JP2007109722A - Process for fabricating solid electrolytic capacitor element - Google Patents

Process for fabricating solid electrolytic capacitor element Download PDF

Info

Publication number
JP2007109722A
JP2007109722A JP2005296616A JP2005296616A JP2007109722A JP 2007109722 A JP2007109722 A JP 2007109722A JP 2005296616 A JP2005296616 A JP 2005296616A JP 2005296616 A JP2005296616 A JP 2005296616A JP 2007109722 A JP2007109722 A JP 2007109722A
Authority
JP
Japan
Prior art keywords
masking
electrolytic capacitor
solid electrolytic
capacitor element
chemical conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005296616A
Other languages
Japanese (ja)
Other versions
JP4811709B2 (en
Inventor
Masaaki Nishioka
正明 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005296616A priority Critical patent/JP4811709B2/en
Publication of JP2007109722A publication Critical patent/JP2007109722A/en
Application granted granted Critical
Publication of JP4811709B2 publication Critical patent/JP4811709B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for fabricating a solid electrolytic capacitor excellent in electric characteristics and having a masking structure which can prevent chemical conversion treatment liquid from oozing up to the positive electrode of the solid electrolytic capacitor during chemical conversion treatment, and can insulate solid electrolyte (negative electrode portion) formed in a subsequent process from the positive electrode certainly. <P>SOLUTION: In the process for fabricating a solid electrolytic capacitor element comprising a step for forming a masking on a part of a positive electrode substrate having a dielectric film on the surface to section that surface, and forming a solid electrolyte layer in at least a partial region on the surface of the positive electrode substrate sectioned by masking, a step performing formation processing in a region including the fringe of masking after forming the masking is included. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体電解コンデンサ素子の製造方法並びにこの方法により製造される固体電解コンデンサ素子及びこの素子を用いてなる固体電解コンデンサに関する。さらに詳しくいえば、誘電体皮膜を有する弁作用金属基板上に固体電解質層を形成する際に、固体電解質層を設けない金属基板部分(陽極部)と固体電解質層あるいはさらにその上に導電ペーストなどにより形成された導電体層(陰極部)とを確実に絶縁できるマスキング構造を有し、かつ電気特性に優れる固体電解コンデンサ素子の製造方法並びにこの方法により製造される固体電解コンデンサ素子及びこの素子を用いてなる固体電解コンデンサに関する。   The present invention relates to a method for producing a solid electrolytic capacitor element, a solid electrolytic capacitor element produced by this method, and a solid electrolytic capacitor using this element. More specifically, when a solid electrolyte layer is formed on a valve action metal substrate having a dielectric film, the metal substrate portion (anode portion) where the solid electrolyte layer is not provided and the solid electrolyte layer or further a conductive paste or the like thereon A method for producing a solid electrolytic capacitor element having a masking structure that can reliably insulate the conductor layer (cathode part) formed by the above-mentioned method and having excellent electrical characteristics, a solid electrolytic capacitor element produced by this method, and this element The present invention relates to a solid electrolytic capacitor used.

導電性重合体を用いる固体電解コンデンサは、図1に示すように、陽極基材1上に誘電体酸化皮膜2を形成し、誘電体酸化皮膜2上で導電性重合体を形成して固体電解質層4とし、必要に応じてさらに導電ペースト等を付着させてなる基本構造(固体電解コンデンサ素子)を有する。陽極部(固体電解質のない陽極基材部分)と陰極部(導電性重合体を含む導電体層)との間にはマスキング4が設けられて陰陽両極部を絶縁する。
固体電解コンデンサ素子は、そのまま、あるいはこれを複数積層してから、陽極部に陽極リード線を、陰極部に陰極リード線を接続し、さらに全体をエポキシ樹脂等の絶縁性樹脂で封止して作製される。このような固体電解質として導電性重合体を用いた固体電解コンデンサは、二酸化マンガンなどを固体電解質とする固体電解コンデンサに比べて等価直列抵抗及び漏れ電流を小さくでき、電子機器の高性能化、小型化に対応できるコンデンサとして有用であり、多くの製造方法が提案されている。
As shown in FIG. 1, a solid electrolytic capacitor using a conductive polymer is formed by forming a dielectric oxide film 2 on an anode substrate 1 and forming a conductive polymer on the dielectric oxide film 2 to form a solid electrolyte. The layer 4 has a basic structure (solid electrolytic capacitor element) in which a conductive paste or the like is further attached as necessary. Masking 4 is provided between the anode part (anode base part having no solid electrolyte) and the cathode part (conductor layer containing a conductive polymer) to insulate the negative and positive electrode parts.
The solid electrolytic capacitor element can be used as it is or after a plurality of layers are laminated, and the anode lead wire is connected to the anode portion, the cathode lead wire is connected to the cathode portion, and the whole is sealed with an insulating resin such as epoxy resin. Produced. Such a solid electrolytic capacitor using a conductive polymer as a solid electrolyte can reduce the equivalent series resistance and leakage current compared to a solid electrolytic capacitor using manganese dioxide or the like as a solid electrolyte, thereby improving the performance and size of electronic equipment. It is useful as a capacitor that can cope with the manufacturing process, and many manufacturing methods have been proposed.

導電性重合体を用いて高性能の固体電解コンデンサを製造するためには、陽極端子となる陽極部と導電性重合体を含む導電体層からなる陰極部とを電気的に確実に絶縁することが不可欠である。固体電解コンデンサの陽極部と陰極部を絶縁するマスキング手段としては、例えば、エポキシ、フェノール樹脂等を未化成部分に塗布、印刷あるいはスポッティングした後硬化させて導通を防ぐ方法(特開平3−95910号公報;特許文献1)、弁作用金属の固体電解質を形成しない部分の少なくとも一部に、ポリアミック酸塩を含む溶液を電着してポリアミック酸の膜を形成した後、加熱により脱水硬化させてポリイミド膜を形成する方法(特開平5−47611号公報;特許文献2)、固体電解質の這い上がり防止のためにポリプロピレン、ポリエステル、シリコン系樹脂またはフッ素系樹脂製のテープもしくは樹脂コートフィルム部を形成する方法(特開平5−166681号公報;特許文献3)、金属基体の陽極端子となる部分とコンデンサが形成される部分との境界部表面に絶縁樹脂層を形成した後に、コンデンサ以外の部分の絶縁樹脂層を除去して金属基体を露出させる方法(特開平9−36003号公報;特許文献4)などが提案されている。   In order to produce a high-performance solid electrolytic capacitor using a conductive polymer, the anode part serving as the anode terminal and the cathode part formed of the conductive layer containing the conductive polymer must be electrically insulated reliably. Is essential. As a masking means for insulating the anode part and the cathode part of the solid electrolytic capacitor, for example, a method of preventing conduction by applying epoxy, phenol resin, etc. to an unformed part, printing or spotting, and curing it (Japanese Patent Laid-Open No. 3-95910) Publication: Patent Document 1), a polyamic acid film is formed by electrodeposition of a solution containing a polyamic acid salt on at least part of a portion of a valve metal that does not form a solid electrolyte, and then dehydrated and cured by heating to form a polyimide. A method of forming a film (Japanese Patent Laid-Open No. 5-47611; Patent Document 2), forming a tape or a resin-coated film portion made of polypropylene, polyester, silicon-based resin or fluorine-based resin to prevent the solid electrolyte from creeping up A method (Japanese Patent Laid-Open No. 5-166681; Patent Document 3), a portion serving as an anode terminal of a metal substrate, A method in which an insulating resin layer is formed on the surface of a boundary portion with a portion where a capacitor is formed, and then a portion of the insulating resin layer other than the capacitor is removed to expose the metal substrate (Japanese Patent Laid-Open No. 9-36003; Patent Document 4) ) Etc. have been proposed.

また本出願人は国際公開第00/67267号パンフレット(特許文献5)において固体電解質層を設けない金属基板部分(陽極部)と固体電解質層あるいはその上に導電ペーストなどを設けた導電体層(陰極部)とを確実に絶縁できるマスキング構造を有する固体電解コンデンサ及びその製造方法を提供しさらに、固体電解コンデンサの陽極部と陰極部とを確実に絶縁できるマスキングを効率よく行うことができるマスキング材塗布方法及びその装置を提供した。   In addition, in the international publication 00/67267 pamphlet (Patent Document 5), the applicant of the present invention has a metal substrate portion (anode portion) not provided with a solid electrolyte layer and a conductor layer provided with a solid electrolyte layer or a conductive paste on the solid electrolyte layer (anode portion). The present invention provides a solid electrolytic capacitor having a masking structure capable of reliably insulating the cathode portion) and a method for manufacturing the same, and a masking material capable of efficiently performing masking capable of reliably insulating the anode portion and the cathode portion of the solid electrolytic capacitor A coating method and apparatus therefor were provided.

これらの従来技術において、固体電解質層を設けない金属基板部分(陽極部)と固体電解質層あるいはその上に導電ペーストなどを設けた導電体層(陰極部)とを絶縁するマスキングは、弁作用金属の未化成部あるいは化成部上に塗布等により行われ、その後に導電性重合体等の固体電解質を陰極部に形成されるという方法が取られている。しかしながら、マスキング層の形成、特に化成部上にマスキング層を形成する場合は、マスキング材の塗布、あるいはテープ貼り付け等の工程時あるいはその後の熱処理時に酸化皮膜にダメージを与え、電気特性、特にリフロー後の漏れ電流に影響を与えてしまう、という問題が完全には解消しきれず、さらなる改善が求められていた。   In these conventional techniques, masking for insulating a metal substrate portion (anode portion) not provided with a solid electrolyte layer and a conductor layer (cathode portion) provided with a solid electrolyte layer or a conductive paste on the solid electrolyte layer is a valve action metal. In this method, a non-formed part or a formed part is applied by coating or the like, and then a solid electrolyte such as a conductive polymer is formed on the cathode part. However, when the masking layer is formed, especially when the masking layer is formed on the chemical conversion part, the oxide film is damaged during the process of applying the masking material, applying the tape, or subsequent heat treatment, and the electrical characteristics, particularly the reflow. The problem of affecting the leakage current later has not been completely solved, and further improvements have been demanded.

特開平3−95910号公報Japanese Patent Laid-Open No. 3-95910 特開平5−47611号公報JP-A-5-47611 特開平5−166681号公報JP-A-5-166681 特開平9−36003号公報Japanese Patent Laid-Open No. 9-36003 国際公開第00/67267号パンフレットInternational Publication No. 00/67267 Pamphlet

本発明の課題は、誘電体皮膜を有する弁作用金属基板上に固体電解質層を形成する固体電解コンデンサの製造方法において、固体電解質層を設けない金属基板部分(陽極部)と固体電解質層あるいはその上に導電ペーストなどを設けた導電体層(陰極部)とを確実に絶縁できるマスキング構造を有し、電気特性に優れた固体電解コンデンサの製造方法を提供することにある。   An object of the present invention is to provide a solid electrolytic capacitor manufacturing method in which a solid electrolyte layer is formed on a valve-acting metal substrate having a dielectric film, and a metal substrate portion (anode portion) not provided with a solid electrolyte layer and a solid electrolyte layer An object of the present invention is to provide a method for manufacturing a solid electrolytic capacitor having a masking structure capable of reliably insulating a conductive layer (cathode portion) provided with a conductive paste or the like on top and having excellent electrical characteristics.

本発明者は、固体電解質層を設けない金属基板部分(陽極部)と固体電解質層あるいはその上に導電ペーストなどを設けた導電体層(陰極部)を絶縁するマスキングを形成した後、そのマスキング周辺部を化成処理することにより、漏れ電流、リフロー特性に優れるコンデンサ素子が形成できることを見出し、本発明を完成した。すなわち本発明は、以下の固体電解コンデンサ素子の製造方法並びにこの方法により製造される固体電解コンデンサ素子及びこの素子を用いてなる固体電解コンデンサを提供する。   The present inventor forms a mask that insulates a metal substrate portion (anode portion) not provided with a solid electrolyte layer and a solid electrolyte layer or a conductor layer (cathode portion) provided with a conductive paste or the like thereon, and then performs the masking. It has been found that a capacitor element excellent in leakage current and reflow characteristics can be formed by subjecting the peripheral portion to chemical conversion, and the present invention has been completed. That is, the present invention provides the following method for producing a solid electrolytic capacitor element, a solid electrolytic capacitor element produced by this method, and a solid electrolytic capacitor using this element.

1.表面に誘電体皮膜を有する陽極基材の一部にその表面を区画するようにマスキングを形成し、マスキングで区画された陽極基材表面の少なくとも一部の領域に固体電解質層を形成する工程を含む固体電解コンデンサ素子の製造方法において、前記マスキングの形成後にマスキングの縁部を含む領域に化成処理を施す工程を含むことを特徴とする固体電解コンデンサ素子の製造方法。
2.表面に誘電体皮膜を有する陽極基材の一部にその表面を区画するように第1マスキングを形成し、第1マスキングで区画された陽極基材表面の一部の領域に固体電解質層を形成する工程を含む固体電解コンデンサ素子の製造方法において、さらに固体電解質層を形成すべき領域を区画するように第2マスキングを形成し、前記第1及び第2マスキングの形成後に少なくとも第2マスキングの縁部を含む領域に化成処理を施す工程を含むことを特徴とする固体電解コンデンサ素子の製造方法。
3.第1マスキングの形成後に第1マスキングの縁部を含む領域に化成処理を施す前記2に記載の固体電解コンデンサ素子の製造方法。
4.第2マスキングの形成後に第2マスキングの全体と第1マスキングの縁部を含む領域に化成処理を施す前記2または3に記載の固体電解コンデンサ素子の製造方法。
5.第2マスキングの縁部を含む領域に化成処理を施した後、第2マスキングによって区画される領域に固体電解質層を形成する工程と、第1マスキングと第2マスキングとの間の領域で基材を切断する工程を含む前記2〜4のいずれかに記載の固体電解コンデンサ素子の製造方法。
6.マスキング材溶液を塗布することによりマスキングを形成する前記1〜5のいずれかに記載の固体電解コンデンサ素子の製造方法。
7.マスキング材溶液が誘電体皮膜中に浸透しかつ前記浸透部の上にマスキング層を形成する溶液である前記6に記載の固体電解コンデンサ素子の製造方法。
8.マスキング材溶液が、耐熱性樹脂またはその前駆体の溶液である前記7に記載の固体電解コンデンサ素子の製造方法。
9.前記耐熱性樹脂またはその前駆体の溶液が、加熱によって固化する低分子量のポリイミドの溶液またはポリアミック酸溶液である前記8に記載の固体電解コンデンサ素子の製造方法。
10.前記マスキング材溶液がさらにシリコーンオイル、シランカップリング剤またはポリイミドシロキサンを含有する前記9に記載の固体電解コンデンサの製造方法。
11.陽極基材が表面に多孔質層を有する弁作用金属である前記1〜10のいずれかに記載の固体電解コンデンサ素子の製造方法。
12.前記弁作用を有する金属材料が、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム及びそれらの合金から選ばれる材料である前記11に記載の固体電解コンデンサ素子の製造方法。
13.前記固体電解質が、ピロール、チオフェン、アニリン、フラン骨格を含む2価基またはそれらの置換誘導体の少なくとも1つを繰り返し単位として含む高分子固体電解質である前記1〜12のいずれかに記載の固体電解コンデンサ素子の製造方法。
14.高分子固体電解質が、3,4−エチレンジオキシチオフェンの重合体を含む前記13に記載の固体電解コンデンサ素子の製造方法。
15.前記固体電解質がさらにアリールスルホン酸塩系ドーパントを含む前記1〜14のいずれかに記載の固体電解コンデンサ素子の製造方法。
16.前記1〜15のいずれかに記載の固体電解コンデンサ素子の製造方法により製造される固体電解コンデンサ素子。
17.前記16に記載の固体電解コンデンサ素子を含む固体電解コンデンサ。
1. Forming a mask on a part of the anode base material having a dielectric film on the surface so as to partition the surface, and forming a solid electrolyte layer in at least a part of the surface of the anode base material defined by the masking. A method for manufacturing a solid electrolytic capacitor element, comprising: performing a chemical conversion treatment on a region including a masking edge after the masking is formed.
2. A first masking is formed on a part of the anode base material having a dielectric film on the surface so as to partition the surface, and a solid electrolyte layer is formed on a part of the surface of the anode base material defined by the first masking. In the method of manufacturing a solid electrolytic capacitor element including the step of: forming a second mask so as to partition a region where a solid electrolyte layer is to be formed, and after forming the first and second masks, at least an edge of the second masking The manufacturing method of the solid electrolytic capacitor element characterized by including the process of performing a chemical conversion treatment to the area | region containing a part.
3. 3. The method for producing a solid electrolytic capacitor element as described in 2 above, wherein after the first masking is formed, a chemical conversion treatment is applied to the region including the edge of the first masking.
4). 4. The method for producing a solid electrolytic capacitor element as described in 2 or 3 above, wherein after the second masking is formed, a chemical conversion treatment is applied to the entire region including the second masking and the edge of the first masking.
5. In a region between the first masking and the second masking, the chemical conversion treatment is performed on the region including the edge of the second masking, and then a solid electrolyte layer is formed in the region partitioned by the second masking. The manufacturing method of the solid electrolytic capacitor element in any one of said 2-4 including the process of cut | disconnecting.
6). 6. The method for producing a solid electrolytic capacitor element according to any one of 1 to 5, wherein masking is formed by applying a masking material solution.
7). 7. The method for producing a solid electrolytic capacitor element as described in 6 above, wherein the masking material solution penetrates into the dielectric film and forms a masking layer on the penetration part.
8). 8. The method for producing a solid electrolytic capacitor element as described in 7 above, wherein the masking material solution is a solution of a heat resistant resin or a precursor thereof.
9. 9. The method for producing a solid electrolytic capacitor element as described in 8 above, wherein the solution of the heat resistant resin or precursor thereof is a low molecular weight polyimide solution or a polyamic acid solution which is solidified by heating.
10. 10. The method for producing a solid electrolytic capacitor as described in 9 above, wherein the masking material solution further contains silicone oil, a silane coupling agent or polyimide siloxane.
11. 11. The method for producing a solid electrolytic capacitor element as described in any one of 1 to 10 above, wherein the anode substrate is a valve metal having a porous layer on the surface.
12 12. The method for producing a solid electrolytic capacitor element as described in 11 above, wherein the metal material having a valve action is a material selected from aluminum, tantalum, niobium, titanium, zirconium and alloys thereof.
13. 13. The solid electrolysis according to any one of 1 to 12, wherein the solid electrolyte is a polymer solid electrolyte containing at least one of a divalent group containing pyrrole, thiophene, aniline, and furan skeleton or a substituted derivative thereof as a repeating unit. A method for manufacturing a capacitor element.
14 14. The method for producing a solid electrolytic capacitor element as described in 13 above, wherein the polymer solid electrolyte contains a polymer of 3,4-ethylenedioxythiophene.
15. 15. The method for producing a solid electrolytic capacitor element according to any one of 1 to 14, wherein the solid electrolyte further contains an aryl sulfonate dopant.
16. The solid electrolytic capacitor element manufactured by the manufacturing method of the solid electrolytic capacitor element in any one of said 1-15.
17. 17. A solid electrolytic capacitor comprising the solid electrolytic capacitor element as described in 16 above.

本発明によれば、マスキング形成後、マスキング周辺を化成処理することにより、マスキング形成による誘電体皮膜へのダメージが修復され、漏れ電流の低減、リフロー後の漏れ電流特性の向上を達成することができる。   According to the present invention, after masking formation, the periphery of the masking is subjected to chemical treatment, thereby repairing the damage to the dielectric film due to the masking formation, reducing leakage current, and improving leakage current characteristics after reflow. it can.

以下、本発明を詳しく説明する。
本発明では、表面に誘電体皮膜を有する陽極基材の一部にその表面を区画するようにマスキングを形成し、マスキングで区画された陽極基材表面の少なくとも一部の領域に固体電解質層を形成する工程を含む固体電解コンデンサ素子の製造方法において、前記マスキングの形成後にマスキングの縁部を含む領域に化成処理を施す工程を含むことを特徴とする。例えば、図1の断面構造を有する固体電解コンデンサ素子の場合、マスキング3の形成後、その縁部を含む領域、好ましくはマスキング3全体を含む領域に化成処理を施し、マスキング形成による誘電体皮膜2に生じたダメージを修復した後、固体電解質層4を形成する。
Hereinafter, the present invention will be described in detail.
In the present invention, a mask is formed on a part of the anode base material having a dielectric film on the surface so as to partition the surface, and the solid electrolyte layer is formed on at least a part of the anode base material surface partitioned by the masking. In the method of manufacturing a solid electrolytic capacitor element including the step of forming, the method includes a step of performing a chemical conversion treatment on a region including an edge portion of the masking after the masking is formed. For example, in the case of the solid electrolytic capacitor element having the cross-sectional structure of FIG. 1, after the masking 3 is formed, the region including the edge thereof, preferably the region including the entire masking 3 is subjected to chemical conversion treatment to form the dielectric film 2 by masking formation. The solid electrolyte layer 4 is formed after repairing the damage that has occurred.

本発明は、マスキング工程を2回行なう固体電解コンデンサ素子の製造方法に特に好適に適用できる。
このような方法の例としては、本出願人が特許文献5において開示した矩形箔状の固体電解コンデンサ素子の製造方法が挙げられる。この方法の概略を図2に示す。
この方法では、テープ状の基材を裁断して得た短冊状の基材1の上部に第1マスキング3aを形成し、次いで、裁断時の切り口の化成を行なうために化成層2を形成し、さらに、第1マスキング3aよりも下側に第2マスキング3bを形成する。次いで、第2マスキング3bによって区画された領域のうち下側部分に固体電解質層4を形成し、第1マスキング3aと第2マスキング3bとの間で切断を行なう。第2マスキング3bを含む矩形部分は断面(図で上下方向に切った断面)が図1に示す構造となっており、以上の操作により固体電解コンデンサ素子が形成される。
The present invention can be particularly suitably applied to a method of manufacturing a solid electrolytic capacitor element in which the masking process is performed twice.
As an example of such a method, the manufacturing method of the solid electrolytic capacitor element of the rectangular foil shape which this applicant disclosed in patent document 5 is mentioned. An outline of this method is shown in FIG.
In this method, the first masking 3a is formed on the upper part of the strip-shaped base material 1 obtained by cutting the tape-shaped base material, and then the chemical conversion layer 2 is formed in order to form the cut surface at the time of cutting. Further, the second masking 3b is formed below the first masking 3a. Next, the solid electrolyte layer 4 is formed in the lower part of the region partitioned by the second masking 3b, and cutting is performed between the first masking 3a and the second masking 3b. The rectangular portion including the second masking 3b has a cross section (cross section cut in the vertical direction in the drawing) shown in FIG. 1, and the solid electrolytic capacitor element is formed by the above operation.

本発明をこの方法に適用した場合、第2マスキング後にさらに化成処理を行なうことが特徴的である。
すなわち、図3に示すように、テープ状の基材を裁断して得た短冊状の基材1の上部に基材の表裏にわたって周状に第1マスキング3aを形成し、次いで、裁断時の切り口の化成を行なうために化成層2を形成し、さらに、第1マスキング3aよりも下側に基材の表裏にわたって周状に第2マスキング3bを形成する。ここまでは特許文献5記載の方法と同一でよいが(但し、後述する本発明の化成と区別するため、化成層2の形成段階を化成処理Iとして示した。)、本発明では第2マスキング3bの縁部を含む領域、好ましくは第2マスキング3bの全体を覆う領域、さらに好ましくは、第1マスキング3aにより区画された領域のうち第2マスキング3bを含む領域の全体に化成処理(化成処理II)を行なう。次いで、第2マスキング3bによって区画された領域のうち下側部分に固体電解質層4を形成し、第1マスキング3aと第2マスキング3bとの間で切断を行なう。第2マスキング3bを含む矩形部分は、断面(図で上下方向に切った断面)が図1に示す構造となっており、以上の操作により固体電解コンデンサ素子が形成される。
When the present invention is applied to this method, it is characteristic that a chemical conversion treatment is further performed after the second masking.
That is, as shown in FIG. 3, the first masking 3a is formed on the upper surface of the strip-shaped base material 1 obtained by cutting the tape-shaped base material in a circumferential shape across the front and back of the base material, and then, at the time of cutting The chemical conversion layer 2 is formed in order to form the cut surface, and further, the second masking 3b is formed in a circumferential shape across the front and back surfaces of the base material below the first masking 3a. Up to this point, it may be the same as the method described in Patent Document 5 (however, in order to distinguish it from the chemical conversion of the present invention described later, the formation stage of the chemical conversion layer 2 is shown as chemical conversion treatment I), but in the present invention the second masking is performed. Chemical conversion treatment (chemical conversion treatment) is performed on the region including the edge of 3b, preferably the region covering the entire second masking 3b, more preferably the entire region including the second masking 3b among the regions partitioned by the first masking 3a. Perform II). Next, the solid electrolyte layer 4 is formed in the lower part of the region partitioned by the second masking 3b, and cutting is performed between the first masking 3a and the second masking 3b. The rectangular portion including the second masking 3b has a cross section (cross section cut in the vertical direction in the figure) as shown in FIG. 1, and a solid electrolytic capacitor element is formed by the above operation.

図3に示す例では、第2マスキング3bから基材の端縁に及ぶ全面にわたって化成処理IIを行なっているが、化成処理IIは、第2マスキングの縁部を含む領域について行なえばよい。また、好ましくは第2マスキングの全体を覆う領域について行なう。従って、好ましくは、図4に示すように、第2マスキングの上縁から第1マスキングの下縁(またはその近傍でもよい)付近までの領域6を含めて化成処理IIを行なう。   In the example shown in FIG. 3, the chemical conversion treatment II is performed over the entire surface from the second masking 3 b to the edge of the base material. However, the chemical conversion treatment II may be performed on a region including the edge portion of the second masking. Preferably, the second masking is performed on a region covering the entire second masking. Therefore, preferably, as shown in FIG. 4, the chemical conversion treatment II is performed including the region 6 from the upper edge of the second masking to the vicinity of the lower edge of the first masking (or the vicinity thereof).

前述したように、陰極部と陽極部とを絶縁するマスキングは第2マスキングであり、本発明では第2マスキング後に化成処理IIを行なうことが重要である。従って、図3または4に示すように、化成処理IIの前に化成処理Iを行なってから第2マスキングを形成することが好ましいが、2回のマスキングを行なう場合であっても、化成処理Iは任意の処理である。すなわち、図5に示すように、第1マスキング3aの形成後、化成処理Iを行なわずに第2マスキング3bを形成するか、第1マスキング3aと第2マスキング3bを同時に形成し(第2マスキングの形成後に第1マスキングを形成してもよい)、化成処理(化成処理IIとして示すが化成処理Iは行なわない)を行なうこともできる。この場合の化成処理IIも、第2マスキングの縁部を含む領域について行なえばよいが、好ましくは第2マスキングの全体を覆う領域において、より好ましくは、図5に示すように、第2マスキングの上縁から第1マスキングの下縁(またはその近傍でもよい)付近までの領域6を含めて化成処理IIを行なう。この態様によれば、化成処理I工程が省略され、さらに2つのマスキング形成工程(図中の(b)と(c))を同時に行なうことも可能である。
なお、図3〜図5に示す例ではマスキングが直線状であるが、マスキングは陰陽両極部の絶縁を可能とするものであれば、任意の形状、例えば、曲線でもよい。
As described above, the masking that insulates the cathode portion from the anode portion is the second masking. In the present invention, it is important to perform the chemical conversion treatment II after the second masking. Therefore, as shown in FIG. 3 or 4, it is preferable to form the second masking after performing the chemical conversion treatment I before the chemical conversion treatment II, but even if the masking is performed twice, the chemical conversion treatment I Is an optional process. That is, as shown in FIG. 5, after the first masking 3a is formed, the second masking 3b is formed without performing the chemical conversion treatment I, or the first masking 3a and the second masking 3b are simultaneously formed (second masking). The first masking may be formed after the formation of), and a chemical conversion treatment (shown as chemical conversion treatment II but not chemical conversion treatment I) may be performed. The chemical conversion treatment II in this case may also be performed on the region including the edge of the second masking, but preferably in the region covering the entire second masking, more preferably, as shown in FIG. The chemical conversion treatment II is performed including the region 6 from the upper edge to the vicinity of the lower edge of the first masking (or the vicinity thereof). According to this aspect, the chemical conversion treatment I step is omitted, and two masking forming steps ((b) and (c) in the figure) can be simultaneously performed.
Although the masking is linear in the examples shown in FIGS. 3 to 5, the masking may be any shape, for example, a curve, as long as the yin and yang bipolar portions can be insulated.

本発明は上記の特徴を含む限りにおいて、どのような固体電解コンデンサ素子の製造にも適用できる。例えば、本発明におけるマスキングは、マスキング材の塗布、テープの貼り付けその他、陽極部−陰陽極間の絶縁を実現する任意の方法で行なうことができる。また、化成処理、固体電解質層も慣用の任意の方法を用いることができるが、その好適実施態様について以下に述べる。   The present invention can be applied to the manufacture of any solid electrolytic capacitor element as long as it includes the above features. For example, the masking in the present invention can be performed by any method that realizes insulation between the anode portion and the negative anode, such as application of a masking material, application of a tape, and the like. The chemical conversion treatment and the solid electrolyte layer may be any conventional method. Preferred embodiments thereof will be described below.

[弁作用金属]
固体電解コンデンサの基材は表面に誘電体酸化皮膜を有する弁作用金属である。弁作用金属は、アルミニウム、タンタル、ニオブ、チタン、ジルコニウムあるいはこれらを基質とする合金系の弁作用を有する金属箔、棒、あるいはこれらを主成分とする焼結体等から選ばれる。
[Valve action metal]
The base material of the solid electrolytic capacitor is a valve metal having a dielectric oxide film on the surface. The valve metal is selected from aluminum, tantalum, niobium, titanium, zirconium, or an alloy-based metal foil, rod, or sintered body containing these as a main component.

これらの金属は空気中の酸素により表面が酸化され誘電体酸化皮膜を有しているが、予め公知の方法によりエッチング処理等をして粗面化する。次に常法に従い化成処理し確実に誘電体酸化皮膜を形成しておくことが好ましい。弁作用金属としては、酸化アルミナ層を有するアルミニウム箔が好ましく用いられる。弁作用金属は粗面化後、予め、固体電解コンデンサの形状に合わせた寸法に裁断したものを使用するのが好ましい。   These metals have a dielectric oxide film whose surface is oxidized by oxygen in the air, but are roughened by an etching process or the like by a known method in advance. Next, it is preferable to form a dielectric oxide film reliably by chemical conversion according to a conventional method. As the valve action metal, an aluminum foil having an alumina oxide layer is preferably used. It is preferable to use a valve action metal that has been roughened and cut in advance to a size that matches the shape of the solid electrolytic capacitor.

金属箔の場合、使用目的によって適した厚さを用いることができるが、一般に厚みが約40〜150μmの箔が使用される。また、箔の大きさ及び形状は用途により異なるが、平板形素子単位として幅約1〜50mm、長さ約1〜50mmの矩形のものが好ましく、より好ましくは幅約2〜20mm、長さ約2〜20mm、さらに好ましくは幅約2〜5mm、長さ約2〜6mmである。   In the case of a metal foil, a thickness suitable for the purpose of use can be used, but generally a foil having a thickness of about 40 to 150 μm is used. In addition, although the size and shape of the foil vary depending on the application, a rectangular element having a width of about 1 to 50 mm and a length of about 1 to 50 mm is preferable as a flat element unit, and more preferably a width of about 2 to 20 mm and a length of about The width is 2 to 20 mm, more preferably about 2 to 5 mm in width and about 2 to 6 mm in length.

[化成処理]
所定の形状に裁断された弁作用金属の化成処理は種々の方法によって行なうことができる。予め化成処理しておくことにより、仮にマスキング層に欠陥が生じた場合にも、漏れ電流の増加が防止される。
[Chemical conversion treatment]
The chemical conversion treatment of the valve action metal cut into a predetermined shape can be performed by various methods. By performing the chemical conversion treatment in advance, even if a defect occurs in the masking layer, an increase in leakage current is prevented.

化成処理の条件は特に限定されるものではないが、例えばシュウ酸、アジピン酸、ホウ酸、リン酸等の少なくとも1種を含む電解液を用い、その電解液濃度が0.05〜20質量%、温度が0〜90℃、電流密度が0.1〜200mA/cm2、電圧は処理する化成箔の既に形成されている皮膜の化成電圧に応じた数値、化成時間が60分以内の条件で化成を行なう。さらに好ましくは前記電解液濃度が0.1〜15質量%、温度が20〜70℃、電流密度が1〜100mA/cm2、化成時間が30分以内の範囲内で条件を選定する。 The conditions for the chemical conversion treatment are not particularly limited. For example, an electrolytic solution containing at least one of oxalic acid, adipic acid, boric acid, phosphoric acid and the like is used, and the electrolytic solution concentration is 0.05 to 20% by mass. The temperature is 0 to 90 ° C., the current density is 0.1 to 200 mA / cm 2 , and the voltage is a numerical value corresponding to the conversion voltage of the film already formed on the conversion foil to be processed, and the conversion time is within 60 minutes. Perform formation. More preferably, the conditions are selected within a range where the electrolytic solution concentration is 0.1 to 15% by mass, the temperature is 20 to 70 ° C., the current density is 1 to 100 mA / cm 2 , and the formation time is within 30 minutes.

前記の化成処理の条件は工業的方法として好適なものではあるが、弁作用金属材料表面にすでに形成されている誘電体酸化皮膜を破壊または劣化させない限り、電解液の種類、電解液濃度、温度、電流密度、化成時間等の諸条件は任意に選定することができる。
化成処理の前後に、必要により、例えば耐水性の向上のためのリン酸浸漬処理、皮膜強化のための熱処理または沸騰水への浸漬処理等を行なうことができる。
本化成処理は、下記マスキング材を用いてマスキング層を形成した後に実施するが、場合によってはマスキング前にも実施してもよい。
The conditions of the chemical conversion treatment are suitable as an industrial method, but unless the dielectric oxide film already formed on the surface of the valve metal material is destroyed or deteriorated, the type of electrolyte, concentration of electrolyte, temperature Various conditions such as current density and formation time can be arbitrarily selected.
Before and after the chemical conversion treatment, for example, a phosphoric acid immersion treatment for improving water resistance, a heat treatment for strengthening the film, or an immersion treatment in boiling water can be performed.
The chemical conversion treatment is performed after the masking layer is formed using the following masking material, but may be performed before masking depending on circumstances.

[マスキング材]
マスキング層は、前記化成処理時に化成液が固体電解コンデンサの陽極となる部分に滲み上がるのを防止し、かつ後工程で形成される固体電解質(陰極部分)との絶縁を確実とするために設けられるものである。マスキング材としては一般的な耐熱性樹脂、好ましくは溶剤に可溶あるいは膨潤しうる耐熱性樹脂またはその前駆体、無機質微粉とセルロース系樹脂からなる組成物(特開平11−80596号公報)などが使用できるが、材料には制限されない。具体例としてはポリフェニルスルホン(PPS)、ポリエーテルスルホン(PES)、シアン酸エステル樹脂、フッ素樹脂(テトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体等)、低分子量ポリイミド及びそれらの誘導体などが挙げられる。特に好ましくは低分子量ポリイミド、ポリエーテルスルホン、フッ素樹脂及びそれらの前駆体が挙げられる。
[Masking material]
The masking layer is provided in order to prevent the chemical conversion liquid from spreading into the portion that becomes the anode of the solid electrolytic capacitor during the chemical conversion treatment, and to ensure insulation from the solid electrolyte (cathode portion) formed in a later step. It is As a masking material, a general heat resistant resin, preferably a heat resistant resin which can be dissolved or swelled in a solvent or a precursor thereof, a composition comprising inorganic fine powder and a cellulose resin (Japanese Patent Laid-Open No. 11-80596), etc. Can be used but is not limited to materials. Specific examples include polyphenylsulfone (PPS), polyethersulfone (PES), cyanate ester resin, fluororesin (tetrafluoroethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, etc.), low molecular weight polyimides and their Derivatives and the like. Particularly preferred are low molecular weight polyimides, polyethersulfones, fluororesins and their precursors.

マスキング工程を2回実施する場合、第一のマスキング層は、前記化成処理時における化成液の固体電解コンデンサ陽極部分への滲み上がりを防止するために設けられる。従って第一のマスキング材は特に制限されず前記した一般的な耐熱性樹脂が使用できる。第二のマスキング層としては、前記第一のマスキング材と同様の材料を使用できるが、特に弁作用金属に充分な密着力、充填性を有し、約450℃までの熱処理に耐えられる絶縁性に優れたポリイミドが好ましい。   When the masking process is performed twice, the first masking layer is provided to prevent the chemical conversion liquid from spreading to the solid electrolytic capacitor anode portion during the chemical conversion treatment. Therefore, the first masking material is not particularly limited, and the general heat resistant resin described above can be used. As the second masking layer, the same material as the first masking material can be used, but in particular, it has sufficient adhesion and filling properties to the valve action metal and can withstand heat treatment up to about 450 ° C. A polyimide excellent in the thickness is preferable.

ポリイミドとしては、従来、前駆体のポリアミック酸を溶剤に溶解した溶液を使用し、塗布後に高温に加熱処理してイミド化するものがあるが、250〜350℃の熱処理が必要であり、陽極箔の表面上の誘電体層の熱による破損などの問題があった。本発明では、200℃以下、好ましくは100〜200℃の低温度での熱処理により硬化が十分可能であり、陽極箔の表面上の誘電体層の熱による破損・破壊などの外的衝撃が少ないポリイミドを使用する。   As polyimide, there is conventionally used a solution obtained by dissolving a precursor polyamic acid in a solvent, and after coating, heat treatment is performed at a high temperature to imidize, but heat treatment at 250 to 350 ° C. is required, and anode foil There was a problem such as damage to the dielectric layer on the surface of the substrate due to heat. In the present invention, curing is sufficiently possible by heat treatment at a low temperature of 200 ° C. or less, preferably 100 to 200 ° C., and there is little external impact such as damage or destruction due to heat of the dielectric layer on the surface of the anode foil. Use polyimide.

ポリイミドは主鎖にイミド構造を含む化合物であり、本発明においてはジアミン成分の骨格内に分子内回転が起こりやすいフレキシブルな構造を有する化合物、例えば、分子内に立体障害のないエーテル結合を有する化合物が挙げられる。こうした化合物の例としては、ULTEM(登録商標;GE Plastics社製)、VESPEL(登録商標)SP(DuPont社製)、ユピモール(登録商標)R(宇部興産社製)、TORLON(登録商標;Solvay Advanced Polymers社製)等が挙げられる。また、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物と芳香族ジアミン類との重縮合反応によって得られるポリイミド等が好ましく使用できる。好ましい平均分子量としては約1,000〜1,000,000であり、より好ましくは約2,000〜200,000である。   Polyimide is a compound having an imide structure in the main chain. In the present invention, a compound having a flexible structure in which intramolecular rotation easily occurs in the skeleton of the diamine component, for example, a compound having an ether bond having no steric hindrance in the molecule. Is mentioned. Examples of such compounds include ULTEM (registered trademark; manufactured by GE Plastics), VESPEL (registered trademark) SP (manufactured by DuPont), Iupimol (registered trademark) R (manufactured by Ube Industries), TORLON (registered trademark; Solvay Advanced). Polymers)). In addition, polyimides obtained by polycondensation reaction of 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride and aromatic diamines can be preferably used. The average molecular weight is preferably about 1,000 to 1,000,000, more preferably about 2,000 to 200,000.

これらは、有機溶剤に溶解あるいは分散可能であり、塗布操作に適した任意の固形分濃度(したがって粘度)の溶液あるいは分散液を容易に調製することができる。好ましい濃度としては約10〜60質量%、より好ましい濃度としては約15〜40質量%である。また、好ましい粘度としては約50〜30,000cP、より好ましい粘度としては約500〜15,000cPである。低濃度、低粘度側では、マスキング線がにじみ、高濃度、高粘度側では糸引き等が起こり線幅が不安定になる。   These can be dissolved or dispersed in an organic solvent, and a solution or dispersion having an arbitrary solid content concentration (and therefore viscosity) suitable for coating operation can be easily prepared. A preferable concentration is about 10 to 60% by mass, and a more preferable concentration is about 15 to 40% by mass. The preferred viscosity is about 50 to 30,000 cP, and the more preferred viscosity is about 500 to 15,000 cP. On the low concentration and low viscosity side, the masking line is blurred, and on the high concentration and high viscosity side, stringing occurs and the line width becomes unstable.

マスキング材溶液によって形成されるマスキング層は、マスキング材溶液の塗布後、必要に応じて乾燥、加熱、光照射などの処理を行なってもよい。ポリイミド溶液の具体例としては、塗布後の加熱処理により硬化する低分子ポリイミドを2−メトキシエチルエーテルやトリエチレングリコールジメチルエーテルなどの吸湿性の少ない溶剤に溶解した溶液(例えば、宇部興産(株)から「ユピコート(商標)FS−100L」として販売されている。)、あるいは前記スルホニル基を有するポリイミド樹脂をNMP(N−メチル−2−ピロリドン)やDMAc(ジメチルアセトアミド)に溶解した溶液(例えば、新日本理化(株)から「リカコートTM」として販売されている。)が好ましく使用できる。   The masking layer formed by the masking material solution may be subjected to treatments such as drying, heating, and light irradiation as necessary after application of the masking material solution. As a specific example of the polyimide solution, a solution (for example, from Ube Industries, Ltd.) in which a low molecular weight polyimide cured by heat treatment after coating is dissolved in a solvent having low hygroscopicity such as 2-methoxyethyl ether or triethylene glycol dimethyl ether. "Iupicoat (trademark) FS-100L"), or a solution in which the polyimide resin having the sulfonyl group is dissolved in NMP (N-methyl-2-pyrrolidone) or DMAc (dimethylacetamide) (for example, new (Available from Nippon Rika Co., Ltd. as “Rika Coat TM”).

前者は、塗布後160〜180℃の加熱処理により熱変性し高分子化して硬化し、柔軟性を有し、高い耐熱性と絶縁性を示す膜を与える。このポリイミド膜は、引っ張り強度2.0kg/mm2、硬化膜の伸び率が65%、初期弾性率40.6kg/mm2で、ゴム状の性質を保持し熱分解温度461℃の高い耐熱性を有している。体積抵抗は加湿下でも1016Ω・cmと高く、誘電率は3.2と低く、絶縁塗膜として優れた電気特性を保持している。 The former is heat-denatured by application of heat treatment at 160 to 180 ° C. after application, is polymerized and cured, and gives a film having flexibility and high heat resistance and insulation. This polyimide film has a tensile strength of 2.0 kg / mm 2 , an elongation rate of the cured film of 65%, an initial elastic modulus of 40.6 kg / mm 2 , retains rubber-like properties, and has a high thermal decomposition temperature of 461 ° C. have. Even under humidification, the volume resistance is as high as 1016 Ω · cm, the dielectric constant is as low as 3.2, and it retains excellent electrical properties as an insulating coating.

また、後者は200℃以下の温度で溶剤を除去するだけで、優れた耐熱性、機械特性、電気特性、及び耐薬品性を有する膜を与える。この膜は引っ張り強度約11.8kg/mm2、硬化膜の伸び率が14.2%、初期弾性率が274kg/mm2以上、5%質量減少温度515℃の耐熱性を有し、体積抵抗は1016Ω・cm、誘電率は3.1(25℃)、2.8(200℃)であり優れた電気特性を保持している。 The latter also provides a film having excellent heat resistance, mechanical properties, electrical properties, and chemical resistance simply by removing the solvent at a temperature of 200 ° C. or lower. This film has a heat resistance with a tensile strength of about 11.8 kg / mm 2 , an elongation of the cured film of 14.2%, an initial elastic modulus of 274 kg / mm 2 or more, a 5% mass reduction temperature of 515 ° C., and a volume resistance Has a dielectric constant of 3.1 (25 ° C.) and 2.8 (200 ° C.), and has excellent electrical characteristics.

本発明では、上記マスキング材溶液に消泡剤(低級アルコール系、鉱物油系、シリコーン樹脂系、オレイン酸、ポリプロピレングリコールなど)、チキソトロピー付与剤(シリカ微粉末、マイカ、タルク、炭酸カルシウムなど)、樹脂改質用シリコン剤(シランカップリング剤、シリコーンオイル、シリコン系界面活性剤、シリコーン系合成潤滑油など)などを添加することができる。例えばシリコーンオイル(ポリシロキサン)、シランカップリング剤を添加することにより、消泡性(硬化時の発泡を抑える)、離型性(導電性重合体の付着防止)、潤滑性(細孔部内への浸透性)、電気絶縁性(漏れ電流防止)、撥水性(導電性重合体の重合時に溶液の侵入(液上がり)防止)、制動・防振性(コンデンサ素子の積層時の圧力に対向)、樹脂の耐熱性・耐候性(架橋機構の導入)の改善が期待できる。   In the present invention, the masking material solution contains an antifoaming agent (lower alcohol, mineral oil, silicone resin, oleic acid, polypropylene glycol, etc.), thixotropic agent (silica fine powder, mica, talc, calcium carbonate, etc.), Resin-modifying silicone agents (such as silane coupling agents, silicone oils, silicone surfactants, silicone synthetic lubricating oils, etc.) can be added. For example, by adding silicone oil (polysiloxane) and a silane coupling agent, defoaming (suppresses foaming during curing), releasability (preventing adhesion of conductive polymer), lubricity (into pores) Penetrability), electrical insulation (leakage current prevention), water repellency (prevention of solution intrusion (liquid rise) during polymerization of conductive polymer), braking / vibration resistance (opposing pressure when capacitor elements are stacked) Improvement of heat resistance and weather resistance of resin (introduction of crosslinking mechanism) can be expected.

また、本発明では、可溶性ポリイミドシロキサンとエポキシ樹脂からなる組成物(特開平8−253677号公報(米国特許第5643986号))を用いることによって、上記シリコーンオイル(ポリシロキサン)の添加と同様の効果を得ることができる。   Further, in the present invention, by using a composition comprising a soluble polyimide siloxane and an epoxy resin (Japanese Patent Laid-Open No. 8-253777 (US Pat. No. 5,643,986)), the same effect as the addition of the silicone oil (polysiloxane) is obtained. Can be obtained.

[マスキング層の形成方法]
マスキング層の形成方法は、マスキング材の塗布、マスキングテープの貼り付け等様々な方法が知られており、本発明にはいずれの方法も利用できる。マスキング材の塗布の例については、マスキング材をブレード等に塗布して転写する方法、ロールに塗布して転写する方法(例えば、特許文献5参照)等が挙げられる。
[Method for forming masking layer]
Various methods are known for forming a masking layer, such as application of a masking material and application of a masking tape, and any method can be used in the present invention. Examples of the application of the masking material include a method in which the masking material is applied and transferred to a blade or the like, a method in which the masking material is applied to a roll and transferred (for example, see Patent Document 5), and the like.

[固体電解質]
本発明において、固体電解質としては、ピロール、チオフェン、フランあるいはアニリン構造のいずれか1つの二価基、またはそれらの置換誘導体の少なくとも1つを繰り返し単位として有する導電性重合体が好ましく使用できるが、材料として従来知られているものを特に制限なく使用できる。
[Solid electrolyte]
In the present invention, as the solid electrolyte, a conductive polymer having as a repeating unit at least one divalent group of pyrrole, thiophene, furan or aniline structure, or a substituted derivative thereof can be preferably used. Conventionally known materials can be used without particular limitation.

例えば、3,4−エチレンジオキシチオフェンモノマー及び酸化剤を好ましくは溶液の形態において、前後して別々にまたは一緒に金属箔の酸化皮膜層に塗布して形成する方法(特開平2−15611号公報(米国特許第4,910,645号)や特開平10−32145号公報(欧州特許公開第820076(A2)号))等が利用できる。   For example, a method in which a 3,4-ethylenedioxythiophene monomer and an oxidizing agent are preferably applied in the form of a solution, separately or together, and applied to an oxide film layer of a metal foil (JP-A-2-15611). Gazette (U.S. Pat. No. 4,910,645) and JP-A-10-32145 (European Patent Publication No. 820076 (A2))) can be used.

導電性重合体は、アリールスルホン酸塩系ドーパントを含んでもよい。例えば、ベンゼンスルホン酸、トルエンスルホン酸、ナフタレンスルホン酸、アントラセンスルホン酸、アントラキノンスルホン酸などの塩を用いることができる。   The conductive polymer may include an aryl sulfonate dopant. For example, salts such as benzenesulfonic acid, toluenesulfonic acid, naphthalenesulfonic acid, anthracenesulfonic acid, anthraquinonesulfonic acid, and the like can be used.

本発明は、以上の方法により得られた固体電解コンデンサ素子を含む。また、本発明は、このように製造された固体電解コンデンサ素子をそのまま、または積層し、陰極リード部、陽極リード部を取り付けた上、エポキシ樹脂等で封止してなる固体電解コンデンサも含む。   The present invention includes a solid electrolytic capacitor element obtained by the above method. The present invention also includes a solid electrolytic capacitor in which the solid electrolytic capacitor element thus manufactured is laminated as it is, and a cathode lead portion and an anode lead portion are attached and sealed with an epoxy resin or the like.

以下に本発明について代表的な例を示し、さらに具体的に説明する。なお、これらは説明のための単なる例示であって、本発明はこれらに何等制限されるものではない。   The present invention will be described in more detail below with typical examples. Note that these are merely illustrative examples, and the present invention is not limited thereto.

実施例1:
第1マスキング工程
厚み100μmの化成アルミ箔を3mm幅に切断(スリット)したものを18mmずつの長さに切り取り、この箔片の一方の短辺部を金属製ガイドに溶接により固定し、固定していない端から7mmの箇所に粘度900cpに調整したポリイミド樹脂溶液(新日本理化(株)製;リカコート(商標))を、塗布面幅0.4mmの円盤状の塗布装置に供給して、塗布装置の塗布面をアルミ化成箔の全周に当接・押圧して0.8mm幅に線状に描き、約180℃で乾燥させ第1マスキング(ポリイミド膜)を形成した。
Example 1:
First masking step: 100 μm thick chemically formed aluminum foil cut into 3 mm width (slit) is cut into 18 mm lengths, and one short side of this foil piece is fixed to a metal guide by welding and fixed. A polyimide resin solution (manufactured by Shin Nippon Rika Co., Ltd .; Rika Coat (trademark)) adjusted to a viscosity of 900 cp is supplied to a disc-shaped coating device having a coating surface width of 0.4 mm and coated at a position 7 mm away from the end. The coated surface of the device was in contact with and pressed against the entire circumference of the aluminum formed foil, drawn into a line with a width of 0.8 mm, and dried at about 180 ° C. to form a first masking (polyimide film).

化成処理工程I
塗布装置から外した金属製ガイドに固定されたアルミ箔の先端から第1マスキングまでをアジピン酸アンモニウム水溶液中に浸して15Vの電圧を印加して切口部の未化成部を化成し、誘電体皮膜を形成した。
Chemical conversion treatment process I
The aluminum film fixed to the metal guide removed from the coating device and the first masking are immersed in an aqueous solution of ammonium adipate and a voltage of 15 V is applied to form an unformed portion of the cut portion, thereby forming a dielectric film. Formed.

第2マスキング工程
次に金属製ガイドに固定されたアルミ箔を再び塗布装置に装着して、固定していない先端から4mmの箇所に上記と同様にしてポリイミド樹脂溶液(新日本理化(株)製;リカコート(商標))を0.8mm幅に線状に描き、約180℃で乾燥させ第2マスキング(ポリイミド膜)を形成した。
Second masking step Next, the aluminum foil fixed to the metal guide is again attached to the coating apparatus, and a polyimide resin solution (manufactured by Shin Nippon Rika Co., Ltd.) is applied in the same manner as above at a position 4 mm from the unfixed tip. ; Rika Coat (trademark)) was drawn linearly to a width of 0.8 mm and dried at about 180 ° C. to form a second masking (polyimide film).

化成処理工程II
金属製ガイドに固定されたアルミ箔の先端から第2マスキングまでをアジピン酸アンモニウム水溶液中に浸して15Vの電圧を印加して第2マスキングの下縁部を含む領域を化成した。
Chemical conversion process II
The region from the tip of the aluminum foil fixed to the metal guide to the second masking was immersed in an aqueous solution of ammonium adipate and a voltage of 15 V was applied to form a region including the lower edge of the second masking.

固体電解質形成工程
前記第1マスキング層と第2マスキング層との間を除く化成処理層領域に以下のようにして固体電解質を形成した。
すなわち、アルミ箔の先端から4mmの第2マスキングを境にして第1マスキングと逆側の部分(3mm×4mm)を3,4−エチレンジオキシチオフェン20質量%を含むイソプロパノール溶液(溶液1)に浸漬し、引き上げて25℃で10分間放置した。次にモノマー溶液処理したアルミ箔部分を過硫酸アンモニウム水溶液25質量%を含む水溶液(溶液2)に浸漬し、これを40℃で10分間乾燥し、酸化重合を行なった。溶液1に浸漬してから溶液2に浸漬し酸化重合を行なう操作を20回繰返して固体電解質層を形成した。
Solid electrolyte forming step A solid electrolyte was formed in the chemical conversion treatment layer region excluding the space between the first masking layer and the second masking layer as follows.
That is, the portion (3 mm × 4 mm) opposite to the first masking with the 4 mm second masking from the tip of the aluminum foil as a boundary is an isopropanol solution (solution 1) containing 20% by mass of 3,4-ethylenedioxythiophene. It was immersed, pulled up and left at 25 ° C. for 10 minutes. Next, the aluminum foil part treated with the monomer solution was immersed in an aqueous solution (solution 2) containing 25% by mass of an aqueous ammonium persulfate solution, which was dried at 40 ° C. for 10 minutes, and subjected to oxidative polymerization. The operation of immersing in solution 1 and then immersing in solution 2 and conducting oxidative polymerization was repeated 20 times to form a solid electrolyte layer.

切断工程
上記の固体電解質層を形成した部分にカーボンペーストと銀ペーストを付着させた後、第1マスキングと第2マスキングとの間でアルミ箔を切断した。
Cutting Step After the carbon paste and the silver paste were attached to the portion where the solid electrolyte layer was formed, the aluminum foil was cut between the first masking and the second masking.

チップ型固体電解コンデンサ素子の構築と試験
第2マスキング層を含む切断部分をリードフレーム上に銀ペーストで接合しながら3枚重ね、導電性重合体のついていない部分に陽極リード端子を溶接により接続し、全体をエポキシ樹脂で封止し、130℃で定格電圧を印加して2時間エージングして合計100個のチップ型固体電解コンデンサを作製した。このコンデンサ素子について、250℃の温度領域を10秒通過させることによりリフロー試験を行ない、定格電圧印加後1分後の漏れ電流を測定し、測定値が1CV以下のものについて平均値を求め、0.01CV以上を不良品としリフロー不良率を求めた。これらの結果を表1に示す。
Construction and testing of a chip-type solid electrolytic capacitor element Three layers of the cut portion including the second masking layer are joined on the lead frame while being joined with silver paste, and the anode lead terminal is connected to the portion without the conductive polymer by welding. The whole was sealed with an epoxy resin, and a rated voltage was applied at 130 ° C. and aged for 2 hours to produce a total of 100 chip-type solid electrolytic capacitors. The capacitor element was subjected to a reflow test by passing it through a temperature range of 250 ° C. for 10 seconds, the leakage current was measured 1 minute after application of the rated voltage, and the average value was obtained for the measured value of 1 CV or less. The reflow defect rate was determined with a defective product of .01 CV or higher. These results are shown in Table 1.

実施例2:
実施例1、化成処理工程IIにおいて、金属製ガイドに固定されたアルミ箔の先端から第2マスキングを越えてさらに第1マスキングまでの部分をアジピン酸アンモニウム水溶液中に浸して15Vの電圧を印加して第2マスキング部全体を含む周辺部全体を化成した以外は、実施例1と同様に処理し固体電解コンデンサ素子を形成した。
得られた固体電解コンデンサ素子を用い、実施例1と同様にしてチップ型固体電解コンデンサを100個作製し、実施例1と同様に漏れ電流特性を測定した。結果を表1に示す。
Example 2:
In Example 1, chemical conversion treatment step II, the portion from the tip of the aluminum foil fixed to the metal guide to the first masking beyond the second masking was further immersed in an aqueous solution of ammonium adipate and a voltage of 15 V was applied. A solid electrolytic capacitor element was formed in the same manner as in Example 1 except that the entire peripheral portion including the entire second masking portion was formed.
Using the obtained solid electrolytic capacitor element, 100 chip-type solid electrolytic capacitors were produced in the same manner as in Example 1, and the leakage current characteristics were measured in the same manner as in Example 1. The results are shown in Table 1.

実施例3:
化成処理工程Iを行なわず、それ以外は実施例1と同じ方法でチップ型固体電解コンデンサを100個作製した。実施例1と同様に漏れ電流特性を測定した結果を表1に示す。
Example 3:
100 chip-type solid electrolytic capacitors were produced in the same manner as in Example 1 except that the chemical conversion treatment step I was not performed. The results of measuring leakage current characteristics in the same manner as in Example 1 are shown in Table 1.

実施例4:
化成処理工程Iを行なわず、それ以外は実施例2と同じ方法でチップ型固体電解コンデンサを100個作製した。実施例1と同様に漏れ電流特性を測定した結果を表1に示す。
Example 4:
100 chip-type solid electrolytic capacitors were produced by the same method as in Example 2 except that the chemical conversion treatment step I was not performed. The results of measuring leakage current characteristics in the same manner as in Example 1 are shown in Table 1.

比較例1:
化成処理工程IIを行わず、それ以外は実施例1と全く同じ方法でチップ型固体電解コンデンサを100個作製した。実施例1と同様に漏れ電流特性を測定した結果を表1に示す。
Comparative Example 1:
100 chip-type solid electrolytic capacitors were produced in exactly the same manner as in Example 1 except that the chemical conversion treatment step II was not performed. The results of measuring leakage current characteristics in the same manner as in Example 1 are shown in Table 1.

Figure 2007109722
Figure 2007109722

実施例5〜8:
実施例1〜4において、過硫酸アンモニウム25質量%を含む水溶液に代えてp−トルエンスルホン酸第2鉄40質量%エチルアルコール溶液(溶液2)に、また3,4−エチレンジオキシチオフェン20質量%を含むイソプロパノール溶液に代えてピロール20質量%エチルアルコール(溶液1)とした以外は、実施例1〜4と同様にして100個のコンデンサを完成させた。これらのコンデンサ素子の特性評価を実施例1〜4と同様に行い、その結果を表2に示した。
Examples 5-8:
In Examples 1 to 4, instead of an aqueous solution containing 25% by mass of ammonium persulfate, p-toluenesulfonic acid ferric iron 40% by mass ethyl alcohol solution (solution 2) and 3,4-ethylenedioxythiophene 20% by mass 100 capacitors were completed in the same manner as in Examples 1 to 4 except that 20% by mass of pyrrole ethyl alcohol (solution 1) was used instead of the isopropanol solution containing. The characteristics of these capacitor elements were evaluated in the same manner as in Examples 1 to 4, and the results are shown in Table 2.

比較例2:
比較例1において、過硫酸アンモニウム25質量%を含む水溶液に代えてp−トルエンスルホン酸第2鉄40質量%エチルアルコール溶液に、また3,4−エチレンジオキシチオフェン20質量%を含むイソプロパノール溶液に代えてピロール20質量%エチルアルコールとした以外は、比較例1と同様にして100個のコンデンサを完成させた。これらのコンデンサ素子の特性評価を比較例1と同様に行い、その結果を表2に示した。
Comparative Example 2:
In Comparative Example 1, instead of an aqueous solution containing 25% by mass of ammonium persulfate, it was replaced with a 40% by mass of ferric p-toluenesulfonic acid ethyl alcohol solution, and an isopropanol solution containing 20% by mass of 3,4-ethylenedioxythiophene. 100 capacitors were completed in the same manner as Comparative Example 1 except that 20% by mass of pyrrole ethyl alcohol was used. The characteristics of these capacitor elements were evaluated in the same manner as in Comparative Example 1, and the results are shown in Table 2.

Figure 2007109722
Figure 2007109722

以上の例に示すように、本発明の方法に従い、マスキング(第2マスキング)後にその周辺に化成処理を行なった場合(実施例)は、化成処理を行なわない場合と比較して顕著に特性が改善されている。また、マスキング(第2マスキング)の全体を覆う領域に化成処理を行なった場合は、マスキング(第2マスキング)の下縁部までの領域のみに化成処理を行なった場合より優れた特性を示している(実施例1、3、5及び7に対し、それぞれ、実施例2、4、6及び8)。一方、第1マスキング後に化成処理Iを行なわず、第2マスキング後のみにその周辺を含む領域の化成処理を行なった場合(実施例1、2、5及び6)は、予想外にも第2マスキングの前後に化成処理Iと化成処理IIを行なう場合と大きな差がなく(実施例1、2、5及び6に対し、それぞれ、実施例3、4、7及び8)、化成処理Iを省略した工程上有利な方法が採用可能であることが示されている。   As shown in the above example, when the chemical conversion treatment is performed on the periphery after masking (second masking) according to the method of the present invention (Example), the characteristics are remarkably compared with the case where the chemical conversion treatment is not performed. It has been improved. In addition, when the chemical conversion treatment is performed on the area covering the entire masking (second masking), the characteristics superior to those obtained when the chemical conversion treatment is performed only on the area up to the lower edge of the masking (second masking) are shown. (In contrast to Examples 1, 3, 5 and 7, Examples 2, 4, 6 and 8 respectively). On the other hand, when the chemical conversion process I is not performed after the first masking and the chemical conversion process of the region including the periphery is performed only after the second masking (Examples 1, 2, 5, and 6), the second unexpectedly. There is no significant difference from the case of performing the chemical conversion treatment I and the chemical conversion treatment II before and after masking (examples 3, 4, 7, and 8 with respect to the examples 1, 2, 5, and 6, respectively), and the chemical conversion treatment I is omitted. It has been shown that an advantageous process can be employed.

本発明の方法は、マスキングによる誘電体層のダメージの修復を実現するものであり、誘電体層上にマスキング層を有する固体電解コンデンサの製造に広く適用できる。   The method of the present invention realizes repair of damage to the dielectric layer by masking, and can be widely applied to the production of solid electrolytic capacitors having a masking layer on the dielectric layer.

固体電解コンデンサ素子の基本構造を示す断面図である。It is sectional drawing which shows the basic structure of a solid electrolytic capacitor element. 固体電解コンデンサ素子に従来技術を適用した場合のマスキングと化成処理の関係を示す説明図である。It is explanatory drawing which shows the relationship between the masking at the time of applying a prior art to a solid electrolytic capacitor element, and chemical conversion treatment. 本発明による固体電解コンデンサ素子の製造方法の一態様の概略を示す説明図である。It is explanatory drawing which shows the outline of the one aspect | mode of the manufacturing method of the solid electrolytic capacitor element by this invention. 本発明による固体電解コンデンサ素子の製造方法の別の態様の概略を示す説明図である。It is explanatory drawing which shows the outline of another aspect of the manufacturing method of the solid electrolytic capacitor element by this invention. 本発明による固体電解コンデンサ素子の製造方法の別の態様の概略を示す説明図である。It is explanatory drawing which shows the outline of another aspect of the manufacturing method of the solid electrolytic capacitor element by this invention.

符号の説明Explanation of symbols

1 陽極基材
2 誘電体酸化皮膜(化成処理層)
3 マスキング
3a 第1マスキング
3b 第2マスキング
4 固体電解質層
5 第2化成処理層
6 第2化成処理層(第1マスキング−第2マスキング間領域)
1 Anode substrate 2 Dielectric oxide film (chemical conversion layer)
DESCRIPTION OF SYMBOLS 3 Masking 3a 1st masking 3b 2nd masking 4 Solid electrolyte layer 5 2nd chemical conversion treatment layer 6 2nd chemical conversion treatment layer (area | region between 1st masking-2nd masking)

Claims (17)

表面に誘電体皮膜を有する陽極基材の一部にその表面を区画するようにマスキングを形成し、マスキングで区画された陽極基材表面の少なくとも一部の領域に固体電解質層を形成する工程を含む固体電解コンデンサ素子の製造方法において、前記マスキングの形成後にマスキングの縁部を含む領域に化成処理を施す工程を含むことを特徴とする固体電解コンデンサ素子の製造方法。   Forming a mask on a part of the anode base material having a dielectric film on the surface so as to partition the surface, and forming a solid electrolyte layer in at least a part of the surface of the anode base material defined by the masking. A method for manufacturing a solid electrolytic capacitor element, comprising: performing a chemical conversion treatment on a region including a masking edge after the masking is formed. 表面に誘電体皮膜を有する陽極基材の一部にその表面を区画するように第1マスキングを形成し、第1マスキングで区画された陽極基材表面の一部の領域に固体電解質層を形成する工程を含む固体電解コンデンサ素子の製造方法において、さらに固体電解質層を形成すべき領域を区画するように第2マスキングを形成し、前記第1及び第2マスキングの形成後に少なくとも第2マスキングの縁部を含む領域に化成処理を施す工程を含むことを特徴とする固体電解コンデンサ素子の製造方法。   A first masking is formed on a part of the anode base material having a dielectric film on the surface so as to partition the surface, and a solid electrolyte layer is formed on a part of the surface of the anode base material defined by the first masking. In the method of manufacturing a solid electrolytic capacitor element including the step of: forming a second mask so as to partition a region where a solid electrolyte layer is to be formed, and after forming the first and second masks, at least an edge of the second masking The manufacturing method of the solid electrolytic capacitor element characterized by including the process of performing a chemical conversion treatment to the area | region containing a part. 第1マスキングの形成後に第1マスキングの縁部を含む領域に化成処理を施す請求項2に記載の固体電解コンデンサ素子の製造方法。   The manufacturing method of the solid electrolytic capacitor element of Claim 2 which performs a chemical conversion process to the area | region containing the edge part of a 1st masking after formation of a 1st masking. 第2マスキングの形成後に第2マスキングの全体と第1マスキングの縁部を含む領域に化成処理を施す請求項2または3に記載の固体電解コンデンサ素子の製造方法。   4. The method for manufacturing a solid electrolytic capacitor element according to claim 2, wherein after the second masking is formed, a chemical conversion treatment is applied to a region including the entire second masking and the edge of the first masking. 5. 第2マスキングの縁部を含む領域に化成処理を施した後、第2マスキングによって区画される領域に固体電解質層を形成する工程と、第1マスキングと第2マスキングとの間の領域で基材を切断する工程を含む請求項2〜4のいずれかに記載の固体電解コンデンサ素子の製造方法。   In a region between the first masking and the second masking, the chemical conversion treatment is performed on the region including the edge of the second masking, and then a solid electrolyte layer is formed in the region partitioned by the second masking. The manufacturing method of the solid electrolytic capacitor element in any one of Claims 2-4 including the process of cut | disconnecting. マスキング材溶液を塗布することによりマスキングを形成する請求項1〜5のいずれかに記載の固体電解コンデンサ素子の製造方法。   The method for producing a solid electrolytic capacitor element according to claim 1, wherein masking is formed by applying a masking material solution. マスキング材溶液が誘電体皮膜中に浸透しかつ前記浸透部の上にマスキング層を形成する溶液である請求項6に記載の固体電解コンデンサ素子の製造方法。   The method for producing a solid electrolytic capacitor element according to claim 6, wherein the masking material solution is a solution that penetrates into the dielectric film and forms a masking layer on the penetration portion. マスキング材溶液が、耐熱性樹脂またはその前駆体の溶液である請求項7に記載の固体電解コンデンサ素子の製造方法。   The method for producing a solid electrolytic capacitor element according to claim 7, wherein the masking material solution is a solution of a heat resistant resin or a precursor thereof. 前記耐熱性樹脂またはその前駆体の溶液が、加熱によって固化する低分子量のポリイミドの溶液またはポリアミック酸溶液である請求項8に記載の固体電解コンデンサ素子の製造方法。   9. The method for producing a solid electrolytic capacitor element according to claim 8, wherein the solution of the heat resistant resin or a precursor thereof is a low molecular weight polyimide solution or a polyamic acid solution that is solidified by heating. 前記マスキング材溶液がさらにシリコーンオイル、シランカップリング剤またはポリイミドシロキサンを含有する請求項9に記載の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 9, wherein the masking material solution further contains silicone oil, a silane coupling agent, or polyimidesiloxane. 陽極基材が表面に多孔質層を有する弁作用金属である請求項1〜10のいずれかに記載の固体電解コンデンサ素子の製造方法。   The method for producing a solid electrolytic capacitor element according to claim 1, wherein the anode base material is a valve metal having a porous layer on the surface. 前記弁作用を有する金属材料が、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム及びそれらの合金から選ばれる材料である請求項11に記載の固体電解コンデンサ素子の製造方法。   The method of manufacturing a solid electrolytic capacitor element according to claim 11, wherein the metal material having a valve action is a material selected from aluminum, tantalum, niobium, titanium, zirconium, and alloys thereof. 前記固体電解質が、ピロール、チオフェン、アニリン、フラン骨格を含む2価基またはそれらの置換誘導体の少なくとも1つを繰り返し単位として含む高分子固体電解質である請求項1〜12のいずれかに記載の固体電解コンデンサ素子の製造方法。   The solid electrolyte according to claim 1, wherein the solid electrolyte is a polymer solid electrolyte containing at least one of a divalent group containing pyrrole, thiophene, aniline, and furan skeleton or a substituted derivative thereof as a repeating unit. Manufacturing method of electrolytic capacitor element. 高分子固体電解質が、3,4−エチレンジオキシチオフェンの重合体を含む請求項13に記載の固体電解コンデンサ素子の製造方法。   The method for producing a solid electrolytic capacitor element according to claim 13, wherein the polymer solid electrolyte contains a polymer of 3,4-ethylenedioxythiophene. 前記固体電解質がさらにアリールスルホン酸塩系ドーパントを含む請求項1〜14のいずれかに記載の固体電解コンデンサ素子の製造方法。   The method for producing a solid electrolytic capacitor element according to claim 1, wherein the solid electrolyte further contains an aryl sulfonate dopant. 請求項1〜15のいずれかに記載の固体電解コンデンサ素子の製造方法により製造される固体電解コンデンサ素子。   The solid electrolytic capacitor element manufactured by the manufacturing method of the solid electrolytic capacitor element in any one of Claims 1-15. 請求項16に記載の固体電解コンデンサ素子を含む固体電解コンデンサ。
A solid electrolytic capacitor comprising the solid electrolytic capacitor element according to claim 16.
JP2005296616A 2005-10-11 2005-10-11 Method for manufacturing solid electrolytic capacitor element Expired - Fee Related JP4811709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005296616A JP4811709B2 (en) 2005-10-11 2005-10-11 Method for manufacturing solid electrolytic capacitor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005296616A JP4811709B2 (en) 2005-10-11 2005-10-11 Method for manufacturing solid electrolytic capacitor element

Publications (2)

Publication Number Publication Date
JP2007109722A true JP2007109722A (en) 2007-04-26
JP4811709B2 JP4811709B2 (en) 2011-11-09

Family

ID=38035379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005296616A Expired - Fee Related JP4811709B2 (en) 2005-10-11 2005-10-11 Method for manufacturing solid electrolytic capacitor element

Country Status (1)

Country Link
JP (1) JP4811709B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068159A (en) * 1998-06-09 2000-03-03 Showa Denko Kk Solid electrolytic capacitor electrode foil therefor and its manufacture
WO2000067267A1 (en) * 1999-04-30 2000-11-09 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068159A (en) * 1998-06-09 2000-03-03 Showa Denko Kk Solid electrolytic capacitor electrode foil therefor and its manufacture
WO2000067267A1 (en) * 1999-04-30 2000-11-09 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same

Also Published As

Publication number Publication date
JP4811709B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP5257796B2 (en) Solid electrolytic capacitor element and manufacturing method thereof
US7141081B2 (en) Solid electrolytic capacitor and method for producing the same
KR100450885B1 (en) Solid electrolytic capacitor and method for producing the same
JP4955000B2 (en) Solid electrolytic capacitor
TWI408710B (en) Solid electrolyte capacitor and production method thereof
JP4899438B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US20100149729A1 (en) Solid electrolytic capacitor and method for manufacturing the same
WO2006137482A1 (en) Solid electrolytic capacitor and method for manufacturing same
JP4071469B2 (en) Anode foil for capacitor, method for producing the anode foil, and solid electrolytic capacitor using the anode foil
JP2009289833A (en) Method for manufacturingcapacitor
JP4623404B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP5088634B2 (en) SUBSTRATE FOR SOLID ELECTROLYTIC CAPACITOR AND CAPACITOR USING THE SAME AND PROCESS FOR PRODUCING THE SAME
JP2007123733A (en) Solid-state electrolytic capacitor element manufacturing method
JP4811709B2 (en) Method for manufacturing solid electrolytic capacitor element
JP4655339B2 (en) Solid electrolytic capacitor element and manufacturing method thereof
WO2021085350A1 (en) Electrolytic capacitor and manufacturing method thereof
JP4148497B2 (en) Method for producing aluminum foil for capacitor and solid electrolytic capacitor
JP4854009B2 (en) Solid electrolytic capacitor
JP4900851B2 (en) Solid electrolytic capacitor element and solid electrolytic capacitor
JP2013258273A (en) Masking resin composition for capacitor, capacitor element, capacitor, and manufacturing method of capacitor
JPWO2007077914A1 (en) Solid electrolytic capacitor
JP4771218B2 (en) Solid electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4811709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees