JP4854009B2 - Solid electrolytic capacitor - Google Patents
Solid electrolytic capacitor Download PDFInfo
- Publication number
- JP4854009B2 JP4854009B2 JP2006125341A JP2006125341A JP4854009B2 JP 4854009 B2 JP4854009 B2 JP 4854009B2 JP 2006125341 A JP2006125341 A JP 2006125341A JP 2006125341 A JP2006125341 A JP 2006125341A JP 4854009 B2 JP4854009 B2 JP 4854009B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- conductive polymer
- electrolytic capacitor
- aqueous solution
- polymer layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
Description
本発明は、固体電解コンデンサに関し、特に信頼性を向上した固体電解質となる導電性高分子層を用いた固体電解コンデンサに関するものである。 The present invention relates to a solid electrolytic capacitor, and more particularly to a solid electrolytic capacitor using a conductive polymer layer as a solid electrolyte with improved reliability.
近年、アルミニウム等の弁作用金属の多孔質体に、陽極酸化法により誘電体酸化皮膜層を形成した後、酸化皮膜層上に導電性高分子層を形成し、これを固体電解質とする固体電解コンデンサが開発され、二酸化マンガンを固体電解質とする固体電解コンデンサに比べ、固体電解質の導電率が10〜100倍高く、等価直列抵抗(以下、ESRと表記)を低くすることが可能となり、高周波数特性が大幅に改善されたため、特に小型機器の高周波ノイズ吸収用として様々な電子機器に用いられ始めている。 In recent years, a dielectric oxide film layer is formed on a porous body of a valve metal such as aluminum by an anodic oxidation method, then a conductive polymer layer is formed on the oxide film layer, and this is used as a solid electrolyte. Capacitors have been developed, and the conductivity of solid electrolytes is 10 to 100 times higher than that of solid electrolytic capacitors using manganese dioxide as a solid electrolyte, and the equivalent series resistance (hereinafter referred to as ESR) can be lowered. Since the characteristics have been greatly improved, it has begun to be used in various electronic devices, particularly for high frequency noise absorption in small devices.
また、高密度実装化にともない、この固体電解コンデンサには小型大容量、低ESRの特性要求が強くなってきている。 Further, along with the high density mounting, there is an increasing demand for characteristics of the small size, large capacity and low ESR for this solid electrolytic capacitor.
導電性高分子を合成するには、モノマーとして、3,4−エチレンジオキシチオフェン(以降、EDTと表記)、ピロール、アニリン等を用いるが、これをコンデンサの固体電解質として用いる際には、酸化剤とドーパントを加え、金属多孔質体の酸化皮膜層上で反応させて導電性高分子層を形成する化学酸化重合工法(例えば特許文献1等)、或いは、その化学酸化重合工法により形成された導電性高分子層を下地として電解重合工法によりさらに厚く導電性高分子層を形成する方法(例えば特許文献2等)が主に用いられている。一方、金属多孔質体の酸化皮膜層上での重合を行わずに可溶性導電性高分子の溶液を別に作製し、その高分子の溶液を多孔質体に含浸させ、乾燥・塗膜化することで酸化皮膜層上に導電性高分子層を直接形成する工法(以下、スラリーポリマー工法と表記)もある(例えば特許文献3等)。
In order to synthesize a conductive polymer, 3,4-ethylenedioxythiophene (hereinafter referred to as EDT), pyrrole, aniline, or the like is used as a monomer. When this is used as a solid electrolyte of a capacitor, oxidation is performed. It was formed by chemical oxidation polymerization method (for example,
実際に固体電解コンデンサの陽極酸化皮膜層上に導電性高分子を形成するには、表面が粗面化(エッチング)された多孔質膜のため、被覆率、ESR、信頼性の点から、化学酸化重合など行う場合には、液の含浸性を上げるために液濃度などをコントロールして多孔質内部まで導電性高分子層を形成する必要がある。また、電解重合工法に関しても電圧、印加時間、モノマー濃度、溶媒などを正しく選択し、細部まで充填しなければならない。更にスラリーポリマー工法についても同様に含浸性が必要となる。 In order to actually form a conductive polymer on the anodic oxide film layer of a solid electrolytic capacitor, the surface is roughened (etched), and therefore, from the viewpoint of coverage, ESR, and reliability, When performing oxidative polymerization or the like, it is necessary to control the liquid concentration to form a conductive polymer layer up to the inside of the porous body in order to improve the liquid impregnation property. In addition, regarding the electrolytic polymerization method, it is necessary to correctly select voltage, application time, monomer concentration, solvent, etc., and to fill the details. Furthermore, impregnation is similarly required for the slurry polymer method.
近年のESRの低下要求に対しては、導電性高分子自身の導電率を向上させることも必要だが、数mΩオーダーのESRの低下に関しては更に陽極酸化皮膜層と化学酸化重合膜、電解重合膜もしくはスラリーポリマー膜(スラリーポリマー工法により形成される膜)の密着性が接触抵抗に寄与するため、重要なファクターとなってきている。すなわち、モノマー溶液と酸化剤/ドーパント溶液中に十数回交互に浸漬して導電性高分子層を形成する化学酸化重合膜とその上に形成する外側のスラリーポリマー膜間の密着性、あるいは内部に形成したスラリーポリマー膜と外側のスラリーポリマー膜間の密着性を改善する必要があった。また、近年では粗面化(エッチング)技術が発達し、ナノオーダーのピット幅になり、ますます含浸性、密着性が重要となってきている。 In order to meet recent demands for lowering ESR, it is necessary to improve the conductivity of the conductive polymer itself. However, regarding the lowering of ESR on the order of several mΩ, an anodized film layer, a chemically oxidized polymer film, and an electrolytic polymer film Alternatively, the adhesiveness of the slurry polymer film (film formed by the slurry polymer method) contributes to contact resistance, and thus has become an important factor. That is, the adhesion between the chemical oxidation polymer film that forms a conductive polymer layer by immersing alternately in the monomer solution and the oxidant / dopant solution ten times or more and the outer slurry polymer film formed thereon, or the inside It was necessary to improve the adhesion between the slurry polymer film formed on the outer side and the outer slurry polymer film. Further, in recent years, a roughening (etching) technique has been developed, so that the pit width becomes nano-order, and impregnation and adhesion are becoming increasingly important.
弁作用金属陽極酸化皮膜層上に導電性高分子層を形成するには上述の例があるが、量産性などを考慮すると、電解重合工法については参照電極の配置などに工数、コストがかかり、適していない。量産性を考慮すると陽極酸化皮膜層上に直接スラリーポリマー膜を塗布し、導電性高分子層を形成する方法が最適であるが、十分に被覆率やESR、信頼性を確保するには陽極酸化皮膜層上に化学酸化重合、もしくは低分子量の可溶性導電性高分子の溶液を用いて内側の導電性高分子層を形成した後、スラリーポリマー膜により外側の導電性高分子層を形成する必要がある。 In order to form the conductive polymer layer on the valve action metal anodized film layer, there is the above-mentioned example, but considering the mass productivity, etc., it takes man-hours and costs for the placement of the reference electrode for the electrolytic polymerization method, Not suitable. In consideration of mass productivity, the best method is to apply a slurry polymer film directly on the anodized film layer to form a conductive polymer layer. However, anodization is sufficient to ensure sufficient coverage, ESR, and reliability. It is necessary to form the outer conductive polymer layer with the slurry polymer film after the inner conductive polymer layer is formed on the film layer using chemical oxidative polymerization or a solution of a low molecular weight soluble conductive polymer. is there.
しかし、従来の方法では化学酸化重合膜とスラリーポリマー膜との密着性が悪く、信頼性評価を行った際に化学酸化重合膜自身の抵抗値が酸化による劣化によって上昇するよりも先に化学酸化重合膜とスラリーポリマー膜との界面抵抗が上昇することによってESRの劣化が起こっていた。そこで、本発明の課題は、可溶性導電性高分子の溶液を用いて導電性高分子層を形成した固体電解コンデンサにおいて、信頼性評価に際してもESRの増加を抑制した固体電解コンデンサを提供することにある。 However, in the conventional method, the adhesion between the chemical oxidation polymer film and the slurry polymer film is poor, and when the reliability evaluation is performed, the chemical oxidation polymer film itself has a resistance value higher than that due to deterioration due to oxidation. Deterioration of ESR occurred due to an increase in the interface resistance between the polymer film and the slurry polymer film. Accordingly, an object of the present invention is to provide a solid electrolytic capacitor in which a conductive polymer layer is formed using a solution of a soluble conductive polymer, and the increase in ESR is suppressed even in reliability evaluation. is there.
本発明の固体電解コンデンサは、粗面化したアルミニウム基体の表面に形成された陽極酸化皮膜層と、前記陽極酸化皮膜層上に形成された導電性高分子層とを備え、前記導電性高分子層を固体電解質とする固体電解コンデンサにおいて、前記陽極酸化皮膜層上に内側の導電性高分子層を形成し、カルボン酸基を2個以上有する脂肪族有機酸水溶液、芳香族スルホン酸水溶液、もしくは前記脂肪族有機酸水溶液と前記芳香族スルホン酸水溶液の混合水溶液に浸漬、乾燥した後、グリコール系溶媒を添加した可溶性導電性高分子の溶液を塗布、乾燥して外側の導電性高分子層を形成したことを特徴とする。 The solid electrolytic capacitor of the present invention comprises an anodized film layer formed on the surface of a roughened aluminum substrate, and a conductive polymer layer formed on the anodized film layer, and the conductive polymer in the solid electrolytic capacitor of the layer with the solid electrolyte, the form the inside of the conductive polymer layer on the anodized film layer, aliphatic organic acid aqueous solution having a carboxylic acid group at least two, Fang aromatic sulfonic acid aqueous solution, Alternatively, after immersing and drying in a mixed aqueous solution of the aliphatic organic acid aqueous solution and the aromatic sulfonic acid aqueous solution, a solution of a soluble conductive polymer to which a glycol-based solvent is added is applied and dried to form an outer conductive polymer layer. Is formed.
また、前記グリコール系溶媒の濃度が1重量%〜50重量%であることが好ましく、前記脂肪族有機酸がクエン酸、アジピン酸、ドデカン酸、セバチン酸、マレイン酸、マロン酸から選ばれる少なくとも1種であることが好ましく、また、前記芳香族スルホン酸がp−トルエンスルホン酸、ドデシルベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸、1,3,6−ナフタレントリスルホン酸から選ばれる少なくとも1種であることが好ましい。 In addition, the concentration of the glycol solvent is preferably 1% by weight to 50% by weight, and the aliphatic organic acid is at least one selected from citric acid, adipic acid, dodecanoic acid, sebacic acid, maleic acid, and malonic acid. Preferably, the aromatic sulfonic acid is at least one selected from p-toluenesulfonic acid, dodecylbenzenesulfonic acid, naphthalenesulfonic acid, naphthalene disulfonic acid, and 1,3,6-naphthalenetrisulfonic acid. It is preferable that
本発明によれば、グリコール系溶媒を添加した可溶性導電性高分子の溶液を用いて、内側の導電性高分子層上に外側の導電性高分子層を形成し、内側の導電性高分子層と外側の導電性高分子層の密着性を改善させることにより、ESRの熱劣化を低減させることができ、信頼性に優れた固体電解コンデンサを提供することができる。 According to the present invention, an outer conductive polymer layer is formed on an inner conductive polymer layer using a solution of a soluble conductive polymer to which a glycol solvent is added, and the inner conductive polymer layer is formed. By improving the adhesion between the outer conductive polymer layer and the outer conductive polymer layer, the thermal degradation of ESR can be reduced, and a solid electrolytic capacitor excellent in reliability can be provided.
以下、本発明の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は本発明の実施の形態による固体電解コンデンサを説明する図であり、図1(a)は模式断面図であり、図1(b)は図1(a)のA部分の拡大断面図である。図1に示すように、エッチング等で粗面化した平板状のアルミニウム基体1の表面に、アジピン酸、クエン酸、りん酸、またはその塩等を含む水溶液中で、化成することにより、陽極酸化皮膜層2を形成する。しかるのち、中央部の陽極部9と両端部の陰極部10とを区分するためのレジスト帯3を設ける。レジスト帯3は、エポキシ樹脂等の熱硬化性樹脂を用いてもよいし、熱可塑性樹脂でもその目的を果すことができる。その後、陽極酸化皮膜層2上に内側の導電性高分子層4をポリピロール等の導電性高分子層を化学酸化重合によって形成するか、スラリーポリマー工法により形成する。その後、少なくともカルボン酸基を2個以上有する脂肪族有機酸水溶液、もしくは芳香族スルホン酸水溶液、もしくは脂肪族有機酸水溶液および芳香族スルホン酸水溶液の混合水溶液に浸漬、乾燥し、しかるのちに、外側の導電性高分子層5をグリコール系溶媒を添加した可溶性導電性高分子の溶液を塗布、乾燥することにより形成する。例えばグリコール系溶媒を添加した可溶性導電性高分子の溶液としてEDTモノマーとドーパントとしてポリスチレンスルホン酸を水溶液中で混合攪拌したのち、酸化剤として、ペルオキソニ硫酸アンモニウム、ペルオキソニ硫酸カリウム等を添加し、24H〜72H(時間)連続攪拌の後、添加剤としてグリコール系溶媒を1〜50wt%加えたものを用い、塗布、乾燥して外側の導電性高分子層5を形成する。しかるのちにグラファイトペースト層6、銀ペースト層7を順次形成し、陽極部9、陰極部10を持つ固体電解コンデンサとする。
FIG. 1 is a diagram for explaining a solid electrolytic capacitor according to an embodiment of the present invention. FIG. 1 (a) is a schematic sectional view, and FIG. 1 (b) is an enlarged sectional view of a portion A in FIG. It is. As shown in FIG. 1, anodic oxidation is performed by forming the surface of a
グリコール系溶媒としては例えばエチレングリコール、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチレングリコール、2−(2−メトキシエトキシ)エタノール、2−(2−エトキシエトキシ)エタノール、エチレングリコールモノメチルエーテル酢酸エステル、酢酸2−エトキシエチル、ジエチレングリコールジアクリレート、ジエチレングリコールモノブチルエーテル、ジメトキシテトラエチレングリコール、エチルトリグリコール、2−ヒドロキシエチルメタクリレート、エチレングリコールギ酸エステル、エチレングリコール酢酸エステル、カルビトールアセテート、ブチルカルビトールアセテート、ポリエチレングリコール、ジエチレングリコールモノメチルエーテルアセタート、トリエチレングリコールモノメチルエーテル、エチレングリコールステアリン酸エステル、ポリエチレングリコールステアリン酸エステルなどがある。 Examples of glycol solvents include ethylene glycol, 1,2-dimethoxyethane, 1,2-diethoxyethane, diethylene glycol, 2- (2-methoxyethoxy) ethanol, 2- (2-ethoxyethoxy) ethanol, and ethylene glycol monomethyl ether. Acetic acid ester, 2-ethoxyethyl acetate, diethylene glycol diacrylate, diethylene glycol monobutyl ether, dimethoxytetraethylene glycol, ethyl triglycol, 2-hydroxyethyl methacrylate, ethylene glycol formate, ethylene glycol acetate, carbitol acetate, butyl carbitol acetate , Polyethylene glycol, diethylene glycol monomethyl ether acetate, triethylene glycol monomethyl Examples include ether, ethylene glycol stearate, and polyethylene glycol stearate.
脂肪族有機酸としてはアジピン酸、ドデカン酸、セバチン(セバシン)酸、クエン酸、マレイン酸、マロン酸などがある。また、芳香族スルホン酸としてはp−トルエンスルホン酸、ドデシルベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸、1,3,6−ナフタレントリスルホン酸などがある。 Examples of the aliphatic organic acid include adipic acid, dodecanoic acid, sebacine (sebacin) acid, citric acid, maleic acid, and malonic acid. Examples of the aromatic sulfonic acid include p-toluenesulfonic acid, dodecylbenzenesulfonic acid, naphthalenesulfonic acid, naphthalene disulfonic acid, and 1,3,6-naphthalenetrisulfonic acid.
本発明では、広義の固体電解コンデンサとして、陰極部がアルミニウム基体の中央部に形成され、陽極部が両端に形成された例を示したが、導電性高分子層が陽極酸化皮膜層上に形成された一つの陰極部と陰極部以外の部分に形成された一つの陽極部からなる固体電解コンデンサを含む。 In the present invention, as an example of a solid electrolytic capacitor in a broad sense, an example in which the cathode portion is formed at the center portion of the aluminum base and the anode portions are formed at both ends is shown. However, the conductive polymer layer is formed on the anodized film layer. And a solid electrolytic capacitor including one anode portion formed on one cathode portion and a portion other than the cathode portion.
以下、実施例について説明する。 Examples will be described below.
(実施例1)
平板状のアルミニウム箔を水溶液中で化成し、陽極酸化皮膜層を形成した後、陽極酸化皮膜層上にポリピロールからなる内側の導電性高分子層を化学酸化重合にて形成した。次に、それぞれ有機酸、芳香族スルホン酸水溶液としてクエン酸1wt%水溶液、1,3,6−ナフタレントリスルホン酸1.5wt%水溶液に順次浸漬、乾燥するものと、酸処理しないものを作製した。(以下、酸処理有り、および無し と記載)EDTモノマーとドーパントとしてポリスチレンスルホン酸を水溶液中で混合攪拌したのち、酸化剤として、ペルオキソニ硫酸アンモニウムを添加し、24H〜72H間連続攪拌してスラリーポリマー液(可溶性導電性高分子の溶液)Aを合成する。それにエチレングリコールを10wt%加えたものをスラリーポリマー液Bとする。これをそれぞれ化学酸化重合膜からなる、内側の導電性高分子層の上に塗布、乾燥して外側の導電性高分子層を形成した。これにグラファイトペースト層、銀ペースト層を順次形成し、固体電解コンデンサとした後、初期ESR〔100kHz〕、125℃300H後のESR〔100kHz〕を測定した。その結果すなわちESR信頼性評価結果を表1に示す。
Example 1
After forming a flat aluminum foil in an aqueous solution to form an anodized film layer, an inner conductive polymer layer made of polypyrrole was formed on the anodized film layer by chemical oxidative polymerization. Next, an organic acid and an aromatic sulfonic acid aqueous solution were prepared by sequentially immersing and drying in a
この結果から、初期ESRについてはどの水準でも変化は無いが、高温放置とともにグリコール系溶媒を添加しないもの(試料1、3)、酸処理をしないもの(試料1、2)はESRの増加が大きく、密着性や接触抵抗が劣化していることがわかる。
From this result, there is no change in the initial ESR at any level, but the increase in ESR is large in the case where the glycol-based solvent is not added at high temperature (
(実施例2)
実施例1で用いたスラリーポリマー液Aにエチレングリコールを0、0.5、1、5、10、20、30、40、50、80wt%添加し、それぞれクエン酸水溶液、1,3,6−ナフタレントリスルホン酸水溶液で酸処理したものを作製し、これにグラファイトペースト層、銀ペースト層を順次形成し、固体電解コンデンサとした後、初期ESR〔100kHz〕、125℃300H後のESR〔100kHz〕を測定した。その結果すなわちエチレングリコール添加濃度とESR信頼性評価の結果を表2に示す。
(Example 2)
0, 0.5, 1, 5, 10, 20, 30, 40, 50, 80 wt% of ethylene glycol was added to the slurry polymer liquid A used in Example 1, respectively, and an aqueous citric acid solution, 1, 3, 6-, respectively. An acid-treated solution with a naphthalene trisulfonic acid aqueous solution was prepared, and a graphite paste layer and a silver paste layer were sequentially formed thereon to form a solid electrolytic capacitor. Then, initial ESR [100 kHz], ESR after 125 ° C. and 300 H, [100 kHz] Was measured. The results, that is, the results of ethylene glycol addition concentration and ESR reliability evaluation are shown in Table 2.
この結果から、グリコール系溶媒添加濃度については1wt%〜50wt%(試料13〜19が高温におけるESRの増加の抑制に最も効果が得られることがわかる。 From this result, it is understood that the glycol solvent addition concentration is 1 wt% to 50 wt% (samples 13 to 19 are most effective in suppressing the increase in ESR at high temperatures.
(実施例3)
実施例1で用いたスラリーポリマー液Bにより外側の導電性高分子層を形成する前に、酸処理を有機酸水溶液としてクエン酸、アジピン酸、ドデカン酸、セバチン(セバシン)酸、マレイン酸、マロン酸それぞれ3wt%水溶液で行ったもの、芳香族スルホン酸水溶液としてp−トルエンスルホン酸(表中p−TSと記載)、ナフタレンスルホン酸(表中NSと記載)、ナフタレンジスルホン酸(表中DNSと記載)、1,3,6−ナフタレントリスルホン酸(表中TNSと記載)、ドデシルベンゼンスルホン酸(表中DBSと記載)それぞれ1.5wt水溶液で行ったもの、更にクエン酸3wt%、1,3,6−ナフタレントリスルホン酸1.5wt%の混合水溶液でおこなったもの、また、酸処理を行わないものをそれぞれ作製し、これにグラファイトペースト層、銀ペースト層を順次形成し、固体電解コンデンサとした後、初期ESR(100kHz)、125℃300H後のESR(100kHz)を測定した。その結果すなわち酸処理時の有機酸、芳香族スルホン酸、混合水溶液によるESR変化の比較結果を表3に示す。
(Example 3)
Before forming the outer conductive polymer layer with the slurry polymer liquid B used in Example 1, citric acid, adipic acid, dodecanoic acid, sebacine (sebacin) acid, maleic acid, malon are treated with an acid treatment as an organic acid aqueous solution. Acids each carried out in 3 wt% aqueous solution, p-toluenesulfonic acid (described as p-TS in the table), naphthalenesulfonic acid (described as NS in the table), naphthalene disulfonic acid (referred to as DNS in the table) as an aromatic sulfonic acid aqueous solution Description) 1,3,6-naphthalene trisulfonic acid (described as TNS in the table), dodecylbenzenesulfonic acid (described as DBS in the table), each carried out in a 1.5 wt aqueous solution, and further
この結果から、有機酸水溶液、芳香族スルホン酸水溶液に浸漬することでESRの耐熱性は向上するが、最も本発明の効果が得られるのは有機酸、芳香族スルホン酸の混合水溶液に浸漬した場合であることが分かる。 From this result, the heat resistance of ESR is improved by immersing in an organic acid aqueous solution or aromatic sulfonic acid aqueous solution, but the most effective effect of the present invention is obtained by immersing in a mixed aqueous solution of organic acid and aromatic sulfonic acid. It turns out that this is the case.
1 アルミニウム基体
2 陽極酸化皮膜層
3 レジスト帯
4 内側の導電性高分子層
5 外側の導電性高分子層
6 グラファイトペースト層
7 銀ペースト層
8 レジスト印刷部(エポキシ樹脂印刷部)
9 陽極部
10 陰極部
DESCRIPTION OF
9
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006125341A JP4854009B2 (en) | 2006-04-28 | 2006-04-28 | Solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006125341A JP4854009B2 (en) | 2006-04-28 | 2006-04-28 | Solid electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007299856A JP2007299856A (en) | 2007-11-15 |
JP4854009B2 true JP4854009B2 (en) | 2012-01-11 |
Family
ID=38769126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006125341A Active JP4854009B2 (en) | 2006-04-28 | 2006-04-28 | Solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4854009B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5407717B2 (en) * | 2009-09-30 | 2014-02-05 | 日本ケミコン株式会社 | Solid electrolytic capacitor and manufacturing method thereof |
JP5495311B2 (en) * | 2010-01-21 | 2014-05-21 | Necトーキン株式会社 | Solid electrolytic capacitor and manufacturing method thereof |
WO2012140881A1 (en) * | 2011-04-13 | 2012-10-18 | パナソニック株式会社 | Process for producing solution having electrically conductive polymer dispersed therein, and electrolytic capacitor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000021687A (en) * | 1998-07-07 | 2000-01-21 | Matsushita Electric Ind Co Ltd | Capacitor and manufacture thereof |
JP3864651B2 (en) * | 1999-12-03 | 2007-01-10 | 松下電器産業株式会社 | Solid electrolytic capacitor and manufacturing method thereof |
JP4975237B2 (en) * | 2002-08-27 | 2012-07-11 | パナソニック株式会社 | Method for producing conductive composition and solid electrolytic capacitor using the same |
JP4704674B2 (en) * | 2003-11-27 | 2011-06-15 | Necトーキン株式会社 | Manufacturing method of solid electrolytic capacitor |
-
2006
- 2006-04-28 JP JP2006125341A patent/JP4854009B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007299856A (en) | 2007-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4737775B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP4730908B2 (en) | Solid electrolytic capacitor | |
JP4882567B2 (en) | Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor | |
JP2009147122A (en) | Solid-state electrolytic capacitor, and manufacturing method thereof | |
WO2004075220A1 (en) | Solid electrolytic capacitor and method for manufacturing same | |
JP4716431B2 (en) | Solid electrolytic capacitor | |
JP4854009B2 (en) | Solid electrolytic capacitor | |
JP3245567B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JP2011138814A (en) | Electrolytic capacitor and method of manufacturing the same | |
JP2002313684A (en) | Solid electrolytic capacitor and its manufacturing method | |
JP5354085B2 (en) | Solid electrolytic capacitor | |
JP4926131B2 (en) | Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor | |
JP2008288342A (en) | Method of forming electrolyte for electrolytic capacitor | |
JP3806503B2 (en) | Solid electrolytic capacitor | |
JP4674863B2 (en) | Solid electrolytic capacitor | |
JP2010161182A (en) | Solid-state electrolytic capacitor and manufacturing method thereof | |
JP4891140B2 (en) | Manufacturing method of solid electrolytic capacitor | |
JP4797784B2 (en) | Solid electrolytic capacitor | |
JP2007281268A (en) | Solid electrolytic capacitor and its manufacturing method | |
JP2007305684A (en) | Solid electrolytic capacitor and method for manufacturing the same | |
JP2006147900A (en) | Manufacturing method of solid electrolytic capacitor | |
JP2009238776A (en) | Method of manufacturing solid electrolytic capacitor | |
JP4637700B2 (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JP2007048936A (en) | Method of manufacturing solid electrolytic capacitor | |
JP2006135191A (en) | Solid electrolytic capacitor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081001 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111019 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111021 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4854009 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |