JPH09275040A - Chemical method for electrode foil for medium and high voltage aluminum electrolytic capacitor - Google Patents

Chemical method for electrode foil for medium and high voltage aluminum electrolytic capacitor

Info

Publication number
JPH09275040A
JPH09275040A JP8102070A JP10207096A JPH09275040A JP H09275040 A JPH09275040 A JP H09275040A JP 8102070 A JP8102070 A JP 8102070A JP 10207096 A JP10207096 A JP 10207096A JP H09275040 A JPH09275040 A JP H09275040A
Authority
JP
Japan
Prior art keywords
treatment
hydration
dicarbonic acid
direct chain
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8102070A
Other languages
Japanese (ja)
Other versions
JP3309176B2 (en
Inventor
Takeshi Ebihara
健 海老原
Takashi Kajiyama
隆 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON CHIKUDENKI KOGYO KK
Nippon Light Metal Co Ltd
Original Assignee
NIPPON CHIKUDENKI KOGYO KK
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON CHIKUDENKI KOGYO KK, Nippon Light Metal Co Ltd filed Critical NIPPON CHIKUDENKI KOGYO KK
Priority to JP10207096A priority Critical patent/JP3309176B2/en
Publication of JPH09275040A publication Critical patent/JPH09275040A/en
Application granted granted Critical
Publication of JP3309176B2 publication Critical patent/JP3309176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce remaining hole defects and improve durability by promoting the exposure of hole defects in depolarization process by heat treatment and repairing by reanodic oxidation treatment by inserting immersion treatment process by of pre- and post-hydration treatment. SOLUTION: Hydration treatment process in chemical treatment process is divided into two, and a treatment for immersing in an aqueous solution of direct chain dicarbonic acid is inserted between the two. By doing this, a hydration film containing direct chain dicarbonic acid is created in the intermediate portion of hydration film, and a crystalline oxide containing direct chain dicarbonic acid is formed by performing anodic oxidation treatment to the hydration film. Next, when heat treatment is performed to the crystalline oxide, the direct chain dicarbonic acid surrounded by the intermediate portion is thermally cracked, carbon dioxide gas is generated due to decomposition reaction direct chain dicarbonic acid at the same time with the expansion of oxygen gas in the hole defect, and exposure of hole defect can be realized very efficiently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に中高圧用のア
ルミニウム電解コンデンサ用電極箔に有効な化成方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical conversion method which is particularly effective for electrode foils for aluminum electrolytic capacitors for medium and high voltages.

【0002】[0002]

【従来の技術】従来、アルミニウム電解コンデンサの陽
極アルミニウム箔は拡面処理を施した高純度のアルミニ
ウム箔に水和処理を行なったのち、陽極酸化処理を行な
って結晶性の酸化アルミニウムを表面に生成し、これを
誘電体皮膜として利用している。ところで上記におい
て、陽極酸化により結晶性の酸化アルミニウムを形成す
る際に必然的に空孔欠陥が発生する。この空孔欠陥は、
水和処理により生成した水酸化アルミニウムが脱水する
際に起こる体積収縮により発生し、その内部には酸素ガ
スが封じ込められる。この空孔欠陥が誘電体皮膜に存在
すると、電解コンデンサとして使用したときに、空孔欠
陥が露出して皮膜の劣化をきたすので、通常は陽極酸化
処理後に熱処理・化学的処理・機械的処理を施して結晶
性の酸化アルミニウムの生成時に発生する皮膜内部及び
厚さ方向の空孔欠陥を露出させ、再度陽極酸化処理を施
して露出した空孔欠陥の修復を行なって空孔欠陥の少な
い誘電体皮膜を形成している。
2. Description of the Related Art Conventionally, the anode aluminum foil of aluminum electrolytic capacitors has been subjected to hydration treatment on a surface-treated high-purity aluminum foil and then anodized to produce crystalline aluminum oxide on the surface. However, this is used as a dielectric film. By the way, in the above, vacancy defects are inevitably generated when forming crystalline aluminum oxide by anodic oxidation. This vacancy defect is
It is generated due to volume contraction that occurs when aluminum hydroxide produced by the hydration treatment is dehydrated, and oxygen gas is confined inside. When this vacancy defect is present in the dielectric film, when used as an electrolytic capacitor, the vacancy defect is exposed and the film deteriorates, so heat treatment, chemical treatment, or mechanical treatment is usually performed after anodizing. To expose vacancy defects in the film and in the thickness direction that occur when crystalline aluminum oxide is formed, and then to perform anodization again to repair the exposed vacancy defects and reduce the number of vacancy defects. It forms a film.

【0003】[0003]

【発明が解決しようとする課題】しかし、熱処理後の減
極処理において、1回の熱処理と再陽極酸化処理によ
り、空孔欠陥を充分に露出・修復することは困難であ
り、そのため一般的にはこれらの処理を複数回繰り返し
行なっている。しかしながら、上記した処理を何度繰り
返し行なっても、すべての空孔欠陥を露出・修復させる
ことは困難であると共に、製造設備の面や生産効率の面
などからも自から制約を受け、空孔欠陥を露出・修復す
る方策として必ずしも有効な手段ではなかった。そこで
本発明は、上記した空孔欠陥を軽度の減極処理により効
率的に露出・修復させて耐久性に優れた特に中高圧陽極
用に有効な電極箔の化成方法を提供することを目的とし
たものである。
However, in the depolarization treatment after the heat treatment, it is difficult to sufficiently expose and repair the vacancy defects by one heat treatment and re-anodizing treatment. Repeats these processes multiple times. However, no matter how many times the above process is repeated, it is difficult to expose / repair all the vacancy defects, and the vacancy is restricted due to the manufacturing equipment and the production efficiency. It was not always an effective means for exposing and repairing defects. Therefore, the present invention aims to provide a method of chemically forming an electrode foil, which is particularly effective for medium- and high-voltage anodes, which has excellent durability by efficiently exposing and repairing the above-mentioned vacancy defects by a mild depolarization treatment. It was done.

【0004】[0004]

【課題を解決するための手段】本発明は、上記した目的
を達成するために、拡面処理を施した高純度のアルミニ
ウム箔を、純水中に浸漬して水和処理を行なう第一工程
と、直鎖ジカルボン酸を含む水溶液中で浸漬処理する第
二工程と、純水中に浸漬して水和処理を行なう第三工程
と、陽極酸化処理後に熱処理を含む減極処理工程とから
成ることを特徴としたものであり、好ましくは第一工程
及び第三工程における水和処理温度をそれぞれ摂氏70
度以上とするものである。
In order to achieve the above-mentioned object, the present invention is a first step of immersing a surface-treated high-purity aluminum foil in pure water for hydration treatment. And a second step of soaking in an aqueous solution containing a linear dicarboxylic acid, a third step of soaking in pure water for hydration treatment, and a depolarizing treatment step including heat treatment after anodizing treatment. The hydration treatment temperature in the first step and the third step is preferably 70 degrees Celsius, respectively.
It is more than once.

【0005】[0005]

【作用】しかして、上記において、陽極酸化処理により
結晶性の酸化アルミニウムを形成させる際に発生した空
孔欠陥は、熱処理を含む減極処理工程において、空孔欠
陥内に封じ込められた酸素ガスが加熱されることにより
体積膨脹して、空孔欠陥の表層にある酸化物層を破壊し
て空孔欠陥が露出する。上記における体積膨脹は、高温
度ほど著しくなり、空孔欠陥の露出効果は大きくなる
が、下地の金属アルミニウムの融点を超えて高温度にす
ることはできないからその温度には自から限界がある。
しかるに本発明によれば、化成処理工程における水和処
理工程を二回に分けて、その間に直鎖ジカルボン酸水溶
液中に浸漬する処理を挿入したので、前段の水和処理に
よって生成した水和皮膜の表面に直鎖ジカルボン酸が吸
着し、後段の水和処理によってこの吸着層の表側に新た
な水和皮膜が生成する。すなわち、水和皮膜の中間部に
直鎖ジカルボン酸を含む水和皮膜が生じ、この水和皮膜
に陽極酸化処理を行なうことにより、中間部に直鎖ジカ
ルボン酸を含む結晶性酸化物が生成される。
However, in the above, the vacancy defects generated when the crystalline aluminum oxide is formed by the anodic oxidation treatment are the oxygen gas trapped in the vacancy defects in the depolarization treatment step including the heat treatment. When heated, the volume expands and the oxide layer on the surface layer of the vacancy defects is destroyed to expose the vacancy defects. The volume expansion in the above becomes more remarkable as the temperature becomes higher, and the effect of exposing the vacancy defects becomes greater, but the temperature cannot be raised to a high temperature beyond the melting point of the metallic aluminum as the base, and the temperature has its own limit.
However, according to the present invention, the hydration treatment step in the chemical conversion treatment step is divided into two, and the treatment of immersing in the aqueous solution of the linear dicarboxylic acid is inserted therebetween, so that the hydrated film formed by the hydration treatment in the previous stage is inserted. The linear dicarboxylic acid is adsorbed on the surface of, and a new hydrated film is formed on the front side of this adsorption layer by the hydration treatment in the latter stage. That is, a hydrated film containing a linear dicarboxylic acid is formed in the middle part of the hydrated film, and an anodizing treatment is performed on this hydrated film to produce a crystalline oxide containing a linear dicarboxylic acid in the middle part. It

【0006】次いでこの結晶性酸化物に熱処理を行なう
と、中間部に取り込まれた直鎖ジカルボン酸が熱分解し
て、主に二酸化炭素ガスを発生する。この熱分解は、直
鎖ジカルボン酸が結晶中に取り込まれている場合には起
こりにくく、空孔表面に存在する場合には起こり易く、
従って、熱処理により、空孔欠陥内の酸素ガスの膨脹と
同時に直鎖ジカルボン酸の分解反応による二酸化炭素ガ
スの発生により著しく効率的に空孔欠陥の露出を実現す
ることができる。
Then, when the crystalline oxide is subjected to heat treatment, the linear dicarboxylic acid taken in the middle portion is thermally decomposed to mainly generate carbon dioxide gas. This thermal decomposition is unlikely to occur when the linear dicarboxylic acid is incorporated in the crystal, and is likely to occur when it is present on the surface of the pores,
Therefore, by the heat treatment, the expansion of oxygen gas in the vacancy defects and the generation of carbon dioxide gas due to the decomposition reaction of the linear dicarboxylic acid can realize the exposure of the vacancy defects extremely efficiently.

【0007】特に本発明において、中間層に直鎖ジカル
ボン酸を含む酸化物を生成したのは、空孔欠陥の位置が
この部分に集中しているためであり、この部分において
熱分解と体積膨脹が発生しないとその効果が充分に発揮
できないこと、また、直鎖ジカルボン酸を含む水溶液に
浸漬処理することは、比較的低温で熱分解して二酸化炭
素となり、体積膨脹が著しい点と、陽極酸化工程で電気
化学的反応を妨害しない点から選択したものである。
Particularly in the present invention, the oxide containing the linear dicarboxylic acid is formed in the intermediate layer because the positions of the vacancy defects are concentrated in this portion, and the thermal decomposition and the volume expansion are caused in this portion. The effect cannot be fully exerted unless the above occurs, and the immersion treatment in an aqueous solution containing a linear dicarboxylic acid causes thermal decomposition into carbon dioxide at a relatively low temperature, which causes significant volume expansion and anodic oxidation. It is selected because it does not interfere with the electrochemical reaction in the process.

【0008】なお使用可能な直鎖ジカルボン酸として
は、シュウ酸、マロン酸、コハク酸、グルタル酸、アジ
ピン酸、フマル酸、マレイン酸、酒石酸が好ましく、こ
のほかに、ピメリン酸、シベリン酸等の直鎖飽和ジカル
ボン酸が使用でき、またシトラコン酸、アコニット酸、
リンゴ酸、クエン酸等の直鎖不飽和ジカルボン酸も使用
することができる。
As the usable linear dicarboxylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, fumaric acid, maleic acid and tartaric acid are preferable. Linear saturated dicarboxylic acid can be used, and citraconic acid, aconitic acid,
Linear unsaturated dicarboxylic acids such as malic acid and citric acid can also be used.

【0009】また使用可能な高純度アルミニウム箔とし
ては、通常使用される99.99%以上のものが好まし
いが、中高圧電解コンデンサ用に拡面処理できるもので
あれば、99.9%以上のアルミニウム純度のものであ
っても、充分所期の目的を達成することが可能である。
The high-purity aluminum foil that can be used is preferably 99.99% or more, which is usually used, but if it can be surface-expanded for medium- and high-voltage electrolytic capacitors, it is 99.9% or more. Even if it is of aluminum purity, it is possible to achieve the intended purpose sufficiently.

【0010】[0010]

【実施の態様】以下本発明の実施例を比較例との関係に
おいて詳述する。 (実施例1)拡面処理を施した99.99%以上の高純
度アルミニウム箔を95℃の純水中に5分間浸漬した
後、85℃、5%のシュウ酸水溶液中に5分間浸漬処理
を施し、再度95℃の純水中に5分間浸漬処理を施した
後、85℃の7wt%ホウ酸水溶液中で20mA/cm
2 の化成電圧400Vの陽極酸化を行い、400Vに上
昇した後、15分間定電圧保持を行い、漏洩電流を減少
させた後520℃、5分間の熱処理を大気雰囲気下で行
い、再度同条件で陽極酸化を施し、この時の電気量と耐
電圧特性とを測定した。次いでこの化成箔を、純水中で
2時間沸騰煮沸して促進劣化試験を行なった後、耐電圧
特性を測定して促進劣化試験前の値と比較した。
Embodiments of the present invention will be described in detail below in relation to comparative examples. (Example 1) A surface-treated 99.99% or more high-purity aluminum foil was immersed in pure water at 95 ° C for 5 minutes, and then immersed in a 5% oxalic acid aqueous solution at 85 ° C for 5 minutes. And again immersed in pure water at 95 ° C for 5 minutes, and then 20 mA / cm in a 7 wt% boric acid aqueous solution at 85 ° C.
After the formation voltage of 400V was anodized and increased to 400V, the voltage was kept constant for 15 minutes, the leakage current was reduced, and then heat treatment was performed at 520 ° C for 5 minutes in the atmosphere, and again under the same conditions. Anodization was performed, and the amount of electricity and withstand voltage characteristics at this time were measured. Next, this formed foil was boiled in pure water for 2 hours for an accelerated deterioration test, and then the withstand voltage characteristics were measured and compared with the values before the accelerated deterioration test.

【0011】(実施例2)拡面処理を施した高純度アル
ミニウム箔を、95℃の純水中に2分間浸漬した後、6
0℃、5%のコハク酸水溶液中に5分間浸漬処理を施
し、再度95℃の純水中に5分間浸漬処理を行なった
後、85℃の7wt%ホウ酸水溶液中で20mA/cm
2 の化成電圧400Vの陽極酸化を行い、400Vに上
昇した後、15分間定電圧保持を行い、漏洩電流を減少
させた後、520℃、5分間の熱処理を大気雰囲気下で
行い、再度同条件で陽極酸化を施し、この時の電気量と
耐電圧特性とを測定した。次いでこの化成箔を、純水中
で2時間沸騰煮沸して促進劣化試験を行なった後、耐電
圧特性を測定して促進劣化試験前の値と比較した。
(Example 2) A high-purity aluminum foil subjected to surface-expansion treatment was immersed in pure water at 95 ° C for 2 minutes, and then 6
Immersion treatment was carried out for 5 minutes in a 5% aqueous succinic acid solution at 0 ° C. and again for 5 minutes in pure water at 95 ° C., and then 20 mA / cm 2 in a 7 wt% boric acid aqueous solution at 85 ° C.
2. Anodizing the formation voltage of 400V and raising to 400V, holding the constant voltage for 15 minutes to reduce the leakage current, heat treatment at 520 ° C for 5 minutes in the atmosphere, and again under the same conditions. Was anodized and the amount of electricity and withstand voltage characteristics at this time were measured. Next, this formed foil was boiled in pure water for 2 hours for an accelerated deterioration test, and then the withstand voltage characteristics were measured and compared with the values before the accelerated deterioration test.

【0012】(比較例1)比較例1は、実施例1におけ
る水和処理を1回のみとして「85℃、5%のシュウ酸
水溶液中に5分間浸漬処理する工程」を省略した場合を
例示している。すなわち、拡面処理を施した高純度アル
ミニウム箔を、95℃の純水中に10分間浸漬した後、
85℃の7wt%ホウ酸水溶液中で20mA/cm2
化成電圧400Vの陽極酸化を行い、400Vに上昇し
た後、15分間定電圧保持を行い、漏洩電流を減少させ
た後、520℃、5分間の熱処理を大気雰囲気下で行い
再度同条件で陽極酸化を施し、この時の電気量と耐電圧
特性とを測定した。次いでこの化成箔を純水中で2時間
沸騰煮沸して促進劣化試験を行なった後、耐電圧特性を
測定して促進劣化試験前の値と比較した。
Comparative Example 1 Comparative Example 1 illustrates a case where the hydration treatment in Example 1 was performed only once and the “step of immersing in oxalic acid aqueous solution at 85 ° C. for 5 minutes for 5 minutes” was omitted. are doing. That is, the high-purity aluminum foil subjected to the surface expansion treatment is immersed in pure water at 95 ° C. for 10 minutes,
Anodization was performed at a formation voltage of 400 V at 20 mA / cm 2 in a 7 wt% boric acid aqueous solution at 85 ° C., and after rising to 400 V, a constant voltage was maintained for 15 minutes to reduce the leakage current, and then at 520 ° C., 5 The heat treatment for 1 minute was performed in the air atmosphere, the anodic oxidation was performed again under the same conditions, and the amount of electricity and the withstand voltage characteristic at this time were measured. Next, this formed foil was boiled in pure water for 2 hours for an accelerated deterioration test, and then the withstand voltage characteristics were measured and compared with the values before the accelerated deterioration test.

【0013】(比較例2)比較例2は、実施例1におけ
る後段の水和処理を省略した場合を例示している。すな
わち、拡面処理を施した高純度アルミニウム箔を95℃
の純水中に10分間浸漬した後、85℃、5%のシュウ
酸水溶液中に5分間浸漬処理を施し、85℃の7wt%
ホウ酸水溶液中で20mA/cm2 の化成電圧400V
の陽極酸化を行い、400Vに上昇した後、15分間定
電圧保持を行い、漏洩電流を減少させた後、520℃、
5分間の熱処理を大気雰囲気下で行い、再度同条件で陽
極酸化を施し、この時の電気量と耐電圧特性とを測定し
た。次いでこの化成箔を、純水中で2時間沸騰煮沸して
促進劣化試験を行なった後、耐電圧特性を測定して促進
劣化前の値と比較した。
Comparative Example 2 Comparative Example 2 illustrates the case where the latter hydration treatment in Example 1 is omitted. That is, the high-purity aluminum foil that has been subjected to surface expansion treatment is heated to 95 ° C.
After immersing in pure water for 10 minutes, immersing in 5% oxalic acid aqueous solution at 85 ° C for 5 minutes
Formation voltage 400 V of 20 mA / cm 2 in aqueous boric acid solution
Anodic oxidation was performed, and after the voltage was raised to 400 V, a constant voltage was maintained for 15 minutes to reduce the leakage current and then 520 ° C.
A heat treatment for 5 minutes was performed in an air atmosphere, anodization was performed again under the same conditions, and the amount of electricity and withstand voltage characteristics at this time were measured. Next, this formed foil was boiled in pure water for 2 hours to carry out an accelerated deterioration test, and then the withstand voltage characteristic was measured and compared with the value before the accelerated deterioration.

【0014】(比較例3)比較例3は、実施例2におけ
る「60℃、5%のコハク酸水溶液中に5分間浸漬処
理」する工程を、「85℃、8%のホウ酸水溶液中に5
分間浸漬処理」する工程に代えた場合を例示している。
すなわち、拡面処理を施した高純度アルミニウム箔を、
95℃の純水中に2分間浸漬した後、85℃、8%のホ
ウ酸水溶液中に5分間浸漬処理を施し、再度95℃の純
水中に5分間浸漬処理を行なった後、85℃の7wt%
ホウ酸水溶液中で20mA/cm2 の化成電圧400V
の陽極酸化を行い、400Vに上昇した後、15分間定
電圧保持を行い、漏洩電流を減少させた後、520℃、
5分間の熱処理を大気雰囲気下で行い、再度同条件で陽
極酸化を施し、この時の電気量と耐電圧特性とを測定し
た。次いでこの化成箔を、純水中で2時間沸騰煮沸して
促進劣化試験を行なった後、耐電圧特性を測定して促進
劣化試験前の値と比較した。
Comparative Example 3 In Comparative Example 3, the step of “immersing in 5% succinic acid aqueous solution at 60 ° C. for 5 minutes” in Example 2 was carried out by adding “85 ° C., 8% aqueous boric acid solution”. 5
The case where it replaces with the process of "dipping treatment for minutes" is illustrated.
That is, the high-purity aluminum foil subjected to surface expansion treatment,
After immersing in pure water at 95 ° C for 2 minutes, immersing in 8% boric acid aqueous solution at 85 ° C for 5 minutes, immersing again in pure water at 95 ° C for 5 minutes, and then immersing at 85 ° C 7 wt% of
Formation voltage 400 V of 20 mA / cm 2 in aqueous boric acid solution
Anodic oxidation was performed, and after the voltage was raised to 400 V, a constant voltage was maintained for 15 minutes to reduce the leakage current and then 520 ° C.
A heat treatment for 5 minutes was performed in an air atmosphere, anodization was performed again under the same conditions, and the amount of electricity and withstand voltage characteristics at this time were measured. Next, this formed foil was boiled in pure water for 2 hours for an accelerated deterioration test, and then the withstand voltage characteristics were measured and compared with the values before the accelerated deterioration test.

【0015】その結果を表1で示す。The results are shown in Table 1.

【表1】 [Table 1]

【0016】以上の結果から明らかなように、いずれの
実施例においても、再陽極酸化を施した時の電気量は、
比較例1乃至3のいずれと比較しても極めて大きく、こ
のことから熱処理による空孔欠陥の露出効果が顕著であ
ることが理解できる。また純水中での2時間の沸騰煮沸
による促進劣化試験後においても、耐電圧特性の低下は
全く見られなかった。また直鎖ジカルボン酸であるシュ
ウ酸水溶液で浸漬処理を行なっても、後段の水和処理を
行なわない比較例2の場合にはその効果は小さく、さら
にまた熱分解しないホウ酸水溶液処理を、前後に区分し
た水和処理の中間に挿入した比較例3の場合も全く効果
が得られなかった。
As is clear from the above results, in any of the examples, the amount of electricity when reanodized was as follows:
It is extremely large compared to any of Comparative Examples 1 to 3, and it can be understood that the effect of exposing the vacancy defects by the heat treatment is remarkable. Further, even after the accelerated deterioration test by boiling boiling for 2 hours in pure water, no decrease in withstand voltage characteristics was observed. Further, even when the dipping treatment is carried out with an aqueous solution of oxalic acid which is a linear dicarboxylic acid, the effect is small in the case of Comparative Example 2 in which the subsequent hydration treatment is not carried out. Also in the case of Comparative Example 3 which was inserted in the middle of the hydration treatment classified into No. 3, no effect was obtained.

【0017】なお上記した実施例1及び2における処理
温度、処理時間及び液濃度は、当該使用した直鎖ジカル
ボン酸においてそれぞれ最も好ましい条件であり、これ
らの条件は、直鎖ジカルボン酸の種類によって異なる。
また水和処理の温度として、第一工程及び第三工程にお
いて70℃以下で行なった場合には、水和物の生成に時
間を要し、作業性を欠く。従って水和処理の温度として
第一工程においても、また第三工程にいても少なくとも
70℃以上が好ましい。また陽極酸化処理における電流
密度と化成電圧及び空孔欠陥を露出処理するための52
0℃、5分間の熱処理条件は、いずれも従来から実施さ
れている公知の条件を適用したものである。
The treatment temperature, treatment time and liquid concentration in the above Examples 1 and 2 are the most preferable conditions for the linear dicarboxylic acid used, and these conditions differ depending on the type of linear dicarboxylic acid. .
Further, when the temperature of the hydration treatment is 70 ° C. or lower in the first step and the third step, it takes a long time to produce a hydrate, and workability is lost. Therefore, the hydration temperature is preferably at least 70 ° C. or higher in both the first step and the third step. In addition, 52 for exposing the current density and the formation voltage in the anodizing treatment and the vacancy defects.
The heat treatment conditions of 0 ° C. and 5 minutes are based on the known conditions that have been conventionally practiced.

【0018】[0018]

【発明の効果】以上のように、本発明によれば前後の水
和処理工程の中間に、直鎖ジカルボン酸水溶液による浸
漬処理工程を挿入したので、熱処理による減極工程にお
いて、空孔欠陥の露出を著しく促進し、かつその空孔欠
陥の露出は、再陽極酸化処理によって修復されて、残存
する空孔欠陥を著しく低減することができて耐久性に優
れ、かつ、再陽極酸化時の電気量も著しく向上する中高
圧用のアルミニウム電極箔を提供することができる。
As described above, according to the present invention, since the dipping treatment step with the linear dicarboxylic acid aqueous solution is inserted between the hydration treatment steps before and after, the vacancy defects in the depolarization step due to the heat treatment are The exposure is remarkably promoted, and the exposure of the vacancy defects is repaired by the re-anodizing treatment, so that the remaining vacancy defects can be significantly reduced and the durability is excellent. It is possible to provide an aluminum electrode foil for medium and high pressures in which the amount is remarkably improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梶山 隆 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takashi Kajiyama 1-34-1 Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture Nippon Light Metal Co., Ltd. Technical Center

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 拡面処理を施した高純度のアルミニウム
箔を、純水中に浸漬して水和処理を行なう第一工程と、
直鎖ジカルボン酸を含む水溶液中で浸漬処理する第二工
程と、純水中に浸漬して水和処理を行なう第三工程と、
陽極酸化処理後に熱処理を含む減極処理工程とから成る
ことを特徴とした中高圧アルミニウム電解コンデンサ用
電極箔の化成方法。
1. A first step of immersing a high-purity aluminum foil subjected to surface expansion treatment in pure water for hydration treatment,
A second step of immersion treatment in an aqueous solution containing a linear dicarboxylic acid, and a third step of immersion in pure water for hydration treatment,
A method for forming an electrode foil for a medium-high voltage aluminum electrolytic capacitor, comprising a depolarization treatment step including heat treatment after anodizing treatment.
【請求項2】 第一工程及び第三工程における水和処理
温度をそれぞれ摂氏70度以上とした請求項1記載の中
高圧アルミニウム電解コンデンサ用電極箔の化成方法。
2. The method for forming an electrode foil for a medium-high pressure aluminum electrolytic capacitor according to claim 1, wherein the hydration treatment temperature in each of the first step and the third step is 70 ° C. or higher.
JP10207096A 1996-04-02 1996-04-02 Method of forming electrode foil for medium and high pressure aluminum electrolytic capacitors Expired - Fee Related JP3309176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10207096A JP3309176B2 (en) 1996-04-02 1996-04-02 Method of forming electrode foil for medium and high pressure aluminum electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10207096A JP3309176B2 (en) 1996-04-02 1996-04-02 Method of forming electrode foil for medium and high pressure aluminum electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH09275040A true JPH09275040A (en) 1997-10-21
JP3309176B2 JP3309176B2 (en) 2002-07-29

Family

ID=14317514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10207096A Expired - Fee Related JP3309176B2 (en) 1996-04-02 1996-04-02 Method of forming electrode foil for medium and high pressure aluminum electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP3309176B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347681A (en) * 2004-06-07 2005-12-15 Nichicon Corp Method of manufacturing anode foil for aluminum electrolytic capacitor
JP2006114541A (en) * 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd Electrode foil and method of manufacturing the same for electrolytic capacitor
JP2007036048A (en) * 2005-07-28 2007-02-08 Nichicon Corp Manufacturing method of electrode foil for aluminum electrolytic capacitor
CN102893350A (en) * 2010-03-31 2013-01-23 日本贵弥功株式会社 Solid electrolytic capacitor
US8784637B2 (en) 2009-06-18 2014-07-22 Panasonic Corporation Method for manufacturing anode foil of aluminium electrolytic capacitor
JP2017059807A (en) * 2015-06-29 2017-03-23 日本軽金属株式会社 Method for manufacturing electrode for aluminum electrolytic capacitor
WO2018146930A1 (en) * 2017-02-09 2018-08-16 日本軽金属株式会社 Method for producing electrode for aluminium electrolytic capacitor
WO2018146932A1 (en) * 2017-02-09 2018-08-16 日本軽金属株式会社 Electrode for aluminium electrolytic capacitor, and production method therefor
WO2020177626A1 (en) * 2019-03-01 2020-09-10 宜都东阳光化成箔有限公司 Electrode structure body and fabrication method thereof
US11626257B2 (en) * 2017-07-28 2023-04-11 Nippon Light Metal Company, Ltd. Electrode for aluminum electrolytic capacitor and method for manufacturing same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005347681A (en) * 2004-06-07 2005-12-15 Nichicon Corp Method of manufacturing anode foil for aluminum electrolytic capacitor
JP2006114541A (en) * 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd Electrode foil and method of manufacturing the same for electrolytic capacitor
JP4572649B2 (en) * 2004-10-12 2010-11-04 パナソニック株式会社 Method for producing electrode foil for electrolytic capacitor
JP2007036048A (en) * 2005-07-28 2007-02-08 Nichicon Corp Manufacturing method of electrode foil for aluminum electrolytic capacitor
US8784637B2 (en) 2009-06-18 2014-07-22 Panasonic Corporation Method for manufacturing anode foil of aluminium electrolytic capacitor
CN102893350A (en) * 2010-03-31 2013-01-23 日本贵弥功株式会社 Solid electrolytic capacitor
JP2017059807A (en) * 2015-06-29 2017-03-23 日本軽金属株式会社 Method for manufacturing electrode for aluminum electrolytic capacitor
WO2018146932A1 (en) * 2017-02-09 2018-08-16 日本軽金属株式会社 Electrode for aluminium electrolytic capacitor, and production method therefor
WO2018146930A1 (en) * 2017-02-09 2018-08-16 日本軽金属株式会社 Method for producing electrode for aluminium electrolytic capacitor
JP2018129427A (en) * 2017-02-09 2018-08-16 日本軽金属株式会社 Method for manufacturing electrode for aluminum electrolytic capacitor
JP2018129428A (en) * 2017-02-09 2018-08-16 日本軽金属株式会社 Electrode for aluminum electrolytic capacitor, and method for manufacturing the same
CN110268490A (en) * 2017-02-09 2019-09-20 日本轻金属株式会社 The manufacturing method of aluminium electrolutic capacitor electrode
US10923288B2 (en) 2017-02-09 2021-02-16 Nippon Light Metal Company, Ltd. Method for producing electrode for aluminum electrolytic capacitor
CN110268490B (en) * 2017-02-09 2021-03-12 日本轻金属株式会社 Method for manufacturing electrode for aluminum electrolytic capacitor
JP2021185626A (en) * 2017-02-09 2021-12-09 日本軽金属株式会社 Electrode for aluminum electrolytic capacitor
US11309137B2 (en) 2017-02-09 2022-04-19 Nippon Light Metal Company, Ltd Electrode for aluminium electrolytic capacitor, and production method therefor
US11626257B2 (en) * 2017-07-28 2023-04-11 Nippon Light Metal Company, Ltd. Electrode for aluminum electrolytic capacitor and method for manufacturing same
WO2020177626A1 (en) * 2019-03-01 2020-09-10 宜都东阳光化成箔有限公司 Electrode structure body and fabrication method thereof

Also Published As

Publication number Publication date
JP3309176B2 (en) 2002-07-29

Similar Documents

Publication Publication Date Title
US7780835B2 (en) Method of making a capacitor by anodizing aluminum foil in a glycerine-phosphate electrolyte without a pre-anodizing hydration step
JP2663544B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
CN112582177B (en) Method for improving specific volume and hydration resistance of high-voltage anodized formed foil in aluminum electrolytic capacitor
JP3309176B2 (en) Method of forming electrode foil for medium and high pressure aluminum electrolytic capacitors
JP2014229891A (en) Surface coating method of high purity collector for high output secondary battery having unetched part and electric double layer
CN115172054B (en) Medium-high voltage anodic oxidation pretreatment method, aluminum foil and aluminum electrolytic capacitor
CN113436891A (en) Method for inducing medium-high voltage anode foil to uniformly corrode and form pores by adopting nano pits after anodic oxidation
JP3853432B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JP2663541B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JP4576192B2 (en) Method for producing electrode foil for aluminum electrolytic capacitor
JP3478039B2 (en) Method of forming electrode foil for aluminum electrolytic capacitor
JPH09246111A (en) Formation of electrode foil for aluminum electrolytic capacitor
JP2010003996A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
CN112133563A (en) Six-stage formation process of high-capacity low-leakage medium-voltage anode foil
JPH08296088A (en) Production of electrode foil for aluminum electrolytic capacitor
JP4291603B2 (en) Method for producing anode foil for medium and high pressure aluminum electrolytic capacitor
WO2018146930A1 (en) Method for producing electrode for aluminium electrolytic capacitor
JP2008282994A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
JPH10112423A (en) Formation method for anodic foil for aluminum electrolytic capacitor
JP3309177B2 (en) Surface enlargement treatment method for electrode foil for aluminum electrolytic capacitor
JPH04279017A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JP3453984B2 (en) Manufacturing method of etching foil for aluminum electrolytic capacitor
JP2018129428A (en) Electrode for aluminum electrolytic capacitor, and method for manufacturing the same
JP2007067172A (en) Manufacturing method of aluminum electrode foil for electrolytic capacitor
JPH05335186A (en) Manufacture of electrode foil for aluminum electrolytic capacitor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140524

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees