JP2009206426A - Method for manufacturing solid-state electrolytic capacitor - Google Patents

Method for manufacturing solid-state electrolytic capacitor Download PDF

Info

Publication number
JP2009206426A
JP2009206426A JP2008049796A JP2008049796A JP2009206426A JP 2009206426 A JP2009206426 A JP 2009206426A JP 2008049796 A JP2008049796 A JP 2008049796A JP 2008049796 A JP2008049796 A JP 2008049796A JP 2009206426 A JP2009206426 A JP 2009206426A
Authority
JP
Japan
Prior art keywords
sintered body
liquid
body element
chemical conversion
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008049796A
Other languages
Japanese (ja)
Inventor
Yoko Endo
陽子 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP2008049796A priority Critical patent/JP2009206426A/en
Publication of JP2009206426A publication Critical patent/JP2009206426A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a solid-state electrolytic capacitor in which only an oxide coating on an external surface is formed thick without causing any problem due to remaining of a solid nonconductor and an insulating liquid on an internal surface of a porous sintered body to increase the capacity while keeping a leakage current small. <P>SOLUTION: The method for manufacturing the solid-state electrolytic capacitor includes a first process of impregnating a porous sintered body element with a water-soluble impregnating liquid, a second process of cooling the sintered body element to solidify the water-soluble impregnating liquid, and a third process of dipping the sintered body element in a forming liquid while the water-soluble impregnating liquid is solidified to form an external surface of the sintered body element. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、固体電解コンデンサの製造方法に関し、特には、固体電解コンデンサの化成方法に関する。   The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for forming a solid electrolytic capacitor.

固体電解コンデンサ、特に焼結タイプのコンデンサは、陽極用リードの一端を埋め込んだ、タンタルまたはニオブなどを多孔質焼結体にして表面積を拡大した焼結体の表面に化成工程による酸化被膜を設け、その表面に、二酸化マンガンまたはポリピロール、ポリアニリン、ポリチオフェン等の導電性高分子からなる固体電解質層を形成させ、その表面に、導電ペーストによる陰極層を順次設け、焼結体の最外層の陰極層に導電ペーストによる導電性接着剤を介して陰極端子板に接続するとともに、溶接等により陽極用リードに陽極端子板を接続している。そしてコンデンサ素子等を絶縁樹脂等からなる外装によるモールド成形金型などの方法により被覆し、陽極端子板及び陰極端子板は外装から引き出している。
この固体電解コンデンサの漏れ電流を改善するひとつの方法として、化成工程において、多孔質焼結体の内部より表面の酸化皮膜を厚くする方法がとられている。
この具体的な手順として、まず、多孔質焼結体全体に均一な酸化皮膜を形成した後に、多孔質焼結体の外表面の酸化皮膜だけを厚くする方法(特許文献1)と、多孔質焼結体の外表面の酸化皮膜だけを厚くした後に全体に均一な酸化皮膜を形成する方法とがあり、いずれの方法も、多孔質焼結体全体を化成液に浸漬させて行っている。
多孔質焼結体の外表面の酸化皮膜だけを厚くする方法としては、全体に均一な酸化皮膜を設けるときの化成電圧より高い化成電圧で、全体に均一な酸化皮膜を設けるときの化成時間よりも短時間処理する方法がとられている。
ところで、多孔質焼結体の外表面の酸化皮膜だけを厚くする方法は、厚くなっている部分が多いほど、同時に容量の減少を伴うため、できるだけ厚くなっている部分を外表面だけにとどめる必要があるが、表面の酸化皮膜だけを厚くする従来の方法では、多孔質焼結体の表面全体が化成液で濡れているために、外表面の酸化皮膜だけを厚く化成しようとしても内部まで厚く化成されてしまうという問題が生じやすい。
そのため、多孔質焼結体の外表面だけを内表面と分けて化成する方法が考えられている。その方法の1つとしては、多孔質コンデンサ本体を陽極酸化処理して陽極本体全体に均一な誘電膜を形成し、該陽極本体に固体の不導体(ワックス、ステアリン、アントラセン等)を含浸し、外部陽極面から絶縁固体を除去し、その外面の初期電圧より高い電圧で陽極酸化処理して内部陽極酸化物より厚い酸化膜を外面に形成し、完成コンデンサに加工する前に絶縁固体を陽極本体から除去する方法がある(特許文献2)。また、他の方法として、陽極酸化された多孔質本体電極に電解質不溶の絶縁液(ベンゼン、キシレン等)を含浸し、陽極本体の外面から絶縁液を蒸発させ、かつ初期陽極酸化電圧より高い電圧で陽極本体の外面に比較的厚い陽極酸化物層を形成することにより厚い外部酸化膜を形成し、溶媒の残りは、陽極を加工して完成コンデンサにする前に蒸発させる方法などがある(特許文献2)。
Solid electrolytic capacitors, especially sintered type capacitors, are provided with an oxide film formed by the chemical conversion process on the surface of the sintered body with one end of the anode lead buried in the porous sintered body of tantalum or niobium. A solid electrolyte layer made of a conductive polymer such as manganese dioxide or polypyrrole, polyaniline, polythiophene is formed on the surface, and a cathode layer made of a conductive paste is sequentially provided on the surface, and the outermost cathode layer of the sintered body In addition, the anode terminal plate is connected to the anode lead by welding or the like through a conductive adhesive made of conductive paste. Then, the capacitor element and the like are covered by a method such as a molding die with an exterior made of an insulating resin or the like, and the anode terminal plate and the cathode terminal plate are drawn out from the exterior.
As one method for improving the leakage current of the solid electrolytic capacitor, a method of increasing the thickness of the oxide film on the surface from the inside of the porous sintered body is employed in the chemical conversion step.
As a specific procedure, first, after a uniform oxide film is formed on the entire porous sintered body, only the oxide film on the outer surface of the porous sintered body is thickened (Patent Document 1), There is a method of forming a uniform oxide film on the entire surface after thickening only the oxide film on the outer surface of the sintered body, and both methods are performed by immersing the entire porous sintered body in the chemical conversion liquid.
As a method of thickening only the oxide film on the outer surface of the porous sintered body, the formation voltage is higher than the formation voltage when a uniform oxide film is provided on the whole, and the formation time when the uniform oxide film is provided on the whole. Also, a method of processing for a short time is taken.
By the way, the method of thickening only the oxide film on the outer surface of the porous sintered body is accompanied by a decrease in capacity at the same time as there are more thickened parts, so it is necessary to keep the thickened part only on the outer surface. However, in the conventional method of thickening only the oxide film on the surface, the entire surface of the porous sintered body is wetted with the chemical conversion liquid, so even if only the oxide film on the outer surface is thickened, it is thickened to the inside. The problem of being formed easily occurs.
Therefore, a method is considered in which only the outer surface of the porous sintered body is formed separately from the inner surface. As one of the methods, the porous capacitor body is anodized to form a uniform dielectric film on the entire anode body, and the anode body is impregnated with a solid non-conductor (wax, stearin, anthracene, etc.) Insulating solid is removed from the external anode surface and anodized at a voltage higher than the initial voltage on the outer surface to form an oxide film thicker than the internal anodic oxide on the outer surface. There exists a method of removing from (patent document 2). As another method, an anodized porous body electrode is impregnated with an electrolyte-insoluble insulating liquid (benzene, xylene, etc.), the insulating liquid is evaporated from the outer surface of the anode body, and the voltage is higher than the initial anodizing voltage. There is a method of forming a thick external oxide film by forming a relatively thick anodic oxide layer on the outer surface of the anode body, and evaporating the remaining solvent before processing the anode into a finished capacitor (patent) Reference 2).

特公昭58−33688公報Japanese Patent Publication No.58-33688 特表2003−512531公報Special table 2003-512531 publication

上記の特許文献2の多孔質焼結体の外表面の酸化皮膜だけを厚くするために、多孔質焼結体の外表面だけを内表面と分けて化成する方法は、内部まで厚く化成されてしまうという問題が生じ難いため有効な方法である。しかしながら、上記の特許文献2のように、固体の不導体や、絶縁液等を、多孔質焼結体の内部に含浸させあとで取り除く方法では、焼結体が多孔質であるために完全に取りきることが難しい。このため残留した固体の不導体や絶縁液が、焼結体を電解質から遮蔽して酸化皮膜の欠陥修復を妨害したり、電解質に微量でも溶け込んで電解質汚染したり、または、電解質層の表面に設ける導電ペーストによる陰極層形成時の加熱や外装モールド後のリフロー加熱等で多孔質焼結体から溶液等が突沸しコンデンサ素子にダメージを与えたりする恐れがある。   In order to thicken only the oxide film on the outer surface of the porous sintered body of Patent Document 2 described above, the method of separating and forming only the outer surface of the porous sintered body from the inner surface is thickened to the inside. This is an effective method because it is difficult for the problem to occur. However, as in the above-mentioned Patent Document 2, in the method of removing the solid nonconductor, the insulating liquid, etc. by impregnating the inside of the porous sintered body and then removing it, the sintered body is completely porous. It is difficult to get rid of. For this reason, the remaining solid conductor or insulating liquid shields the sintered body from the electrolyte and prevents the defect repair of the oxide film, or even a minute amount dissolves in the electrolyte to contaminate the electrolyte, or on the surface of the electrolyte layer. There is a possibility that a solution or the like bumps from the porous sintered body due to heating at the time of forming the cathode layer by the conductive paste to be provided or reflow heating after the exterior molding, and damages the capacitor element.

本発明は、上記問題を解決するものであり、多孔質焼結体の内表面に固体の不導体や絶縁液が残留することによる問題を生じることなく、しかも、外表面の酸化皮膜だけを厚く化成し、漏れ電流を小さく維持しつつ、容量を増加することが可能な固体電解コンデンサの製造方法を提供するものである。
The present invention solves the above-mentioned problem, and does not cause a problem due to solid nonconductor or insulating liquid remaining on the inner surface of the porous sintered body, and only the oxide film on the outer surface is thickened. It is an object of the present invention to provide a method of manufacturing a solid electrolytic capacitor that can increase the capacity while forming and maintaining a small leakage current.

本発明は、多孔質の焼結体素子に水溶性含浸液体を含浸させる第1工程と、前記焼結体素子を冷やして、前記水溶性含浸液体を固化する第2工程と、前記水溶性含浸液体を固化したまま、化成液に前記焼結体素子を浸漬し、前記焼結体素子の外表面を化成する第3工程と、を備えた固体電解コンデンサの製造方法を提供するものである。
また、水溶性含浸液体が化成液または化成液の溶媒である上記の固体電解コンデンサの製造方法を提供するものである。
The present invention includes a first step of impregnating a porous sintered body element with a water-soluble impregnating liquid, a second step of cooling the sintered body element to solidify the water-soluble impregnating liquid, and the water-soluble impregnation element. A solid electrolytic capacitor manufacturing method comprising: a third step of immersing the sintered body element in a chemical conversion solution while the liquid is solidified to form an outer surface of the sintered body element.
Moreover, the manufacturing method of said solid electrolytic capacitor whose water-soluble impregnation liquid is a chemical conversion liquid or the solvent of a chemical conversion liquid is provided.

本発明によれば、多孔質焼結体の内表面に固体の不導体や絶縁液が残留することによる問題を生じることなく、しかも外表面の酸化皮膜だけを厚く化成し、漏れ電流を小さく維持しつつ、容量を増加することが可能な固体電解コンデンサの製造方法を提供することができる。

According to the present invention, there is no problem caused by solid nonconductor or insulating liquid remaining on the inner surface of the porous sintered body, and only the oxide film on the outer surface is thickened and the leakage current is kept small. However, it is possible to provide a method of manufacturing a solid electrolytic capacitor capable of increasing the capacity.

本発明に述べる焼結体素子は、表面積を拡大した焼結体の陽極で、その表面に酸化被膜を設けたものである。たとえば、タンタルまたはニオブなどの弁作用金属または合金を多孔質焼結体にして表面積を拡大したもので、一端に陽極用リードを埋め込んだものが使用される。   The sintered body element described in the present invention is an anode of a sintered body having an enlarged surface area, and an oxide film is provided on the surface thereof. For example, a valve-acting metal or alloy such as tantalum or niobium made of a porous sintered body with an enlarged surface area and an anode lead embedded in one end is used.

本発明に述べる水溶性含浸液体は、多孔質の焼結体素子に含浸する液体である。化成に無害であること、常温では液体状態であるが冷却すると固化すること、化成中または化成前後の洗浄液に容易に溶解する液であることが必要である。化成用の溶剤、溶質を含んだ化成溶液、化成中または化成前後の洗浄液などが使用できる。
化成用の溶媒の具体例は、水もしくはアルコール、またはこれらの混合物で、アルコールとしてはメチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコールなど低分子アルコールが低粘度であるため好ましい。化成液の溶媒には、通常は水を使用し、洗浄液の溶媒には通常は水または水にアルコールを混合したものを使用する。
化成用の溶質の具体例は、通常、固体電解コンデンサにおいて酸化皮膜層を形成するために用いられるシュウ酸、アジピン酸、ホウ酸、リン酸、パラタングステン酸等の少なくとも1種を含む酸、またはこれらの塩(例えば、アンモニウム塩、ナトリウム塩)等が挙げられる。
化成液は、通常は水に上記の酸または塩を0.05w%から10w%程度溶解したものを使用する。
化成液にはまた、粘度増強剤としてエチレングリコールやプロピレングリコール、イソブチルアルコールなどを混合してもかまわない。粘度増強剤は化成液が内部に入り込むのを遅らせるため好ましい。ただ、洗浄がその分容易ではなくなる場合がある。
化成液にはまた、添加剤として、非イオン系界面活性剤であるポリオキシプロピレングリコールと酸化エチレンのブロック共重合体、イソオクチルフェノールエチレンオキサイド付加物や酸化剤である過酸化水素水を0.01w%から0.1w%程度添加してもよい。これらの添加剤は、漏れ電流や耐圧を改善させる場合がある。
The water-soluble impregnating liquid described in the present invention is a liquid that impregnates a porous sintered body element. It is necessary to be harmless to chemical conversion, to be in a liquid state at room temperature but to solidify upon cooling, and to be a liquid that can be easily dissolved in a cleaning liquid during or before chemical conversion. A chemical solvent, a chemical solution containing a solute, a cleaning solution during or before chemical conversion, and the like can be used.
Specific examples of the solvent for chemical conversion are water, alcohol, or a mixture thereof. As the alcohol, low molecular alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol are preferable because of low viscosity. As the solvent for the chemical conversion liquid, water is usually used, and as the solvent for the cleaning liquid, water or a mixture of alcohol and water is usually used.
A specific example of the solute for chemical conversion is usually an acid containing at least one of oxalic acid, adipic acid, boric acid, phosphoric acid, paratungstic acid and the like used for forming an oxide film layer in a solid electrolytic capacitor, or These salts (for example, ammonium salt, sodium salt) etc. are mentioned.
As the chemical conversion solution, a solution obtained by dissolving 0.05 to 10 w% of the above acid or salt in water is usually used.
The chemical conversion liquid may also be mixed with ethylene glycol, propylene glycol, isobutyl alcohol or the like as a viscosity enhancer. Viscosity enhancers are preferred because they delay the entry of the chemical conversion liquid. However, there are cases where cleaning is not easy.
The chemical conversion liquid also contains 0.01 w of a nonionic surfactant polyoxypropylene glycol and ethylene oxide block copolymer, isooctylphenol ethylene oxide adduct, and hydrogen peroxide water as an oxidizing agent. You may add about 0.1 to 0.1 w%. These additives may improve leakage current and breakdown voltage.

上記の水溶性含浸液体は、室温で液体であって、化成工程や固体電解質層形成工程中の液体と同じ水溶性であるため、含浸作業が容易で、化成中または化成後の洗浄がしやすい。また、含浸液体が化成液または化成液の溶媒であると、溶け込んで電解質汚染する恐れがない。
The above water-soluble impregnating liquid is a liquid at room temperature and is the same water-soluble as the liquid in the chemical conversion process or the solid electrolyte layer forming process, so that the impregnation work is easy and cleaning during or after chemical conversion is easy. . Further, when the impregnating liquid is a chemical conversion liquid or a solvent for the chemical conversion liquid, there is no possibility of being dissolved and causing electrolyte contamination.

本発明に述べる固化とは、化学変化を伴わない物理変化で、冷やすことにより液体が、固体になることである。冷やすことを止めたり、加熱したりすることにより、融けて元の液体に戻ることができる。   The solidification described in the present invention is a physical change that does not involve a chemical change and means that a liquid becomes a solid by cooling. By stopping cooling or heating, it can melt and return to the original liquid.

本発明に述べる化成は、焼結体素子に陽極酸化によって誘電体膜となる酸化膜を形成するものである。
本発明の化成においては、上記の化成液に表面積を拡大した陽極を浸漬し、定格電圧の2から4倍の電圧をかけて陽極酸化する通常の化成工程により、陽極全体に均一な酸化皮膜を形成する工程の前工程または後工程として、下記の一連の工程を追加する。つまり、コンデンサ素子に含浸液体を含浸させる工程と、コンデンサ素子を冷やして、含浸液体を固化する工程と、含浸液体を固化したまま、化成液にコンデンサ素子を浸漬し化成する工程と、固化した含浸液体全部を液化する工程と、により外表面の酸化皮膜だけを厚く化成する一連の工程を追加する。
このときの化成液温は、1℃から60℃、好ましくは5℃から20℃である。コンデンサ素子を冷やして、含浸液体を固化する温度は、−40℃から−5℃程度、好ましくは−30℃から−10℃程度である。また、このときの化成電圧は、焼結体素子全体に均一な酸化皮膜を形成する通常の化成電圧より、2倍以上、好ましくは3倍以上である。また、このときの化成時間は焼結体素子重量等にもよるが、1秒から5分程度、好ましくは5秒から3分程度である。
The chemical conversion described in the present invention is to form an oxide film to be a dielectric film by anodic oxidation on a sintered body element.
In the chemical conversion of the present invention, a uniform oxide film is formed on the entire anode by a normal chemical conversion step in which an anode having an enlarged surface area is immersed in the chemical conversion solution and a voltage of 2 to 4 times the rated voltage is applied. The following series of steps is added as a pre-process or a post-process of the forming process. That is, a step of impregnating the capacitor element with the impregnating liquid, a step of cooling the capacitor element to solidify the impregnating liquid, a step of immersing and forming the capacitor element in the chemical liquid while solidifying the impregnating liquid, and a solidified impregnation A step of liquefying all the liquid and a series of steps for thickening only the oxide film on the outer surface are added.
The temperature of the chemical conversion liquid at this time is 1 ° C to 60 ° C, preferably 5 ° C to 20 ° C. The temperature at which the capacitor element is cooled to solidify the impregnating liquid is about −40 ° C. to −5 ° C., preferably about −30 ° C. to −10 ° C. Moreover, the formation voltage at this time is 2 times or more, preferably 3 times or more than a normal formation voltage for forming a uniform oxide film on the entire sintered body element. Further, the formation time at this time is about 1 second to 5 minutes, preferably about 5 seconds to 3 minutes, although it depends on the weight of the sintered body element.

以下、本発明を実施の形態に基づいて説明する。
以下、本発明を図面に示す実施の形態に基づいて説明する。
図1は、本発明に係る固体電解コンデンサの製造方法を示していて、多孔質の焼結体素子の外表面の酸化皮膜だけを厚くする工程において、化成液に多孔質の焼結体素子を浸漬する前の状態を示している。
1は、陽極用リードで、例えばタンタル、ニオブまたはアルミニウム等の弁作用金属の、直径が0.1mmから0.5mm程度の線状や、厚さ0.1mmから0.5mm程度の短冊薄板状のものが用いられる。
2は、焼結体素子で、例えば陽極用リード1の一端を埋め込んで、タンタルやニオブまたはアルミ等の弁作用金属の平均粒径1μm程度の微粉末に、アクリルやカンファー等のバインダーを混合した粉末をプレス加圧成形し、次いで真空中において焼結して形成した海綿状の陽極焼結体が用いられる。
この後、この焼結体に、化成により陽極酸化皮膜と、二酸化マンガンや導電性高分子等の固体電解質層と、カーボン層や銀層の陰極層とを順次設ける。
3は、支持ホルダーで、陽極用リード1の一端を保持し、それ自体は、上下に稼働する。
4は、化成液で、化成槽5に設け、支持ホルダー3が下に稼働して、焼結体素子2の多孔質焼結体を浸漬する。
6は、対極で、焼結体素子2を化成液中に浸漬したときあたらない位置に設ける。対極は、平らな板状または網状で、水平に設置される。
7は、電源で、陽極用リード1側をプラス、対極側をマイナスにする。
8はスイッチで、電源7の化成電圧印加をON/OFFするものである。
Hereinafter, the present invention will be described based on embodiments.
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
FIG. 1 shows a method for manufacturing a solid electrolytic capacitor according to the present invention. In the process of thickening only the oxide film on the outer surface of a porous sintered body element, the porous sintered body element is added to the chemical conversion liquid. The state before immersion is shown.
Reference numeral 1 denotes an anode lead, for example, a valve action metal such as tantalum, niobium, or aluminum, which has a linear shape with a diameter of about 0.1 mm to 0.5 mm, or a strip shape with a thickness of about 0.1 mm to 0.5 mm. Is used.
Reference numeral 2 denotes a sintered body element. For example, one end of an anode lead 1 is embedded, and a binder such as acrylic or camphor is mixed with fine powder having an average particle diameter of about 1 μm of a valve metal such as tantalum, niobium, or aluminum. A sponge-like anode sintered body formed by press-pressing powder and then sintering in vacuum is used.
Thereafter, an anodized film, a solid electrolyte layer such as manganese dioxide or a conductive polymer, and a cathode layer such as a carbon layer or a silver layer are sequentially provided on the sintered body by chemical conversion.
Reference numeral 3 denotes a support holder that holds one end of the anode lead 1 and moves up and down.
4 is a chemical conversion liquid, provided in the chemical conversion tank 5, and the support holder 3 operates below to immerse the porous sintered body of the sintered body element 2.
Reference numeral 6 denotes a counter electrode, which is provided at a position not hit when the sintered body element 2 is immersed in the chemical conversion liquid. The counter electrode is a flat plate or net and is installed horizontally.
Reference numeral 7 denotes a power source, which is positive on the anode lead 1 side and negative on the counter electrode side.
A switch 8 is used to turn on / off the formation voltage application of the power source 7.

平均径が0.5μmのタンタル粉末をタンタル製容器に入れ、温度1400℃の真空雰囲気中で1時間加熱する。加熱処理したタンタル粉末は互いに結合している。このタンタル粉末を容器から取り出して軽く破砕し、篩分法や風簸法等によって所定の大きさの焼結造粒粉にする。次に、破砕後のタンタル粉末を1.1×1.5×0.8mmの大きさに圧縮成形し、真空中で焼成し、タンタルの焼結体を作成する。なお、この焼結体には、圧縮成形の際に、直径0.25mmのタンタル線からなる陽極リード線を埋め込み、その先端を引き出しておく。
そして、まず、この焼結体を純水中に1分間以上浸漬し、取り出してこの焼結体素子の底部の水分をブロアにより除去してから、―30℃の冷凍庫に10分間以上放置し、次にこの焼結体素子を温度40℃で濃度1%のほう酸水溶液中に浸漬して80Vで20秒間陽極酸化し、電源を切る。次に、純水中で洗浄する。次に、この焼結体素子を温度50℃で濃度0.1%の硝酸水液中に浸漬して120分、26Vの電圧で陽極酸化し、酸化皮膜を形成する。次に、純水中で洗浄する。
次に、酸化皮膜を形成後、酸化皮膜の表面にポリアニリンからなる固体電解質層を化学酸化重合法により形成する。すなわち、化成後の焼結体素子を0.2mol/lのペルオキソ2硫酸アンモニウムの水溶液中に5分間浸漬する。この浸漬後、室温でアニリン0.2mol/l、パラトルエンスルホン酸0.1mol/lで水、エタノールの等容量の混合溶液中に5秒間浸漬する。この後、空気中に30分間放置して、重合処理する。そしてこのペルオキソ2硫酸アンモニウム水溶液に浸漬する工程から放置処理までを15回繰り返す。繰り返し後、温度80℃で30分間乾燥処理し、黒色の導電性のポリアニリンからなる固体電解質層を形成する。固体電解質層を形成した後、焼結体素子をpHがほぼ1で、濃度が0.1mol/lのパラトルエンスルホン酸の水溶液中に20〜30分間浸漬する。浸漬後、温度110℃で30分間程度乾燥する。乾燥後、カーボンペースト、銀ペーストを順次塗布し、硬化してグラファイト層及び銀層を形成する。銀層を形成後、銀層に銀導電性ペーストにより陰極端子を接続するとともに、陽極用リード線に陽極端子を溶接する。そしてエポキシ樹脂をトランスファ・モールド処理して外装を形成し、エージング処理する。
A tantalum powder having an average diameter of 0.5 μm is placed in a tantalum container and heated in a vacuum atmosphere at a temperature of 1400 ° C. for 1 hour. The heat-treated tantalum powder is bonded to each other. The tantalum powder is taken out from the container and lightly crushed, and is made into a sintered granulated powder of a predetermined size by a sieving method, a wind method or the like. Next, the crushed tantalum powder is compression-molded to a size of 1.1 × 1.5 × 0.8 mm and fired in vacuum to produce a tantalum sintered body. In this sintered body, an anode lead wire made of a tantalum wire having a diameter of 0.25 mm is embedded and the tip thereof is drawn out at the time of compression molding.
First, the sintered body is immersed in pure water for 1 minute or more, taken out, the moisture at the bottom of the sintered body element is removed by a blower, and then left in a freezer at −30 ° C. for 10 minutes or more. Next, this sintered body element is immersed in an aqueous boric acid solution having a concentration of 1% at a temperature of 40 ° C. and anodized at 80 V for 20 seconds, and the power is turned off. Next, it is washed in pure water. Next, this sintered body element is immersed in a nitric acid solution having a concentration of 0.1% at a temperature of 50 ° C. and anodized at a voltage of 26 V for 120 minutes to form an oxide film. Next, it is washed in pure water.
Next, after forming the oxide film, a solid electrolyte layer made of polyaniline is formed on the surface of the oxide film by a chemical oxidative polymerization method. That is, the formed sintered body element is immersed in an aqueous solution of 0.2 mol / l ammonium peroxodisulfate for 5 minutes. After this immersion, it is immersed for 5 seconds in a mixed solution of water and ethanol in an equal volume of 0.2 mol / l aniline and 0.1 mol / l p-toluenesulfonic acid at room temperature. Thereafter, it is left in the air for 30 minutes to carry out the polymerization treatment. Then, the process from the step of immersing in this aqueous ammonium peroxodisulfate to the standing treatment is repeated 15 times. After the repetition, it is dried at a temperature of 80 ° C. for 30 minutes to form a solid electrolyte layer made of black conductive polyaniline. After forming the solid electrolyte layer, the sintered body element is immersed in an aqueous solution of paratoluenesulfonic acid having a pH of about 1 and a concentration of 0.1 mol / l for 20 to 30 minutes. After soaking, it is dried at a temperature of 110 ° C. for about 30 minutes. After drying, a carbon paste and a silver paste are sequentially applied and cured to form a graphite layer and a silver layer. After forming the silver layer, a cathode terminal is connected to the silver layer with a silver conductive paste, and the anode terminal is welded to the anode lead wire. Then, an epoxy resin is transfer-molded to form an exterior, and then subjected to an aging process.

化成方法として、焼結体素子を温度50℃で濃度0.1%の硝酸液中に浸漬して120分、26Vの電圧で陽極酸化し、酸化皮膜を形成する。次に、純水中で洗浄する。次に、この焼結体素子を純水中に1分間以上浸漬し、取り出してこの焼結体素子の底部の水分をブロアにより除去してから、―30℃の冷凍庫に10分間以上放置し、次にこの焼結体素子を温度40℃で濃度1%のほう酸水溶液中に浸漬して80Vで20秒間陽極酸化し、電源を切る、それ以外は実施例1と同様におこなった。   As a chemical conversion method, the sintered body element is immersed in a 0.1% concentration nitric acid solution at a temperature of 50 ° C. and anodized at a voltage of 26 V for 120 minutes to form an oxide film. Next, it is washed in pure water. Next, the sintered body element is immersed in pure water for 1 minute or more, taken out, the moisture at the bottom of the sintered body element is removed by a blower, and then left in a freezer at −30 ° C. for 10 minutes or more. Next, this sintered body element was immersed in an aqueous boric acid solution having a concentration of 1% at a temperature of 40 ° C., anodized at 80 V for 20 seconds, and the power was turned off.

化成方法として、この焼結体素子を濃度0.5%の硝酸液中に浸漬して、20Vの電圧になるまで昇圧して予備陽極酸化し、酸化皮膜を形成する。次に、この焼結体素子を純水中に1分間以上浸漬し、取り出してこの焼結体素子の底部の水分をブロアにより除去してから、―30℃の冷凍庫に10分間以上放置し、次にこの焼結体素子を温度40℃で濃度1%のほう酸水溶液中に浸漬して80Vで20秒間陽極酸化し、電源を切る。次に、純水中で洗浄する。次に、この焼結体素子を温度50℃で濃度0.1%の硝酸液中に浸漬して120分、26Vの電圧で陽極酸化し、酸化皮膜を形成する。それ以外は実施例1と同様におこなった。   As a chemical conversion method, this sintered body element is immersed in a nitric acid solution having a concentration of 0.5%, and the pressure is increased to a voltage of 20 V to perform preliminary anodic oxidation to form an oxide film. Next, the sintered body element is immersed in pure water for 1 minute or more, taken out, the moisture at the bottom of the sintered body element is removed by a blower, and then left in a freezer at −30 ° C. for 10 minutes or more. Next, this sintered body element is immersed in an aqueous boric acid solution having a concentration of 1% at a temperature of 40 ° C. and anodized at 80 V for 20 seconds, and the power is turned off. Next, it is washed in pure water. Next, this sintered body element is immersed in a nitric acid solution having a concentration of 0.1% at a temperature of 50 ° C. and anodized at a voltage of 26 V for 120 minutes to form an oxide film. Other than that was carried out in the same manner as in Example 1.

化成方法として、そして、まず、焼結体素子を濃度1%のほう酸水溶液中1分以上浸漬し、取り出してこの焼結体素子の底部の水分をブロアにより除去してから、―30℃の冷凍庫に10分間以上放置し、次にこの焼結体素子を温度40℃で濃度1%のほう酸水溶液中に浸漬して80Vで20秒間陽極酸化し、電源を切る。次に、純水中で洗浄する。次に、この焼結体素子を温度30℃で濃度0.1%の硝酸液中に浸漬して120分、26Vの電圧で陽極酸化し、酸化皮膜を形成する。それ以外は実施例1と同様におこなった。   As a chemical conversion method, first, the sintered body element is immersed in an aqueous solution of boric acid having a concentration of 1% for 1 minute or more, taken out, and moisture at the bottom of the sintered body element is removed by a blower. Then, the sintered body element is immersed in an aqueous boric acid solution having a concentration of 1% at a temperature of 40 ° C., anodized at 80 V for 20 seconds, and the power is turned off. Next, it is washed in pure water. Next, this sintered body element is immersed in a nitric acid solution having a concentration of 0.1% at a temperature of 30 ° C. and anodized at a voltage of 26 V for 120 minutes to form an oxide film. Other than that was carried out in the same manner as in Example 1.

(比較例1−4)
各実施例(番号は各対応する)の化成工程中で、温度20℃で濃度1%のほう酸水溶液中に浸漬して80Vで20秒間陽極酸化する前に、焼結体素子を冷凍庫で冷凍せずに陽極酸化する方法に変更する以外は各実施例と同様におこなった。
(Comparative Example 1-4)
Freeze the sintered compact element in the freezer before anodic oxidation at 80V for 20 seconds by soaking in an aqueous boric acid solution with a concentration of 1% at a temperature of 20 ° C. The same procedure as in each example was performed except that the method was changed to the anodizing method.

以上、実施例および比較例の容量と漏れ電流を測定し(n=20)、表1の結果を得た。
なお、容量の増加率とは、その他は同じ方法で、焼結体素子を冷凍させた場合と冷凍させない場合の容量の比で比較した。また、漏れ電流の測定方法は、10Vで、1分間かけたときの値とした。
以上の結果より、焼結体素子を冷凍させた本発明は、そうしない場合と比べて、漏れ電流は数%増加する場合はあるものの、容量を10%から20%増加させることができる。つまり、漏れ電流の増加を抑えつつ、容量を増加させることができる。
As mentioned above, the capacity | capacitance and leakage current of an Example and a comparative example were measured (n = 20), and the result of Table 1 was obtained.
The increase rate of the capacity is the same as the others, and the ratio of the capacity when the sintered body element is frozen and when it is not frozen is compared. Moreover, the measuring method of leakage current was taken as the value when it took 1 minute at 10V.
From the above results, according to the present invention in which the sintered body element is frozen, the capacity can be increased from 10% to 20%, although the leakage current may increase by several%, compared with the case where it is not. That is, the capacity can be increased while suppressing an increase in leakage current.

Figure 2009206426
Figure 2009206426

本発明に係る固体電解コンデンサの製造方法を示している。1 shows a method of manufacturing a solid electrolytic capacitor according to the present invention.

符号の説明Explanation of symbols

1…陽極用リード 2…焼結体素子 3…支持ホルダー 4…化成液 5…化成槽 6…対極 7…電源 8…スイッチ。   DESCRIPTION OF SYMBOLS 1 ... Lead for anode 2 ... Sintered body element 3 ... Support holder 4 ... Chemical conversion liquid 5 ... Chemical conversion tank 6 ... Counter electrode 7 ... Power supply 8 ... Switch.

Claims (2)

多孔質の焼結体素子に水溶性含浸液体を含浸させる第1工程と、前記焼結体素子を冷やして、前記水溶性含浸液体を固化する第2工程と、前記水溶性含浸液体を固化したまま、化成液に前記焼結体素子を浸漬し、前記焼結体素子の外表面を化成する第3工程と、を備えた固体電解コンデンサの製造方法。   A first step of impregnating a porous sintered body element with a water-soluble impregnating liquid; a second step of cooling the sintered body element to solidify the water-soluble impregnating liquid; and solidifying the water-soluble impregnating liquid. A solid electrolytic capacitor manufacturing method comprising: a third step of immersing the sintered body element in a chemical conversion solution and forming an outer surface of the sintered body element. 水溶性含浸液体が化成液または化成液の溶媒である請求項1の固体電解コンデンサの製造方法。   The method for producing a solid electrolytic capacitor according to claim 1, wherein the water-soluble impregnating liquid is a chemical liquid or a solvent for the chemical liquid.
JP2008049796A 2008-02-29 2008-02-29 Method for manufacturing solid-state electrolytic capacitor Pending JP2009206426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008049796A JP2009206426A (en) 2008-02-29 2008-02-29 Method for manufacturing solid-state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008049796A JP2009206426A (en) 2008-02-29 2008-02-29 Method for manufacturing solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2009206426A true JP2009206426A (en) 2009-09-10

Family

ID=41148380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008049796A Pending JP2009206426A (en) 2008-02-29 2008-02-29 Method for manufacturing solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2009206426A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172031A1 (en) * 2020-02-28 2021-09-02 パナソニックIpマネジメント株式会社 Electrode for electrolytic capacitor, method for manufacturing same, and electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172031A1 (en) * 2020-02-28 2021-09-02 パナソニックIpマネジメント株式会社 Electrode for electrolytic capacitor, method for manufacturing same, and electrolytic capacitor
US20230145058A1 (en) * 2020-02-28 2023-05-11 Panasonic Intellectual Property Management Co., Ltd. Electrode for electrolytic capacitor, method for manufacturing same, and electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP6370535B2 (en) Solid electrolytic capacitors with improved high voltage performance
JP2018110256A (en) Solid electrolytic capacitor increasing wet versus dry capacitance
JP6317552B2 (en) Nonionic surfactants for solid electrolytes in electrolytic capacitors
JP4714786B2 (en) Method and apparatus for manufacturing solid electrolytic capacitor
JP2014222754A (en) Solid electrolytic capacitor including conductive polymer particle
JP5411156B2 (en) Capacitor element manufacturing method
JP2009177175A (en) Sintered anode pellet treated with surfactant to be used for electrolytic capacitor
JP2014022747A (en) Temperature stable solid electrolytic capacitor
CN103177879A (en) Wet electrolytic capacitor containing improved anode
JP2009177174A (en) Sintered anode pellet etched with organic acid to be used for electrolytic capacitor
KR20150048703A (en) Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
US8513123B2 (en) Method of manufacturing solid electrolytic capacitor
JP6735456B2 (en) Method of manufacturing electrolytic capacitor
JP4442287B2 (en) Manufacturing method of solid electrolytic capacitor
JP2014222752A (en) Solid electrolytic capacitor including precoat layer
JP2009206426A (en) Method for manufacturing solid-state electrolytic capacitor
JP2009182027A (en) Manufacturing method of solid electrolytic capacitor
JP2005294504A (en) Process for manufacturing solid electrolytic capacitor
JP4002634B2 (en) Manufacturing method of solid electrolytic capacitor
JP2008277344A (en) Method for manufacturing solid-state electrolytic capacitor
JP2006108192A (en) Solid electrolytic capacitor
JP4863509B2 (en) Manufacturing method of solid electrolytic capacitor
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JP2006147900A (en) Manufacturing method of solid electrolytic capacitor
JP2007095801A (en) Manufacturing method of solid-state electrolytic capacitor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091229

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100518