JP2021185626A - Electrode for aluminum electrolytic capacitor - Google Patents

Electrode for aluminum electrolytic capacitor Download PDF

Info

Publication number
JP2021185626A
JP2021185626A JP2021144553A JP2021144553A JP2021185626A JP 2021185626 A JP2021185626 A JP 2021185626A JP 2021144553 A JP2021144553 A JP 2021144553A JP 2021144553 A JP2021144553 A JP 2021144553A JP 2021185626 A JP2021185626 A JP 2021185626A
Authority
JP
Japan
Prior art keywords
chemical conversion
electrode
aluminum
film
conversion film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021144553A
Other languages
Japanese (ja)
Other versions
JP7181358B2 (en
Inventor
裕太 清水
Yuta Shimizu
修平 榎
Shuhei Enoki
雅彦 片野
Masahiko Katano
敏文 平
Toshifumi Taira
和也 藤本
Kazuya Fujimoto
慎也 曾根
Shinya Sone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Nippon Light Metal Co Ltd
Original Assignee
Toyo Aluminum KK
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK, Nippon Light Metal Co Ltd filed Critical Toyo Aluminum KK
Priority to JP2021144553A priority Critical patent/JP7181358B2/en
Publication of JP2021185626A publication Critical patent/JP2021185626A/en
Application granted granted Critical
Publication of JP7181358B2 publication Critical patent/JP7181358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes

Abstract

To provide an electrode for an aluminum electrolytic capacitor which can improve the water resistance of a chemical conversion film with a withstand voltage of 400 V or more.SOLUTION: A hydration step of bringing an aluminum electrode into contact with a hydration treatment solution having temperature of 78°C to 92°C to form a hydration film on the aluminum electrode, and a chemical conversion step of performing chemical conversion at a chemical conversion voltage of 400 V or higher in a chemical conversion liquid having temperature of 58°C to 78°C to form a chemical conversion film on an aluminum electrode are executed to manufacture an electrode for an aluminum electrolytic capacitor. At that time, the amount of the hydrated film is optimized. In such electrode for the aluminum electrolytic capacitor, the number of pores exposed on the cut surface when the chemical conversion film is cut is 150/μm2 or less, such that the water resistance is high.SELECTED DRAWING: Figure 1

Description

本発明は、アルミニウム電極に化成皮膜を形成したアルミニウム電解コンデンサ用電極に関するものである。 The present invention relates to an electrode for an aluminum electrolytic capacitor in which a chemical conversion film is formed on an aluminum electrode.

アルミニウム電解コンデンサ用陽極箔の製造工程では、多孔質層を有するアルミニウム電極を高温の純水等の水和処理液に浸漬してアルミニウム電極の表面に水和皮膜を形成した後(水和工程)、有機酸や無機酸およびそれらの塩を含む化成液中で化成を行い(化成工程)、酸化アルミニウムからなる化成皮膜を表面に形成する。化成工程の前に水和皮膜を形成することによって、化成に要する電気量を削減できるとともに、単位面積当たりの静電容量を向上させることができる(特許文献1参照)。 In the manufacturing process of an anode foil for an aluminum electrolytic capacitor, an aluminum electrode having a porous layer is immersed in a hydration treatment solution such as high-temperature pure water to form a hydrated film on the surface of the aluminum electrode (hydration step). , Chemical formation is carried out in a chemical conversion solution containing an organic acid, an inorganic acid and a salt thereof (chemical conversion step), and a chemical conversion film made of aluminum oxide is formed on the surface. By forming a hydrated film before the chemical conversion step, the amount of electricity required for chemical conversion can be reduced and the capacitance per unit area can be improved (see Patent Document 1).

特開2014−57000号公報Japanese Unexamined Patent Publication No. 2014-57000

水和工程の後に400V以上の化成電圧で化成を行った場合に形成される化成皮膜中には、直径数nmから数10nmの空孔からなる欠陥が多数存在する。これは、水和皮膜が脱水して酸化アルミニウムに変化する際に体積収縮を起こすために生じると考えられている。これらの欠陥が存在する化成皮膜は、表面から水が浸入しやすいため、化成皮膜が水和劣化しやすいという欠点を有する。 In the chemical conversion film formed when the chemical conversion is performed at a chemical conversion voltage of 400 V or more after the hydration step, there are many defects consisting of pores having a diameter of several nm to several tens of nm. It is believed that this occurs because the hydrated film undergoes volume shrinkage as it dehydrates and changes to aluminum oxide. The chemical conversion film in which these defects are present has a drawback that the chemical conversion film is liable to be hydrated and deteriorated because water easily infiltrates from the surface.

かかる欠陥に対して、本発明者等が種々検討した結果、水和工程を行った後に化成を行った際、300V以上の電圧から前記欠陥が生じ始め、それは特に400V以上、さらには500V以上で顕著になることを見出した。また、本発明者等は、実験と考察とを繰り返した結果、300V以下の電圧で化成する場合には、前記欠陥が生じた場合でも、化成工程において欠陥に化成液あるいは水が浸透することにより、欠陥が再び化成されて修復される。しかしながら、400V以上の電圧で化成する場合には、化成皮膜で発生する熱が甚大であるため、化成工程において欠陥に化成液あるいは水が浸透する前に、皮膜の表面で化成液あるいは水が沸騰、蒸発してしまい、欠陥の修復が進みにくいとの知見を得た。 As a result of various studies by the present inventors regarding such defects, when the chemical formation is performed after the hydration step, the defects start to occur from a voltage of 300 V or more, especially at 400 V or more, further 500 V or more. I found it to be noticeable. Further, as a result of repeating experiments and discussions, the present inventors, in the case of chemical conversion at a voltage of 300 V or less, even if the defect occurs, the chemical conversion liquid or water permeates the defect in the chemical conversion step. , The defect is regenerated and repaired. However, when chemicals are formed at a voltage of 400 V or higher, the heat generated by the chemical conversion film is enormous, so that the chemical conversion liquid or water boils on the surface of the film before the chemical conversion liquid or water permeates the defects in the chemical conversion process. It was found that it was difficult to repair the defect because it evaporated.

上記問題点に鑑みて、本発明の課題は、耐電圧が400V以上の化成皮膜の耐水性を向上させることのできるアルミニウム電解コンデンサ用電極を提供することにある。 In view of the above problems, an object of the present invention is to provide an electrode for an aluminum electrolytic capacitor capable of improving the water resistance of a chemical conversion film having a withstand voltage of 400 V or more.

上記課題を解決するために、本発明は、アルミニウム電極に400V以上の耐電圧を有する化成皮膜を形成したアルミニウム電解コンデンサ用電極であって、前記化成皮膜を切断した際に切断面で露出する空孔の数が150個/μm以下であることを特徴とする。
また、本発明の別態様は、アルミニウム電極に400V以上の耐電圧を有する化成皮膜を形成したアルミニウム電解コンデンサ用電極であって、前記化成皮膜を切断した際の切断面をFE-SEMで観察した際、前記切断面で露出する前記化成皮膜内部に存在する空孔の数が150個/μm以下であることを特徴とする。
In order to solve the above problems, the present invention is an electrode for an aluminum electrolytic capacitor in which a chemical conversion film having a withstand voltage of 400 V or more is formed on an aluminum electrode, and the empty surface exposed on the cut surface when the chemical conversion film is cut. It is characterized in that the number of holes is 150 / μm 2 or less.
Further, another aspect of the present invention is an electrode for an aluminum electrolytic capacitor in which a chemical conversion film having a withstand voltage of 400 V or more is formed on an aluminum electrode, and the cut surface when the chemical conversion film is cut is observed by FE-SEM. The feature is that the number of pores existing inside the chemical conversion film exposed on the cut surface is 150 / μm 2 or less.

本発明では、化成皮膜を切断した際に切断面で露出する空孔(欠陥)の数が150個/
μm以下であり、化成皮膜中の欠陥が少ない。このため、化成皮膜の表面から水が浸入しにくいので、化成皮膜が水和劣化しにくく、化成皮膜の耐水性を向上することができる。
In the present invention, the number of pores (defects) exposed on the cut surface when the chemical conversion film is cut is 150 /
It is μm 2 or less, and there are few defects in the chemical conversion film. Therefore, since water does not easily infiltrate from the surface of the chemical conversion film, the chemical conversion film does not easily deteriorate due to hydration, and the water resistance of the chemical conversion film can be improved.

本発明において、前記空孔の数が100個/μm以下であることが好ましい。
本発明において、前記アルミニウム電極は、アルミニウム箔をエッチングしたエッチド箔からなる態様を採用することができる。
この場合、エッチングにより生じたトンネル状のピットを横断するように前記化成皮膜を切断した際に切断面で露出する前記化成皮膜内部に存在する空孔の数が150個/μm以下である。
本発明において、前記アルミニウム電極は、アルミニウム粉体を焼結してなる多孔質層が積層された多孔性アルミニウム電極である態様を採用することができる。
この場合、前記多孔質層を横断するように前記化成皮膜を切断した際に切断面で露出する前記化成皮膜内部に存在する空孔の数が150個/μm以下である。
In the present invention, the number of the pores is preferably 100 / μm 2 or less.
In the present invention, the aluminum electrode can adopt an embodiment made of an etched foil obtained by etching an aluminum foil.
In this case, the number of pores existing inside the chemical conversion film exposed on the cut surface when the chemical conversion film is cut so as to cross the tunnel-shaped pit generated by etching is 150 / μm 2 or less.
In the present invention, the aluminum electrode may be an embodiment in which a porous layer made by sintering aluminum powder is laminated.
In this case, the number of pores existing inside the chemical conversion film exposed on the cut surface when the chemical conversion film is cut so as to cross the porous layer is 150 / μm 2 or less.

本発明に係るアルミニウム電解コンデンサ用電極の製造方法では、アルミニウム電極を温度が78℃から92℃までの水和処理液と接触させて前記アルミニウム電極に水和皮膜を形成する水和工程と、温度が58℃から78℃までの化成液中で400V以上の化成電圧で化成を行い、前記アルミニウム電極に化成皮膜を形成する化成工程と、を有し、前記水和皮膜の質量の前記アルミニウム電極の前記水和工程前の質量に対する割合をxwt%としたとき、皮膜耐電圧Vf(V)および割合xwt%が、以下の条件式
(0.01×Vf)≦x≦(0.017×Vf+28)
を満たすことを特徴とする。
In the method for manufacturing an electrode for an aluminum electrolytic capacitor according to the present invention, a hydration step of bringing the aluminum electrode into contact with a hydration treatment liquid having a temperature of 78 ° C to 92 ° C to form a hydration film on the aluminum electrode, and a temperature. The aluminum electrode has a chemical conversion step of forming a chemical conversion film on the aluminum electrode by performing chemical conversion in a chemical conversion liquid from 58 ° C. to 78 ° C. at a chemical conversion voltage of 400 V or more. When the ratio to the mass before the hydration step is xwt%, the film withstand voltage Vf (V) and the ratio xwt% are the following conditional equations (0.01 × Vf) ≦ x ≦ (0.017 × Vf + 28).
It is characterized by satisfying.

本発明に係るアルミニウム電解コンデンサ用電極の製造方法においては、水和皮膜に含まれる水が60℃〜90℃で脱離しやすいという知見に基づき、水和工程を比較的低い温度の78℃から92℃で行う。このため、水和皮膜中の水が脱離し難く、水分量の多い水和皮膜が形成される。そのため、化成工程において水和皮膜が脱水して酸化アルミニウムに変化する際の体積収縮に起因して欠陥(空孔)が発生しても、化成皮膜中に水分が十分に存在するので、化成工程において欠陥を効果的に修復することができる。また、化成工程では、化成液の温度を58℃から78℃とするため、水和工程で水和皮膜から水が脱離しにくい。このため、化成途中でも水和皮膜中に水分が十分に存在するので、化成工程において欠陥を効果的に修復することができる。従って、化成皮膜を切断した際に切断面で露出する空孔(欠陥)の数を150個/μm以下まで低減することができるので、化成皮膜の表面から水が浸入しにくい。それ故、化成皮膜が水和劣化しにくく、化成皮膜の耐水性を向上することができる。 In the method for manufacturing an electrode for an aluminum electrolytic capacitor according to the present invention, the hydration step is carried out at a relatively low temperature of 78 ° C. to 92 ° C. based on the finding that water contained in the hydration film is easily desorbed at 60 ° C. to 90 ° C. Perform at ° C. Therefore, the water in the hydrated film is difficult to be removed, and a hydrated film having a large amount of water is formed. Therefore, even if defects (pores) occur due to volume shrinkage when the hydrated film is dehydrated and changed to aluminum oxide in the chemical conversion process, sufficient water is present in the chemical conversion film, so that the chemical conversion process Can effectively repair defects in. Further, in the chemical conversion step, the temperature of the chemical conversion liquid is changed from 58 ° C. to 78 ° C., so that it is difficult for water to be separated from the hydrated film in the hydration step. Therefore, since sufficient water is present in the hydrated film even during the chemical conversion, defects can be effectively repaired in the chemical conversion step. Therefore, since the number of pores (defects) exposed on the cut surface when the chemical conversion film is cut can be reduced to 150 / μm 2 or less, it is difficult for water to infiltrate from the surface of the chemical conversion film. Therefore, the chemical conversion film is less likely to be hydrated and deteriorated, and the water resistance of the chemical conversion film can be improved.

また、本発明では、水和工程で生成する水和皮膜の量が適切である。すなわち、水和工程で生成する水和皮膜の量が少なすぎる場合には化成時に発生する熱が大きくなるので、化成工程において欠陥の修復が進み難くなる。これに対して、水和工程で生成する水和皮膜の量が多すぎる場合には、厚く形成した水和皮膜によって化成液あるいは水が欠陥に浸透することが妨げられるので、欠陥の修復が妨げられる。従って、本発明によれば、化成皮膜を切断した際に切断面で露出する空孔(欠陥)の数を150個/μm以下まで低減することができるので、化成皮膜の表面から水が浸入しにくい。それ故、化成皮膜が水和劣化しにくく、化成皮膜の耐水性を向上することができる。なお、欠陥は、化成工程において、デポラリゼーションを行った後に再化成をすることでもある程度取り除くことは可能であるが、400V以上の化成電圧においては十分に取り除くことができない。これは化成皮膜が厚く形成しているためにデポラリゼーションを行っても皮膜の内部の欠陥が取り残されてしまうためである。 Further, in the present invention, the amount of the hydration film formed in the hydration step is appropriate. That is, if the amount of the hydration film formed in the hydration step is too small, the heat generated during the chemical conversion becomes large, so that it becomes difficult to proceed with the repair of defects in the chemical conversion step. On the other hand, if the amount of the hydrated film formed in the hydration step is too large, the thickly formed hydrated film prevents the chemical conversion liquid or water from penetrating the defect, which hinders the repair of the defect. Be done. Therefore, according to the present invention, the number of pores (defects) exposed on the cut surface when the chemical conversion film is cut can be reduced to 150 / μm 2 or less, so that water infiltrates from the surface of the chemical conversion film. It's hard to do. Therefore, the chemical conversion film is less likely to be hydrated and deteriorated, and the water resistance of the chemical conversion film can be improved. It should be noted that the defects can be removed to some extent by performing rechemicalization after depolarization in the chemical conversion step, but cannot be sufficiently removed at a chemical conversion voltage of 400 V or higher. This is because the chemical conversion film is thickly formed, and even if depolarization is performed, defects inside the film are left behind.

本発明において、前記化成工程では、前記アルミニウム電極の移動速度を3次元の速度ベクトルAで表し、前記アルミニウム電極の表面から前記アルミニウム電極の表面に対して垂直な方向に10cmまでの範囲における前記化成液の平均流速を3次元の速度ベクトルBで表し、前記アルミニウム電極に対する前記化成液の相対速度を3次元の速度ベクトルB−Aで表し、前記速度ベクトルB−Aの絶対値を|B−A|と表したとき、
前記速度ベクトルの絶対値|B−A|は、以下の条件式
3cm/s≦|B−A|≦100cm/s
を満たすことが好ましい。かかる構成によれば、化成液のアルミニウム電極表面に対する相対速度が適正であるため、化成時にアルミニウム電極から発生する熱を化成液中に効率的に逃がすことができる。このため、化成電圧が400V以上であっても、化成工程では、化成皮膜中の欠陥に化成液あるいは水が浸透することができるので、欠陥の修復が行われる。従って、静電容量が高く、化成皮膜中の欠陥が少ないので、化成皮膜が水和劣化し難い。ここで、|B−A|が3cm/s未満の場合には、アルミニウム電極表面からの熱を十分に逃がすことができないことや、イオンの拡散が不十分になること等の理由から、化成皮膜中の欠陥が十分に修復されず、漏れ電流が高く、水和劣化し易いアルミニウム電解コンデンサ用電極となってしまう。これに対して、|B−A|が100cm/sを超える場合、アルミニウム電極表面からのアルミニウムイオン溶出が過剰になるために、静電容量が低下しやすい。
In the present invention, in the chemical conversion step, the moving speed of the aluminum electrode is represented by a three-dimensional velocity vector A, and the chemical formation is in a range of 10 cm in a direction perpendicular to the surface of the aluminum electrode from the surface of the aluminum electrode. The average velocity of the liquid is represented by a three-dimensional velocity vector B, the relative velocity of the chemical conversion liquid to the aluminum electrode is represented by a three-dimensional velocity vector BA, and the absolute value of the velocity vector BA is | BA. When expressed as |
The absolute value | BA | of the velocity vector is the following conditional expression 3 cm / s ≦ | BA | ≦ 100 cm / s.
It is preferable to satisfy. According to such a configuration, since the relative velocity of the chemical conversion liquid to the surface of the aluminum electrode is appropriate, the heat generated from the aluminum electrode during chemical conversion can be efficiently dissipated into the chemical conversion liquid. Therefore, even if the chemical conversion voltage is 400 V or more, in the chemical conversion step, the chemical conversion liquid or water can permeate the defects in the chemical conversion film, so that the defects are repaired. Therefore, since the capacitance is high and there are few defects in the chemical conversion film, the chemical conversion film is less likely to be hydrated and deteriorated. Here, when | BA | is less than 3 cm / s, the chemical conversion film cannot sufficiently dissipate heat from the surface of the aluminum electrode and the diffusion of ions becomes insufficient. The defects inside are not sufficiently repaired, the leakage current is high, and the electrodes for aluminum electrolytic capacitors are prone to hydration deterioration. On the other hand, when | BA | exceeds 100 cm / s, the capacitance tends to decrease because the elution of aluminum ions from the surface of the aluminum electrode becomes excessive.

本発明において、前記速度ベクトルの絶対値|B−A|は、以下の条件式
5cm/s≦|B−A|≦30cm/s
を満たすことが好ましい。
In the present invention, the absolute value | BA | of the velocity vector is the following conditional expression 5 cm / s ≦ | BA | ≦ 30 cm / s.
It is preferable to satisfy.

本発明において、前記速度ベクトルAおよびBの絶対値を各々、|A|および|B|と表したとき、
前記速度ベクトルの絶対値|A|および|B|は各々、以下の条件式
0cm/s≦|A|≦100cm/s
3cm/s≦|B|≦100cm/s
を満たすことが好ましい。
In the present invention, when the absolute values of the velocity vectors A and B are expressed as | A | and | B |, respectively,
The absolute values | A | and | B | of the velocity vector are the following conditional expressions 0 cm / s ≦ | A | ≦ 100 cm / s, respectively.
3 cm / s ≦ | B | ≦ 100 cm / s
It is preferable to satisfy.

本発明に係るアルミニウム電解コンデンサ用電極では、化成皮膜を切断した際に切断面で露出する空孔(欠陥)の数が150個/μm以下であり、化成皮膜中の欠陥が少ない。このため、化成皮膜の表面から水が浸入しにくいので、化成皮膜が水和劣化しにくく、化成皮膜の耐水性を向上することができる。また、本発明に係るアルミニウム電解コンデンサ用電極の製造方法では、水和皮膜に含まれる水が60℃〜90℃で脱離しやすいという知見に基づき、水和工程を比較的低い温度の78℃から92℃で行う。このため、水和皮膜中の水が脱離し難く、水分量の多い水和皮膜が形成される。また、化成工程では、化成液の温度を58℃から78℃とするため、水和工程で水和皮膜から水が脱離しにくい。このため、水和皮膜中に水分が十分に存在するので、化成工程において欠陥を効果的に修復することができる。また、水和工程で形成する水和皮膜の量が適正である。従って、化成皮膜を切断した際に切断面で露出する空孔(欠陥)の数を150個/μm以下まで低減することができるので、化成皮膜の表面から水が浸入しにくい。それ故、化成皮膜が水和劣化しにくく、化成皮膜の耐水性を向上することができる。 In the electrode for an aluminum electrolytic capacitor according to the present invention, the number of pores (defects) exposed on the cut surface when the chemical conversion film is cut is 150 pieces / μm 2 or less, and there are few defects in the chemical conversion film. Therefore, since water does not easily infiltrate from the surface of the chemical conversion film, the chemical conversion film does not easily deteriorate due to hydration, and the water resistance of the chemical conversion film can be improved. Further, in the method for manufacturing an electrode for an aluminum electrolytic capacitor according to the present invention, the hydration step is carried out from a relatively low temperature of 78 ° C. based on the finding that water contained in the hydration film is easily desorbed at 60 ° C. to 90 ° C. Perform at 92 ° C. Therefore, the water in the hydrated film is difficult to be removed, and a hydrated film having a large amount of water is formed. Further, in the chemical conversion step, the temperature of the chemical conversion liquid is changed from 58 ° C. to 78 ° C., so that it is difficult for water to be separated from the hydrated film in the hydration step. Therefore, since sufficient water is present in the hydrated film, defects can be effectively repaired in the chemical conversion step. In addition, the amount of the hydration film formed in the hydration step is appropriate. Therefore, since the number of pores (defects) exposed on the cut surface when the chemical conversion film is cut can be reduced to 150 / μm 2 or less, it is difficult for water to infiltrate from the surface of the chemical conversion film. Therefore, the chemical conversion film is less likely to be hydrated and deteriorated, and the water resistance of the chemical conversion film can be improved.

アルミニウム電解コンデンサ用電極の化成皮膜中の空孔(欠陥)の検査方法を示す説明図である。It is explanatory drawing which shows the inspection method of the hole (defect) in the chemical conversion film of the electrode for an aluminum electrolytic capacitor. アルミニウム電解コンデンサ用電極の化成皮膜中の空孔(欠陥)の説明図である。It is explanatory drawing of the hole (defect) in the chemical conversion film of the electrode for an aluminum electrolytic capacitor. 本発明を適用したアルミニウム電解コンデンサ用電極の製造方法において水和工程で生成する水和皮膜量の適正な範囲を示すグラフである。It is a graph which shows the appropriate range of the amount of the hydration film generated in the hydration step in the manufacturing method of the electrode for an aluminum electrolytic capacitor to which this invention is applied. 本発明を適用したアルミニウム電解コンデンサ用電極の化成工程を模式的に示す説明図である。It is explanatory drawing which shows schematically the chemical formation process of the electrode for an aluminum electrolytic capacitor to which this invention is applied.

(アルミニウム電解コンデンサ用電極)
本発明では、アルミニウム電解コンデンサ用電極を製造するにあたって、アルミニウム電極の表面に化成を行ってアルミニウム電解コンデンサ用電極を製造する。アルミニウム電極としては、アルミニウム箔をエッチングしたエッチド箔や、アルミニウム粉体を焼結してなる多孔質層がアルミニウム芯材の両面に積層された多孔性アルミニウム電極等を用いることができる。エッチド箔は、トンネル状のピットが形成された多孔質層を備えている。多孔性アルミニウム電極は、例えば、厚さが10μm〜50μmのアルミニウム芯材の両面の各々に1層当たりの厚さが150μm〜3000μmの多孔質層30が形成されている。かかる多孔質層は、アルミニウム粉体を焼結してなる層であり、アルミニウム粉体は、互いに空隙を維持しながら焼結されている。
(Electrodes for aluminum electrolytic capacitors)
In the present invention, in manufacturing an electrode for an aluminum electrolytic capacitor, the surface of the aluminum electrode is chemically formed to manufacture an electrode for an aluminum electrolytic capacitor. As the aluminum electrode, an etched foil obtained by etching an aluminum foil, a porous aluminum electrode in which a porous layer formed by sintering aluminum powder is laminated on both sides of an aluminum core material, or the like can be used. The etched foil comprises a porous layer in which tunnel-like pits are formed. In the porous aluminum electrode, for example, a porous layer 30 having a thickness of 150 μm to 3000 μm is formed on each of both surfaces of an aluminum core material having a thickness of 10 μm to 50 μm. The porous layer is a layer obtained by sintering aluminum powder, and the aluminum powder is sintered while maintaining voids with each other.

(アルミニウム電解コンデンサの構成)
化成済みのアルミニウム電極(アルミニウム電解コンデンサ用電極)を用いてアルミニウム電解コンデンサを製造するには、例えば、化成済みのアルミニウム電極(アルミニウム電解コンデンサ用電極)からなる陽極箔と、陰極箔とをセパレータを介在させて巻回してコンデンサ素子を形成する。次に、コンデンサ素子を電解液(ペースト)に含浸する。しかる後には、電解液を含んだコンデンサ素子を外装ケースに収納し、封口体でケースを封口する。かかる構成のアルミニウム電解コンデンサにおいて、化成皮膜の耐水性が低いと、アルミニウム電解コンデンサ用電極を保存中に化成皮膜が空気中の水分によって劣化し、アルミニウム電解コンデンサの特性が低下することがある。また、アルミニウム電解コンデンサを製造した後、化成皮膜が電解液中の水分によって劣化すると、アルミニウム電解コンデンサの信頼性が低下する。従って、アルミニウム電解コンデンサ用電極には高い耐水性が要求される。
(Construction of aluminum electrolytic capacitor)
In order to manufacture an aluminum electrolytic capacitor using a chemicalized aluminum electrode (electrode for an aluminum electrolytic capacitor), for example, an anode foil made of a chemicalized aluminum electrode (electrode for an aluminum electrolytic capacitor) and a cathode foil are separated from each other. A condenser element is formed by interposing and winding it. Next, the capacitor element is impregnated with the electrolytic solution (paste). After that, the capacitor element containing the electrolytic solution is housed in the outer case, and the case is sealed with the sealing body. If the water resistance of the chemical conversion film is low in the aluminum electrolytic capacitor having such a configuration, the chemical conversion film may be deteriorated by the moisture in the air while the electrode for the aluminum electrolytic capacitor is stored, and the characteristics of the aluminum electrolytic capacitor may be deteriorated. Further, if the chemical conversion film is deteriorated by the moisture in the electrolytic solution after the aluminum electrolytic capacitor is manufactured, the reliability of the aluminum electrolytic capacitor is lowered. Therefore, the electrodes for aluminum electrolytic capacitors are required to have high water resistance.

また、電解液に代えて固体電解質を用いる場合、化成済みのアルミニウム電極(アルミニウム電解コンデンサ用電極)からなる陽極箔の表面に固体電解質層を形成した後、固体電解質層の表面に陰極層を形成し、しかる後に、樹脂等により外装する。その際、陽極に電気的接続する陽極端子と陰極層に電気的接続する陰極端子とを設ける。この場合、陽極箔が複数枚積層されることがある。かかる構成のアルミニウム電解コンデンサでは、アルミニウム電解コンデンサ用電極の耐水性が低いと、樹脂等の外装を介して侵入した水分によって化成皮膜が劣化することから、アルミニウム電解コンデンサ用電極には高い耐水性が要求される。 When a solid electrolyte is used instead of the electrolytic solution, a solid electrolyte layer is formed on the surface of an anode foil made of a chemicalized aluminum electrode (electrode for an aluminum electrolytic capacitor), and then a cathode layer is formed on the surface of the solid electrolyte layer. After that, the exterior is made of resin or the like. At that time, an anode terminal electrically connected to the anode and a cathode terminal electrically connected to the cathode layer are provided. In this case, a plurality of anode foils may be laminated. In the aluminum electrolytic capacitor having such a configuration, if the water resistance of the electrode for the aluminum electrolytic capacitor is low, the chemical conversion film is deteriorated by the moisture invading through the exterior such as resin, so that the electrode for the aluminum electrolytic capacitor has high water resistance. Required.

(アルミニウム電解コンデンサ用電極)
図1は、アルミニウム電解コンデンサ用電極の化成皮膜中の空孔(欠陥)の検査方法を示す説明図である。図2は、アルミニウム電解コンデンサ用電極の化成皮膜中の空孔(欠陥)の説明図である。なお、図2では、空孔の存在が分かりやすいように、空孔の多い化成皮膜の断面をFE−SEMで観察した写真を示してある。
(Electrodes for aluminum electrolytic capacitors)
FIG. 1 is an explanatory diagram showing a method of inspecting holes (defects) in a chemical conversion film of an electrode for an aluminum electrolytic capacitor. FIG. 2 is an explanatory diagram of holes (defects) in the chemical conversion film of the electrode for an aluminum electrolytic capacitor. In addition, FIG. 2 shows a photograph of a cross section of a chemical conversion film having many pores observed by FE-SEM so that the existence of pores can be easily understood.

アルミニウム電解コンデンサ用電極において、化成皮膜中に空孔(欠陥)が多いと、表面から水が浸入しやすいために、化成皮膜が水和劣化しやすい。従って、化成皮膜中の欠陥が少ない方がアルミニウム電解コンデンサ用電極の耐水性が高い。そこで、本形態では、図1および図2を参照して説明するように、化成皮膜中の空孔の数を所定値以下に制御する。より具体的には、アルミニウム電解コンデンサ用電極の化成皮膜を切断した際、切
断面で露出する空孔の数を所定値以下に制御することにより、化成皮膜中の空孔の数を所定値以下に制御する。
In the electrode for an aluminum electrolytic capacitor, if there are many pores (defects) in the chemical conversion film, water easily infiltrates from the surface, so that the chemical conversion film tends to be hydrated and deteriorated. Therefore, the smaller the number of defects in the chemical conversion film, the higher the water resistance of the electrode for the aluminum electrolytic capacitor. Therefore, in this embodiment, as described with reference to FIGS. 1 and 2, the number of pores in the chemical conversion film is controlled to a predetermined value or less. More specifically, by controlling the number of pores exposed on the cut surface to a predetermined value or less when the chemical conversion film of the electrode for an aluminum electrolytic capacitor is cut, the number of pores in the chemical conversion film is reduced to a predetermined value or less. To control.

図1(a)および図2には、エッチド箔に化成皮膜を形成したアルミニウム電解コンデンサ用電極に対して、表面に沿うように化成皮膜を切断した場合を示してあり、トンネル状のピットが黒色領域として示されている。また、ピットの周りに化成皮膜が存在している。また、図2に示すように、化成皮膜の切断面では空孔(欠陥)が露出するので、1μm当たりの空孔の数を計測することができる。 FIGS. 1A and 2 show a case where the chemical conversion film is cut along the surface of the electrode for an aluminum electrolytic capacitor having a chemical conversion film formed on the etched foil, and the tunnel-shaped pit is black. Shown as an area. In addition, there is a chemical conversion film around the pit. Further, as shown in FIG. 2, since the pores (defects) are exposed on the cut surface of the chemical conversion film, the number of pores per 1 μm 2 can be measured.

なお、図1(b)に示すように、化成皮膜をピットに沿うように切断してもよく、この場合も、化成皮膜の切断面では空孔(欠陥)が露出するので、1μm当たりの空孔の数を計測することができる。 As shown in FIG. 1 (b), the chemical conversion film may be cut along the pits. In this case as well, since pores (defects) are exposed on the cut surface of the chemical conversion film, per 1 μm 2. The number of vacancies can be measured.

本形態では、アルミニウム電解コンデンサ用電極の化成皮膜を切断した際に切断面で露出する空孔の数を150個/μm以下に設定してある。このため、化成皮膜中の欠陥が少ない。従って、化成皮膜の表面から水が浸入しにくいので、水和劣化しにくく、耐水性が高い。なお、空孔の数は、100個/μm以下であることがより好ましく、かかる態様によれば、アルミニウム電解コンデンサ用電極の耐水性を大幅に向上することができる。 In this embodiment, the number of pores exposed on the cut surface when the chemical conversion film of the electrode for an aluminum electrolytic capacitor is cut is set to 150 / μm 2 or less. Therefore, there are few defects in the chemical conversion film. Therefore, since water does not easily infiltrate from the surface of the chemical conversion film, hydration deterioration does not occur easily and water resistance is high. The number of pores is more preferably 100 / μm 2 or less, and according to such an embodiment, the water resistance of the electrode for an aluminum electrolytic capacitor can be significantly improved.

(アルミニウム電解コンデンサ用電極の製造方法)
本形態のアルミニウム電解コンデンサ用電極の製造方法では、アルミニウム電極を純水等の水和処理液と接触させてアルミニウム電極に水和皮膜を形成する水和工程と、化成液中で400V以上の化成電圧でアルミニウム電極に化成を行い、アルミニウム電極に化成皮膜を形成する化成工程とを行う。本形態において、水和工程では、温度が78℃から92℃までの純水(水和処理液)にアルミニウム電極を浸漬して水和皮膜を形成する。化成工程では、温度が58℃から78℃までの化成液中で400V以上の化成電圧でアルミニウム電極に化成を行う。
(Manufacturing method of electrodes for aluminum electrolytic capacitors)
In the method for manufacturing an electrode for an aluminum electrolytic capacitor of this embodiment, a hydration step of contacting the aluminum electrode with a hydration treatment solution such as pure water to form a hydrated film on the aluminum electrode, and a chemical conversion of 400 V or more in the chemical conversion solution. A chemical conversion step is performed in which the aluminum electrode is formed with a voltage and a chemical conversion film is formed on the aluminum electrode. In the present embodiment, in the hydration step, an aluminum electrode is immersed in pure water (hydration treatment liquid) having a temperature of 78 ° C to 92 ° C to form a hydrated film. In the chemical conversion step, the aluminum electrode is formed with a chemical conversion voltage of 400 V or higher in a chemical conversion liquid having a temperature of 58 ° C. to 78 ° C.

このような製造方法において、水和工程の後に化成工程を行うと、水和皮膜の脱水反応と、アルミニウムの陽極酸化反応の両方によって化成皮膜が形成される。水和皮膜の脱水反応においては、水の脱離によって体積が収縮するので空孔(欠陥)が発生する。かかる欠陥の一部は陽極酸化反応によって修復されるが、欠陥中に化成液や水が存在しないと修復されないため、修復されなかった欠陥は、最終的に化成皮膜中に残存し、漏れ電流の増加や耐水和性の低下の原因となる。本発明者等が化成皮膜の断面を詳細に観察した結果、化成皮膜中の欠陥の大きさは数nm〜数10nmであり、400V以上の耐電圧まで化成する場合に特に多く発生することが分かった。また、水和工程の液温が高く、かつ、化成液温度が高温である場合により多くの欠陥が発生することが分かった。 In such a production method, when the chemical conversion step is performed after the hydration step, the chemical conversion film is formed by both the dehydration reaction of the hydrated film and the anodizing reaction of aluminum. In the dehydration reaction of the hydrated film, the volume shrinks due to the desorption of water, so that pores (defects) occur. Some of these defects are repaired by anodizing, but they are not repaired in the absence of chemicals or water in the defects, so the unrepaired defects eventually remain in the chemical conversion film and cause leakage current. It causes an increase and a decrease in water resistance. As a result of detailed observation of the cross section of the chemical conversion film by the present inventors, it was found that the size of the defect in the chemical conversion film is several nm to several tens of nm, and it occurs particularly frequently when the chemical conversion reaches a withstand voltage of 400 V or more. rice field. It was also found that more defects occur when the liquid temperature in the hydration step is high and the chemical conversion liquid temperature is high.

より具体的には、水和皮膜に含まれる水は約60℃〜90℃と、95℃〜150℃、200℃〜450℃の3段階で脱離することが分かった。従来技術のように、沸騰純水中でボイルを行った場合、水が脱離してしまうので、同じ量のアルミニウムを反応させた場合であっても、水和皮膜中の水分量が少なくなる。そのため、その後の化成工程で化成皮膜中の水分が不足して欠陥を十分に修復することができない。しかるに本発明では、水和工程を比較的低い温度の78℃から92℃で行うため、水和皮膜中の水が脱離し難く、水分量の多い水和皮膜が形成される。そのため、その後の化成工程において化成皮膜中の水分が十分に存在するので効果的に欠陥を修復することができる。 More specifically, it was found that the water contained in the hydrated film was desorbed in three stages of about 60 ° C. to 90 ° C., 95 ° C. to 150 ° C., and 200 ° C. to 450 ° C. When boiling in boiling pure water as in the prior art, water is desorbed, so even when the same amount of aluminum is reacted, the amount of water in the hydrated film is reduced. Therefore, in the subsequent chemical conversion step, the water content in the chemical conversion film is insufficient and the defect cannot be sufficiently repaired. However, in the present invention, since the hydration step is performed at a relatively low temperature of 78 ° C. to 92 ° C., the water in the hydrated film is difficult to be detached, and a hydrated film having a large amount of water is formed. Therefore, since sufficient water is present in the chemical conversion film in the subsequent chemical conversion step, defects can be effectively repaired.

また、化成工程では、化成液の温度を58℃から78℃とするため、水和皮膜から水が脱離しにくい。それ故、化成皮膜中の水分が十分に存在するので効果的に欠陥を修復する
ことができる。
Further, in the chemical conversion step, the temperature of the chemical conversion liquid is changed from 58 ° C. to 78 ° C., so that it is difficult for water to be separated from the hydrated film. Therefore, since there is sufficient water in the chemical conversion film, defects can be effectively repaired.

よって、化成皮膜を切断した際に切断面で露出する空孔の数を150個/μm以下、好ましくは、100個/μm以下にまで減らすことができるので、アルミニウム電解コンデンサ用電極の耐水性を向上することができる。 Therefore, the number of pores exposed on the cut surface when the chemical conversion film is cut can be reduced to 150 / μm 2 or less, preferably 100 / μm 2 or less, so that the water resistance of the aluminum electrolytic capacitor electrode can be reduced. It is possible to improve the sex.

なお、欠陥は、デポラリゼーションを行った後に再化成をすることでもある程度取り除くことは可能であるが、400V以上の化成電圧においては十分に取り除くことができない。これは化成皮膜が厚く形成しているためにデポラリゼーションを行っても皮膜の内部の欠陥が取り残されてしまうためである。しかるに本形態によれば、化成電圧が400V以上の化成皮膜であっても、欠陥の低減でき、アルミニウム電解コンデンサ用電極の耐水性を向上することができる。 The defect can be removed to some extent by re-chemical formation after depolarization, but it cannot be sufficiently removed at a chemical conversion voltage of 400 V or higher. This is because the chemical conversion film is thickly formed, and even if depolarization is performed, defects inside the film are left behind. However, according to this embodiment, even if the chemical conversion film has a chemical conversion voltage of 400 V or more, defects can be reduced and the water resistance of the electrode for an aluminum electrolytic capacitor can be improved.

(水和皮膜量)
図3は、本発明を適用したアルミニウム電解コンデンサ用電極の製造方法において水和工程で生成する水和皮膜量の適正な範囲を示すグラフである。本形態では、水和工程で生成する水和皮膜の量は、水和工程によって増加した質量の割合xを以下の式(数1)で表したとき、図1に実線L11で示すxの下限から、図1に破線L12で示すxの上限までの範囲とする。
(Amount of hydrated film)
FIG. 3 is a graph showing an appropriate range of the amount of hydrated film produced in the hydration step in the method for manufacturing an electrode for an aluminum electrolytic capacitor to which the present invention is applied. In this embodiment, the amount of the hydrated film produced in the hydration step is the lower limit of x shown by the solid line L11 in FIG. 1 when the ratio x of the mass increased by the hydration step is expressed by the following formula (Equation 1). To the upper limit of x shown by the broken line L12 in FIG. 1.

Figure 2021185626
Figure 2021185626

より具体的には、化成皮膜の最終的な皮膜耐電圧をVf(V)とし、水和工程によって増加した質量の割合をxとしたとき、xの下限を示す実線L11は、以下の式
x=(0.01×Vf)
で表される。また、xの上限を示す破線L12は、以下の式
x=(0.017×Vf+28)
で表される。
More specifically, when the final withstand voltage of the chemical conversion film is Vf (V) and the ratio of the mass increased by the hydration step is x, the solid line L11 showing the lower limit of x is the following formula x. = (0.01 x Vf)
It is represented by. Further, the broken line L12 indicating the upper limit of x is the following formula x = (0.0117 × Vf + 28).
It is represented by.

従って、本形態では、皮膜耐電圧Vf(V)および割合x(質量%)が、以下の条件式
(0.01×Vf)≦x≦(0.017×Vf+28)
を満たすように水和工程の条件を設定する。
Therefore, in this embodiment, the film withstand voltage Vf (V) and the ratio x (mass%) are the following conditional expressions (0.01 × Vf) ≦ x ≦ (0.017 × Vf + 28).
The conditions of the hydration process are set so as to satisfy the above conditions.

かかる構成によれば、水和工程で生成する水和皮膜の量が適切であるため、欠陥を減らすことができる。すなわち、水和工程で生成する水和皮膜の量が、上記条件式の下限より少ない場合には化成時に発生する熱が大きくなるので欠陥の修復が進み難くなる。これに
対して、水和工程で生成する水和皮膜の量が、上記条件式の上限より多い場合には、厚く形成した水和皮膜によって化成液あるいは水が欠陥に浸透することが妨げられるので、欠陥の修復が妨げられる。よって、上記条件を満たせば、化成皮膜を切断した際に切断面で露出する空孔の数を150個/μm以下、好ましくは、100個/μm以下にまで減らすことができるので、アルミニウム電解コンデンサ用電極の耐水性を向上することができる。
According to such a configuration, since the amount of the hydration film produced in the hydration step is appropriate, defects can be reduced. That is, when the amount of the hydrated film formed in the hydration step is less than the lower limit of the above conditional expression, the heat generated during chemical conversion becomes large, and it becomes difficult to proceed with the repair of defects. On the other hand, when the amount of the hydrated film formed in the hydration step is larger than the upper limit of the above conditional expression, the thickly formed hydrated film prevents the chemical conversion liquid or water from penetrating into the defect. , The repair of defects is hindered. Therefore, if the above conditions are satisfied, the number of pores exposed on the cut surface when the chemical conversion film is cut can be reduced to 150 / μm 2 or less, preferably 100 / μm 2 or less. The water resistance of the electrodes for electrolytic capacitors can be improved.

(化成工程)
図4は、本発明を適用したアルミニウム電解コンデンサ用電極の化成工程を模式的に示す説明図である。化成工程では、例えば、図4に示すように、化成槽(図示せず)に貯留された「化成液20にアルミニウム電極10を浸漬する。化成液20中には、1対の対極30が配置されており、アルミニウム電極10の両面が各々、対極30と対向する状態となる。この状態で、アルミニウム電極10を陽極とし、対極30を負極として化成を行い、アルミニウム電極10を化成する。その結果、アルミニウム電極10の両面に酸化アルミニウム(化成皮膜)が形成される。その際、水和工程で形成した水和皮膜の一部が脱水して酸化アルミニウムに変化し、化成皮膜の一部に含まれる。
(Chemical process)
FIG. 4 is an explanatory diagram schematically showing a chemical conversion process of an electrode for an aluminum electrolytic capacitor to which the present invention is applied. In the chemical conversion step, for example, as shown in FIG. 4, “the aluminum electrode 10 is immersed in the chemical conversion liquid 20 stored in the chemical conversion tank (not shown). In the chemical conversion liquid 20, a pair of counter electrodes 30 are arranged. In this state, the aluminum electrode 10 is used as an anode and the counter electrode 30 is used as a negative electrode, and the aluminum electrode 10 is formed. Aluminum oxide (chemical conversion film) is formed on both sides of the aluminum electrode 10. At that time, a part of the hydrated film formed in the hydration step is dehydrated and changed to aluminum oxide, which is contained in a part of the chemical conversion film. Is done.

かかる化成工程では、例えば、アジピン酸等の有機酸あるいはその塩の水溶液を化成液20として用いる。例えば、アジピン酸等の有機酸あるいはその塩を含み、50℃で測定した比抵抗が5Ωmから500Ωmの水溶液(有機酸系の化成液20)中において、液温が40℃から90℃の条件下でアルミニウム電極10に化成を行う。その際、アルミニウム電極10と対極30との間に印加した電源電圧が、最終的な化成電圧Vfになるまで昇圧を行い、その後、化成電圧Vfでの保持を行う。 In such a chemical conversion step, for example, an aqueous solution of an organic acid such as adipic acid or a salt thereof is used as the chemical conversion liquid 20. For example, in an aqueous solution (organic acid-based chemical chemical solution 20) containing an organic acid such as adipic acid or a salt thereof and having a specific resistance of 5 Ωm to 500 Ωm measured at 50 ° C., the liquid temperature is 40 ° C. to 90 ° C. The aluminum electrode 10 is formed with. At that time, the voltage is increased until the power supply voltage applied between the aluminum electrode 10 and the counter electrode 30 reaches the final chemical conversion voltage Vf, and then the voltage is held at the chemical conversion voltage Vf.

また、アジピン酸等の有機酸あるいはその塩を用いた化成液20に代えて、硼酸やリン酸等の無機酸あるいはその塩を含む水溶液を化成液20として用いてもよい。例えば、硼酸やリン酸等の無機酸あるいはその塩を含み、90℃で測定した比抵抗が10Ωmから1000Ωmの水溶液(無機酸系の化成液20)中において、液温が40℃から95℃の条件下でアルミニウム電極10に化成を行う。 Further, instead of the chemical conversion liquid 20 using an organic acid such as adipic acid or a salt thereof, an aqueous solution containing an inorganic acid such as boric acid or phosphoric acid or a salt thereof may be used as the chemical conversion liquid 20. For example, in an aqueous solution containing an inorganic acid such as boric acid or phosphoric acid or a salt thereof and having a specific resistance of 10 Ωm to 1000 Ωm measured at 90 ° C. (inorganic acid-based chemical conversion solution 20), the liquid temperature is 40 ° C to 95 ° C. Under the conditions, the aluminum electrode 10 is formed.

また、最終的な化成電圧Vfになるまでは、アジピン酸等の有機酸あるいはその塩を用いた化成液20によって化成を行い、その後、硼酸やリン酸等の無機酸あるいはその塩を用いた化成液20によって化成電圧Vfでの保持(定電圧化成)を行ってもよい。 Further, until the final chemical conversion voltage Vf is reached, chemical conversion is carried out with a chemical conversion liquid 20 using an organic acid such as adipic acid or a salt thereof, and then chemical formation using an inorganic acid such as boric acid or phosphoric acid or a salt thereof. The liquid 20 may be used for holding at the chemical conversion voltage Vf (constant voltage chemical conversion).

いずれの化成液20を用いた場合も、化成工程の途中に、アルミニウム電極10を加熱する熱デポラリゼーション処理や、リン酸イオンを含む水溶液等にアルミニウム電極10を浸漬する液中デポラリゼーション処理等のデポラリゼーション処理を行う。熱デポラリゼーション処理では、例えば、処理温度が450℃〜550℃であり、処理時間は2分〜10分である。液中デポラリゼーション処理では、20質量%〜30質量%リン酸の水溶液中において、液温が60℃〜70℃の条件で皮膜耐電圧に応じて5分〜15分、アルミニウム電極10を浸漬する。なお、液中デポラリゼーション処理では、アルミニウム電極10に電圧を印加しない。 Regardless of which chemical conversion liquid 20 is used, a thermal depolarization treatment for heating the aluminum electrode 10 or an in-liquid depolarization treatment for immersing the aluminum electrode 10 in an aqueous solution containing phosphate ions or the like during the chemical conversion process. Depolarization processing such as is performed. In the thermal depolarization treatment, for example, the treatment temperature is 450 ° C to 550 ° C, and the treatment time is 2 to 10 minutes. In the in-liquid depolarization treatment, the aluminum electrode 10 is immersed in an aqueous solution of 20% by mass to 30% by mass of phosphoric acid at a liquid temperature of 60 ° C. to 70 ° C. for 5 to 15 minutes depending on the film withstand voltage. do. In the submerged depolarization process, no voltage is applied to the aluminum electrode 10.

また、化成電圧まで昇圧する途中に、リン酸イオンを含む水溶液中にアルミニウム電極10を浸漬するリン酸浸漬工程を行ってもよい。かかるリン酸浸漬工程では、液温が40℃から80℃であり、60℃で測定した比抵抗が0.1Ωmから5Ωmであるリン酸水溶液にアルミニウム電極10を3分から30分の時間で浸漬する。かかるリン酸浸漬工程によれば、化成工程で析出した水酸化アルミニウムを効率よく取り除くことができるとともに、その後の水酸化アルミニウムの生成を抑制することができる。また、リン酸浸漬工程によって、化成皮膜内にリン酸イオンを取り込むことができるので、沸騰水や酸性溶液へ
の浸漬に対する耐久性を向上することができる等、化成皮膜の安定性を効果的に向上することができる。
Further, a phosphoric acid immersion step of immersing the aluminum electrode 10 in an aqueous solution containing phosphoric acid ions may be performed while the voltage is increased to the chemical conversion voltage. In such a phosphoric acid dipping step, the aluminum electrode 10 is immersed in a phosphoric acid aqueous solution having a liquid temperature of 40 ° C. to 80 ° C. and a specific resistance of 0.1 Ωm to 5 Ωm measured at 60 ° C. in a time of 3 to 30 minutes. .. According to the phosphoric acid dipping step, the aluminum hydroxide precipitated in the chemical conversion step can be efficiently removed, and the subsequent production of aluminum hydroxide can be suppressed. In addition, since the phosphoric acid ion can be taken into the chemical conversion film by the phosphoric acid immersion step, the durability against immersion in boiling water or an acidic solution can be improved, and the stability of the chemical conversion film can be effectively improved. Can be improved.

(アルミニウム電極に対する化成液の相対速度)
本形態では、図2に示す状態で化成工程を行う際、アルミニウム電極10および化成液20については静止させた状態、あるいは移動させた状態とする。アルミニウム電極10を移動させた状態で化成を行うとは、アルミニウム電極10を化成液20に浸漬した状態のまま、移動させた状態で化成を行う。化成液20を移動させた状態で化成を行うとは、アルミニウム電極10を浸漬した化成液20を循環あるいは撹拌によって移動させて化成を行う。
(Relative velocity of chemical conversion liquid with respect to aluminum electrode)
In this embodiment, when the chemical conversion step is performed in the state shown in FIG. 2, the aluminum electrode 10 and the chemical conversion liquid 20 are in a stationary state or a moved state. To carry out chemical formation in a state where the aluminum electrode 10 is moved, the chemical formation is carried out in a state where the aluminum electrode 10 is immersed in the chemical conversion liquid 20 and is moved. To carry out chemical formation in a state where the chemical conversion liquid 20 is moved, the chemical conversion liquid 20 in which the aluminum electrode 10 is immersed is moved by circulation or stirring to carry out the chemical formation.

本形態では、アルミニウム電極10の移動速度を3次元の速度ベクトルAで表し、アルミニウム電極10の表面からアルミニウム電極10の表面に対して垂直な方向に10cmまでの範囲Z0における化成液20の平均流速を3次元の速度ベクトルBで表し、アルミニウム電極10に対する化成液20の相対速度を3次元の速度ベクトルB−Aで表し、速度ベクトルB−Aの絶対値を|B−A|と表したとき、
速度ベクトルの絶対値|B−A|は、以下の条件式
3cm/s≦|B−A|≦100cm/s
を満たしている。
In this embodiment, the moving speed of the aluminum electrode 10 is represented by a three-dimensional velocity vector A, and the average flow velocity of the chemical conversion liquid 20 in the range Z0 from the surface of the aluminum electrode 10 to 10 cm in the direction perpendicular to the surface of the aluminum electrode 10. Is represented by a three-dimensional velocity vector B, the relative velocity of the chemical conversion liquid 20 with respect to the aluminum electrode 10 is represented by a three-dimensional velocity vector BA, and the absolute value of the velocity vector BA is represented by | BA |. ,
The absolute value | BA | of the velocity vector is the following conditional expression 3 cm / s ≤ | BA | ≤ 100 cm / s.
Meet.

本形態において、速度ベクトルの絶対値|B−A|は、以下の条件式
5cm/s≦|B−A|≦30cm/s
を満たしている。
In this embodiment, the absolute value | BA | of the velocity vector is the following conditional expression 5 cm / s ≦ | BA | ≦ 30 cm / s.
Meet.

また、速度ベクトルAおよびBの絶対値を各々、|A|および|B|と表したとき、
速度ベクトルの絶対値|A|および|B|は各々、以下の条件式
0cm/s≦|A|≦100cm/s
3cm/s≦|B|≦100cm/s
を満たしている。ここで、アルミニウム電極10を静止させた状態で化成を行う場合、速度ベクトルの絶対値|A|は0となる。
Further, when the absolute values of the velocity vectors A and B are expressed as | A | and | B |, respectively,
The absolute values | A | and | B | of the velocity vector are the following conditional expressions 0 cm / s ≤ | A | ≤ 100 cm / s, respectively.
3 cm / s ≦ | B | ≦ 100 cm / s
Meet. Here, when the chemical formation is performed with the aluminum electrode 10 stationary, the absolute value | A | of the velocity vector becomes 0.

かかる構成によれば、化成液のアルミニウム電極表面に対する相対速度が適正であるため、化成時にアルミニウム電極から発生する熱を化成液中に効率的に逃がすことができる。従って、化成皮膜が高温になって水和皮膜から水が必要以上に脱離するという事態を回避することができる。そのため、化成電圧が400V以上であっても、欠陥の修復が行われる。従って、本発明を適用したアルミニウム電解コンデンサ用電極は、静電容量が高く、化成皮膜中の欠陥が少ないので、水和劣化し難い。ここで、|B−A|が3cm/s未満の場合には、アルミニウム電極表面からの熱を十分に逃がすことができないことや、イオンの拡散が不十分になること等の理由から、化成皮膜中の欠陥が十分に修復されず、漏れ電流が高く水和劣化し易いアルミニウム電解コンデンサ用電極となる。これに対して、|B−A|が100cm/sを超える場合、アルミニウム電極表面からのアルミニウムイオン溶出が過剰になるために、静電容量が低下しやすい。 According to such a configuration, since the relative velocity of the chemical conversion liquid to the surface of the aluminum electrode is appropriate, the heat generated from the aluminum electrode during chemical conversion can be efficiently dissipated into the chemical conversion liquid. Therefore, it is possible to avoid a situation in which the chemical conversion film becomes hot and water is desorbed from the hydrated film more than necessary. Therefore, even if the chemical conversion voltage is 400 V or more, the defect is repaired. Therefore, the electrode for an aluminum electrolytic capacitor to which the present invention is applied has a high capacitance and few defects in the chemical conversion film, so that it is unlikely to deteriorate due to hydration. Here, when | BA | is less than 3 cm / s, the chemical conversion film cannot sufficiently dissipate heat from the surface of the aluminum electrode and the diffusion of ions becomes insufficient. It is an electrode for aluminum electrolytic capacitors that does not sufficiently repair the defects inside and has a high leakage current and is prone to hydration deterioration. On the other hand, when | BA | exceeds 100 cm / s, the capacitance tends to decrease because the elution of aluminum ions from the surface of the aluminum electrode becomes excessive.

図2には、アルミニウム電極10の両面に沿う方向のうち、左右方向(水平方向)をX方向とし、上下方向(垂直方向)をY方向としてある。また、アルミニウム電極10と対極30とが対向する方向をZ方向としてある。従って、アルミニウム電極10の移動速度の3次元の速度ベクトルAは、X方向の速度ベクトルAXと、Y方向の速度ベクトルAYと、Z方向の速度ベクトルAZとを合成したベクトルに相当する。また、速度ベクトルAの絶対値|A|は、以下の式で表される。
|A|=√(AX+AY+AZ
In FIG. 2, among the directions along both surfaces of the aluminum electrode 10, the left-right direction (horizontal direction) is the X direction, and the vertical direction (vertical direction) is the Y direction. Further, the direction in which the aluminum electrode 10 and the counter electrode 30 face each other is defined as the Z direction. Therefore, the three-dimensional velocity vector A of the moving velocity of the aluminum electrode 10 corresponds to a vector obtained by synthesizing the velocity vector AX in the X direction, the velocity vector AY in the Y direction, and the velocity vector AZ in the Z direction. Further, the absolute value | A | of the velocity vector A is expressed by the following equation.
| A | = √ (AX 2 + AY 2 + AZ 2 )

化成液20の移動速度の3次元の速度ベクトルBは、X方向の速度ベクトルBXと、Y方向の速度ベクトルBYと、Z方向の速度ベクトルBZとを合成したベクトルに相当する。また、速度ベクトルBの絶対値|B|は、以下の式で表される。
|B|=√(BX+BY+BZ
The three-dimensional velocity vector B of the moving velocity of the chemical conversion liquid 20 corresponds to a vector obtained by synthesizing the velocity vector BX in the X direction, the velocity vector BY in the Y direction, and the velocity vector BZ in the Z direction. Further, the absolute value | B | of the velocity vector B is expressed by the following equation.
| B | = √ (BX 2 + BY 2 + BZ 2 )

アルミニウム電極10に対する化成液20の相対速度の3次元の速度ベクトルB−Aの絶対値|B−A|は、以下の式で表される。
|B−A|=√((BX−AX)+(BY−AY)+(BZ−AZ)
The absolute value | BA | of the three-dimensional velocity vector BA | of the relative velocity of the chemical conversion liquid 20 with respect to the aluminum electrode 10 is expressed by the following equation.
| B-A | = √ ((BX-AX) 2 + (BY-AY) 2 + (BZ-AZ) 2 )

(実施例)
次に、本発明の実施例等を説明する。表1に本発明の実施例1、2、および比較例1、2に係るアルミニウム電解コンデンサ用電極の製造条件を示す。表2に本発明の実施例1、2、および比較例1、2に係るアルミニウム電解コンデンサ用電極の特性を示す。
(Example)
Next, examples and the like of the present invention will be described. Table 1 shows the manufacturing conditions of the electrodes for aluminum electrolytic capacitors according to Examples 1 and 2 of the present invention and Comparative Examples 1 and 2. Table 2 shows the characteristics of the electrodes for aluminum electrolytic capacitors according to Examples 1 and 2 of the present invention and Comparative Examples 1 and 2.

Figure 2021185626
Figure 2021185626

Figure 2021185626
Figure 2021185626

表1に示すように、実施例1、2、および比較例1、2のいずれにおいても、アルミニウム電極として、エッチング処理で拡面処理された高純度アルミニウムのエッチド箔を用いた。また、表1に示す各温度で、水和工程により形成された水和皮膜の質量のアルミニウム電極のボイル工程前の質量に対する割合が20%となるように、純水中で水和処理を行った後、表1に示す各種類の化成液で化成を行った。その際、化成工程では、リン酸水溶液浸漬や、熱処理によるデポラリゼーション処理を行った。化成電圧は600Vである。また、アルミニウム電極に対する化成液の相対速度の3次元の速度ベクトルB−Aの絶対値|B−A|を10cm/sとした。 As shown in Table 1, in each of Examples 1 and 2 and Comparative Examples 1 and 2, an etched foil of high-purity aluminum surface-expanded by an etching treatment was used as the aluminum electrode. Further, at each temperature shown in Table 1, hydration treatment was performed in pure water so that the ratio of the mass of the hydration film formed by the hydration step to the mass of the aluminum electrode before the boiling step was 20%. After that, chemical conversion was carried out with each type of chemical conversion liquid shown in Table 1. At that time, in the chemical conversion step, the phosphoric acid aqueous solution was immersed and the depolarization treatment was performed by heat treatment. The chemical conversion voltage is 600V. Further, the absolute value | BA | of the three-dimensional velocity vector BA | of the relative velocity of the chemical conversion liquid with respect to the aluminum electrode was set to 10 cm / s.

次に、アルミニウム電極に対して、耐水和性を測定した。耐水和性の測定は、EIAJ
RC 2364Aに規定された「アルミニウム電解コンデンサ用電極箔の試験方法」に従って測定した結果であり、例えば、耐水和性は、95℃以上の純水中に60±1分間浸漬した後に定電流を印加した際の皮膜耐電圧まで昇圧するまでの時間(秒)で示してある。また、化成皮膜の断面をFE−SEMで観察し、画像解析を行うことで、化成皮膜1μmの欠陥個数を計測した。
Next, the hydration resistance of the aluminum electrode was measured. Measurement of water resistance is EIAJ
It is a result of measurement according to "Test method of electrode foil for aluminum electrolytic capacitor" specified in RC 2364A. For example, the hydration resistance is obtained by immersing in pure water at 95 ° C. or higher for 60 ± 1 minutes and then applying a constant current. It is shown by the time (seconds) until the film is boosted to the withstand voltage. In addition, the cross section of the chemical conversion film was observed by FE-SEM and image analysis was performed to measure the number of defects in the chemical conversion film 1 μm 2.

実施例1、2は、水和工程の温度および化成液の温度が適正であるので、耐水和性が良い。比較例1は、水和工程の温度は適正であるが、化成液の温度が高いので、水和皮膜からの脱水が多くなる。その結果、欠陥の多い化成皮膜となるため、耐水和性が悪い。比較例2は、化成液の温度は適正であるが、水和工程の温度が高いので、水和皮膜中の水分が少なくなる。その結果、欠陥の多い化成皮膜となるため、耐水和性が悪い。 In Examples 1 and 2, since the temperature of the hydration step and the temperature of the chemical conversion liquid are appropriate, the hydration resistance is good. In Comparative Example 1, the temperature of the hydration step is appropriate, but the temperature of the chemical conversion liquid is high, so that dehydration from the hydrated film increases. As a result, a chemical conversion film having many defects is formed, resulting in poor hydration resistance. In Comparative Example 2, the temperature of the chemical conversion liquid is appropriate, but the temperature of the hydration step is high, so that the water content in the hydrated film is reduced. As a result, a chemical conversion film having many defects is formed, resulting in poor hydration resistance.

(その他の実施の形態)
上記実施例では、アルミニウム電極として、エッチド箔を用いたが、アルミニウム粉体を焼結してなる多孔質層がアルミニウム芯材の両面に積層された多孔性アルミニウム電極等を用いた場合も同様な結果が得られている。また、上記実施例以外にも各種条件を検討した結果、上述した条件を満たしていれば、化成電圧が400V以上の化成皮膜であっても、化成皮膜内の欠陥を低減させることができる結果が得られている。
(Other embodiments)
In the above embodiment, an etched foil is used as the aluminum electrode, but the same applies when a porous aluminum electrode or the like in which a porous layer formed by sintering aluminum powder is laminated on both sides of an aluminum core material is used. Results have been obtained. Further, as a result of examining various conditions other than the above-mentioned examples, if the above-mentioned conditions are satisfied, the result is that defects in the chemical conversion film can be reduced even if the chemical conversion film has a chemical conversion voltage of 400 V or more. Has been obtained.

10・・アルミニウム電極、20・・化成液、30・・対極 10 ... Aluminum electrode, 20 ... Chemical solution, 30 ... Counter electrode

Claims (7)

アルミニウム電極に400V以上の耐電圧を有する化成皮膜を形成したアルミニウム電解コンデンサ用電極であって、
前記化成皮膜を切断した際に切断面で露出する前記化成皮膜内部に存在する空孔の数が150個/μm以下であり、
前記空孔の大きさが数nmから数10nmであることを特徴とするアルミニウム電解コンデンサ用電極。
An electrode for an aluminum electrolytic capacitor in which a chemical conversion film having a withstand voltage of 400 V or more is formed on an aluminum electrode.
The number of pores existing inside the chemical conversion film exposed on the cut surface when the chemical conversion film is cut is 150 / μm 2 or less.
An electrode for an aluminum electrolytic capacitor, characterized in that the size of the pores is several nm to several tens of nm.
アルミニウム電極に400V以上の耐電圧を有する化成皮膜を形成したアルミニウム電解コンデンサ用電極であって、
前記化成皮膜を切断した際の切断面をFE−SEMで観察した際、前記切断面で露出する前記化成皮膜内部に存在する空孔の数が150個/μm以下であることを特徴とするアルミニウム電解コンデンサ用電極。
An electrode for an aluminum electrolytic capacitor in which a chemical conversion film having a withstand voltage of 400 V or more is formed on an aluminum electrode.
When the cut surface when the chemical conversion film is cut is observed by FE-SEM, the number of pores existing inside the chemical conversion film exposed on the cut surface is 150 / μm 2 or less. Electrodes for aluminum electrolytic capacitors.
前記空孔の数が100個/μm以下であることを特徴とする請求項1または2に記載のアルミニウム電解コンデンサ用電極。 The electrode for an aluminum electrolytic capacitor according to claim 1 or 2, wherein the number of pores is 100 / μm 2 or less. 前記アルミニウム電極は、アルミニウム箔をエッチングしたエッチド箔からなることを特徴とする請求項1から3までの何れか一項に記載のアルミニウム電解コンデンサ用電極。 The electrode for an aluminum electrolytic capacitor according to any one of claims 1 to 3, wherein the aluminum electrode is made of an etched foil obtained by etching an aluminum foil. エッチングにより生じたトンネル状のピットを横断するように前記化成皮膜を切断した際に切断面で露出する前記化成皮膜内部に存在する空孔の数が150個/μm以下であることを特徴とする請求項4に記載のアルミニウム電解コンデンサ用電極。 The feature is that the number of pores existing inside the chemical conversion film exposed on the cut surface when the chemical conversion film is cut so as to cross the tunnel-shaped pit generated by etching is 150 / μm 2 or less. 4. The electrode for an aluminum electrolytic capacitor according to claim 4. 前記アルミニウム電極は、アルミニウム粉体を焼結してなる多孔質層が積層された多孔性アルミニウム電極であることを特徴とする請求項1から3までの何れか一項に記載のアルミニウム電解コンデンサ用電極。 The aluminum electrolytic capacitor according to any one of claims 1 to 3, wherein the aluminum electrode is a porous aluminum electrode on which a porous layer made by sintering aluminum powder is laminated. electrode. 前記多孔質層を横断するように前記化成皮膜を切断した際に切断面で露出する前記化成皮膜内部に存在する空孔の数が150個/μm以下であることを特徴とする請求項6に記載のアルミニウム電解コンデンサ用電極。 Claim 6, wherein the number of pores present in the conversion coating inner exposed at the cut surface upon cutting the conversion coating to traverse the porous layer is 150 / [mu] m 2 or less Electrodes for aluminum electrolytic capacitors as described in.
JP2021144553A 2017-02-09 2021-09-06 Electrodes for aluminum electrolytic capacitors Active JP7181358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021144553A JP7181358B2 (en) 2017-02-09 2021-09-06 Electrodes for aluminum electrolytic capacitors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017022060A JP6990974B2 (en) 2017-02-09 2017-02-09 Manufacturing method of electrodes for aluminum electrolytic capacitors
JP2021144553A JP7181358B2 (en) 2017-02-09 2021-09-06 Electrodes for aluminum electrolytic capacitors

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017022060A Division JP6990974B2 (en) 2017-02-09 2017-02-09 Manufacturing method of electrodes for aluminum electrolytic capacitors

Publications (2)

Publication Number Publication Date
JP2021185626A true JP2021185626A (en) 2021-12-09
JP7181358B2 JP7181358B2 (en) 2022-11-30

Family

ID=63107939

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017022060A Active JP6990974B2 (en) 2017-02-09 2017-02-09 Manufacturing method of electrodes for aluminum electrolytic capacitors
JP2021144553A Active JP7181358B2 (en) 2017-02-09 2021-09-06 Electrodes for aluminum electrolytic capacitors

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017022060A Active JP6990974B2 (en) 2017-02-09 2017-02-09 Manufacturing method of electrodes for aluminum electrolytic capacitors

Country Status (5)

Country Link
US (1) US11309137B2 (en)
JP (2) JP6990974B2 (en)
CN (1) CN110366764B (en)
TW (1) TWI738945B (en)
WO (1) WO2018146932A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6675996B2 (en) * 2017-02-09 2020-04-08 日本軽金属株式会社 Method for manufacturing electrode for aluminum electrolytic capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342740A (en) * 1993-03-18 1994-12-13 Hitachi Aic Inc Manufacture of electrode foil for electrolytic capacitor
JPH09275040A (en) * 1996-04-02 1997-10-21 Nippon Light Metal Co Ltd Chemical method for electrode foil for medium and high voltage aluminum electrolytic capacitor
JP2003193260A (en) * 2001-12-27 2003-07-09 Showa Denko Kk Aluminum foil for electrolytic capacitor electrode having excellent etching property, production method therefor, and method of producing aluminum etched foil for electrolytic capacitor electrode
JP2007184301A (en) * 2005-12-29 2007-07-19 Nichicon Corp Method of manufacturing electrode foil for electrolytic capacitor
JP2007324151A (en) * 2006-05-30 2007-12-13 Nichicon Corp Method of manufacturing solid-state electrolytic capacitor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733291A (en) * 1971-07-23 1973-05-15 Sprague Electric Co Formation process for producing dielectric aluminum oxide films
JPH04364019A (en) * 1991-06-10 1992-12-16 Nichicon Corp Fabrication of electrolytic capacitor electrode foil
WO1999065043A1 (en) * 1998-06-09 1999-12-16 Showa Denko K.K. Solid electrolytic capacitor electrode foil, method of producing it and solid electrolytic capacitor
JP3295841B2 (en) * 1998-06-15 2002-06-24 日本蓄電器工業株式会社 Method for producing electrode foil for aluminum electrolytic capacitor
JP2008507847A (en) * 2004-07-23 2008-03-13 サンデュー・テクノロジーズ・エルエルシー Capacitor with high energy storage density and low ESR
JP4572649B2 (en) * 2004-10-12 2010-11-04 パナソニック株式会社 Method for producing electrode foil for electrolytic capacitor
CN101748472B (en) * 2010-03-20 2011-08-24 宜都东阳光化成箔有限公司 Method for four-stage formation of anode foil of medium-voltage aluminum electrolytic capacitor
JP2011216364A (en) * 2010-03-31 2011-10-27 Toyo Aluminium Kk Metal foil for negative electrode collector
JP6043133B2 (en) 2012-09-13 2016-12-14 日本軽金属株式会社 Method for manufacturing electrode for aluminum electrolytic capacitor
JP6342740B2 (en) 2014-07-31 2018-06-13 株式会社三共 Game machine
CN106252081B (en) * 2016-08-11 2019-01-29 四川立业电子有限公司 A kind of anodizing composite dielectric film and preparation method thereof
JP6933931B2 (en) * 2017-07-28 2021-09-08 日本軽金属株式会社 Electrodes for Aluminum Electrolytic Capacitors and Their Manufacturing Methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342740A (en) * 1993-03-18 1994-12-13 Hitachi Aic Inc Manufacture of electrode foil for electrolytic capacitor
JPH09275040A (en) * 1996-04-02 1997-10-21 Nippon Light Metal Co Ltd Chemical method for electrode foil for medium and high voltage aluminum electrolytic capacitor
JP2003193260A (en) * 2001-12-27 2003-07-09 Showa Denko Kk Aluminum foil for electrolytic capacitor electrode having excellent etching property, production method therefor, and method of producing aluminum etched foil for electrolytic capacitor electrode
JP2007184301A (en) * 2005-12-29 2007-07-19 Nichicon Corp Method of manufacturing electrode foil for electrolytic capacitor
JP2007324151A (en) * 2006-05-30 2007-12-13 Nichicon Corp Method of manufacturing solid-state electrolytic capacitor

Also Published As

Publication number Publication date
JP6990974B2 (en) 2022-01-12
TW201835953A (en) 2018-10-01
JP7181358B2 (en) 2022-11-30
WO2018146932A1 (en) 2018-08-16
US20190362902A1 (en) 2019-11-28
TWI738945B (en) 2021-09-11
JP2018129428A (en) 2018-08-16
US11309137B2 (en) 2022-04-19
CN110366764A (en) 2019-10-22
CN110366764B (en) 2022-01-04

Similar Documents

Publication Publication Date Title
JP4650833B2 (en) Anode body, manufacturing method thereof, and solid electrolytic capacitor
CN110959184B (en) Electrode for aluminum electrolytic capacitor and method for producing same
CN103310981B (en) The preparation method of full tantalum hermetic seal capacitor
JP2021185626A (en) Electrode for aluminum electrolytic capacitor
TWI673738B (en) Method for manufacturing electrode for aluminum electrolytic capacitor
JP2000073198A (en) Method and electrolyte for anodic treatment of valve metal
TWI730207B (en) Manufacturing method of electrode for aluminum electrolytic capacitor
WO2011013375A1 (en) Manufacturing method for solid electrolytic capacitor
JP2000068159A (en) Solid electrolytic capacitor electrode foil therefor and its manufacture
JP4719823B2 (en) Manufacturing method of niobium solid electrolytic capacitor
JP2007173454A (en) Solid electrolytic capacitor
JP2010003996A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JP2007036043A (en) Method for manufacturing electrode foil for aluminum electrolytic capacitor
JP4548730B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005175330A (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
KR101356545B1 (en) Producting method for aluminum electrode foil for electrolytic capacitor
JP2005347681A (en) Method of manufacturing anode foil for aluminum electrolytic capacitor
JP5273736B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003115420A (en) Anode foil for aluminum electrolytic capacitor and its chemically forming method
JP2009206426A (en) Method for manufacturing solid-state electrolytic capacitor
JPH06124854A (en) Manufacture of solid-state capacitor
JP2007305898A (en) Impregnation method and impregnation apparatus of electrolyte in electrolytic capacitor manufacture
JP2004103956A (en) Method for evaluating anode oxide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221117

R150 Certificate of patent or registration of utility model

Ref document number: 7181358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150