効果によって、初期特性、リフロー特性の双
方がさらに良好なものとなった。
As is clear from Table 1, in the comparative example prepared outside the range of the conditions of the present invention, desired characteristics were not obtained in both initial characteristics and reflow characteristics. On the other hand, in Examples 2 and 3 in which the holding conditions before the impregnation were performed under the conditions of the present invention, the initial characteristics were improved and the reflow characteristics were also better as compared with the comparative example. Similar results were obtained in Example 4 in which the holding conditions after the impregnation were performed under the conditions of the present invention. Furthermore, in Example 1 in which the holding conditions before and after the impregnation were both performed under the conditions of the present invention, both of the initial characteristics and the reflow characteristics were further improved due to the synergistic effect.

【0029】なお、含浸前の条件は同じであるが含浸後
の条件が異なる実施例1と実施例2とを比較すると、含
浸後の湿度を10%RH以上とした実施例1の方が良好
な結果が得られていることから、含浸後においては10
%RH以上の湿度があった方が良好な結果が得られるこ
とが分かった。
Incidentally, comparing Example 1 and Example 2 with the same conditions before impregnation but different conditions after impregnation, Example 1 in which the humidity after impregnation is 10% RH or more is better. After the impregnation,
It was found that better results were obtained when the humidity was higher than% RH.

【0030】[0030]

【発明の効果】以上述べたように、本発明によれば、量
産工程において、初期特性、リフロー特性に優れた固体
電解コンデンサを得ることができる固体電解コンデンサ
の製造方法を提供することができる。
As described above, according to the present invention, it is possible to provide a method of manufacturing a solid electrolytic capacitor capable of obtaining a solid electrolytic capacitor having excellent initial characteristics and reflow characteristics in a mass production process.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4J002 CE001 DE196 EV256 FD206 ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 4J002 CE001 DE196 EV256 FD206

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 陽極電極箔と陰極電極箔とをセパレータ
を介して巻回したコンデンサ素子に、重合性モノマーと
酸化剤とを含浸して導電性ポリマーからなる固体電解質
層を形成する固体電解コンデンサの製造方法において、 前記コンデンサ素子に重合性モノマーと酸化剤とを含浸
する工程前において、前記コンデンサ素子を60%RH
以下の環境下で保持することを特徴とする固体電解コン
デンサの製造方法。
1. A solid electrolytic capacitor in which a capacitor element in which an anode electrode foil and a cathode electrode foil are wound via a separator is impregnated with a polymerizable monomer and an oxidizing agent to form a solid electrolyte layer made of a conductive polymer. In the method for producing a capacitor element, before the step of impregnating the capacitor element with a polymerizable monomer and an oxidizing agent, the capacitor element is subjected to 60% RH.
A method for producing a solid electrolytic capacitor, characterized in that the method is maintained under the following environment.
【請求項2】 陽極電極箔と陰極電極箔とをセパレータ
を介して巻回したコンデンサ素子に、重合性モノマーと
酸化剤とを含浸して導電性ポリマーからなる固体電解質
層を形成する固体電解コンデンサの製造方法において、 前記コンデンサ素子に重合性モノマーと酸化剤とを含浸
した後、前記コンデンサ素子を重合温度以下、10〜6
0%RHの環境下で保持することを特徴とする固体電解
コンデンサの製造方法。
2. A solid electrolytic capacitor in which a capacitor element in which an anode electrode foil and a cathode electrode foil are wound via a separator is impregnated with a polymerizable monomer and an oxidizing agent to form a solid electrolyte layer made of a conductive polymer. In the manufacturing method, after the capacitor element is impregnated with a polymerizable monomer and an oxidizing agent, the capacitor element is cooled to a polymerization temperature of 10 to 6 or less.
A method for producing a solid electrolytic capacitor, wherein the method is maintained in an environment of 0% RH.
【請求項3】 前記重合性モノマーが、チオフェン誘導
体であることを特徴とする請求項1又は請求項2に記載
の固体電解コンデンサの製造方法。
3. The method for producing a solid electrolytic capacitor according to claim 1, wherein the polymerizable monomer is a thiophene derivative.
【請求項4】 前記チオフェン誘導体が、3,4−エチ
レンジオキシチオフェンであることを特徴とする請求項
3に記載の固体電解コンデンサの製造方法。
4. The method according to claim 3, wherein the thiophene derivative is 3,4-ethylenedioxythiophene.
JP2001097237A 2001-03-29 2001-03-29 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP4639504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001097237A JP4639504B2 (en) 2001-03-29 2001-03-29 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001097237A JP4639504B2 (en) 2001-03-29 2001-03-29 Manufacturing method of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2002299174A true JP2002299174A (en) 2002-10-11
JP4639504B2 JP4639504B2 (en) 2011-02-23

Family

ID=18951042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001097237A Expired - Fee Related JP4639504B2 (en) 2001-03-29 2001-03-29 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4639504B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156903A (en) * 2004-12-01 2006-06-15 Tdk Corp Process for manufacturing solid electrolytic capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068159A (en) * 1998-06-09 2000-03-03 Showa Denko Kk Solid electrolytic capacitor electrode foil therefor and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068159A (en) * 1998-06-09 2000-03-03 Showa Denko Kk Solid electrolytic capacitor electrode foil therefor and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156903A (en) * 2004-12-01 2006-06-15 Tdk Corp Process for manufacturing solid electrolytic capacitor

Also Published As

Publication number Publication date
JP4639504B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP2003289016A (en) Manufacturing method for solid electrolytic capacitor
JP2009246288A (en) Solid-state electrolytic capacitor
JP2006286734A (en) Solid electrolytic capacitor
JP5134173B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4779277B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4780893B2 (en) Solid electrolytic capacitor
JP4639504B2 (en) Manufacturing method of solid electrolytic capacitor
JP4774664B2 (en) Manufacturing method of solid electrolytic capacitor
JP4773031B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003017369A (en) Method for manufacturing solid electrolytic capacitor
JP4720074B2 (en) Manufacturing method of solid electrolytic capacitor
JP4314938B2 (en) Manufacturing method of solid electrolytic capacitor
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP5303085B2 (en) Manufacturing method of solid electrolytic capacitor
JP4314774B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003289019A (en) Manufacturing method for solid electrolytic capacitor
JP4720075B2 (en) Manufacturing method of solid electrolytic capacitor
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP5541756B2 (en) Manufacturing method of solid electrolytic capacitor
JP5011624B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4378908B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2005085911A (en) Method for manufacturing solid electrolytic capacitor
JP4110905B2 (en) Solid electrolytic capacitor
JP4982027B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005109079A (en) Solid electrolytic capacitor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R150 Certificate of patent or registration of utility model

Ref document number: 4639504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees