JP2007305898A - Impregnation method and impregnation apparatus of electrolyte in electrolytic capacitor manufacture - Google Patents

Impregnation method and impregnation apparatus of electrolyte in electrolytic capacitor manufacture Download PDF

Info

Publication number
JP2007305898A
JP2007305898A JP2006134868A JP2006134868A JP2007305898A JP 2007305898 A JP2007305898 A JP 2007305898A JP 2006134868 A JP2006134868 A JP 2006134868A JP 2006134868 A JP2006134868 A JP 2006134868A JP 2007305898 A JP2007305898 A JP 2007305898A
Authority
JP
Japan
Prior art keywords
impregnation
electrolyte
capacitor
electrolytic solution
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006134868A
Other languages
Japanese (ja)
Other versions
JP4566156B2 (en
Inventor
Takahiko Maruyama
高彦 丸山
Takao Imamura
崇雄 今村
Naohiro Ito
直広 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rubycon Corp
Original Assignee
Rubycon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rubycon Corp filed Critical Rubycon Corp
Priority to JP2006134868A priority Critical patent/JP4566156B2/en
Publication of JP2007305898A publication Critical patent/JP2007305898A/en
Application granted granted Critical
Publication of JP4566156B2 publication Critical patent/JP4566156B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an impregnation method of electrolytic capacitor electrolyte by which a dispersion of impregnation amount is small and an element is certainly impregnated. <P>SOLUTION: A method of performing an impregnation is carried out by inserting a capacitor element 3 into a case 1 filled up with electrolyte 2 of specific amount. The impregnation is performed in a process of partially immersing the capacitor element 3 in the electrolyte 2 (Drawings (d) and (e)), and a process of immersing the capacitor element 3 in the residual electrolyte 2 (Drawing (f)). In at least one of these processes there is included a pressure reduction process of decompressing a treatment atmosphere at the time of impregnating, and thereafter of returning the decompressed atmosphere to an atmospheric pressure. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は電解コンデンサ製造において、コンデンサ素子に電解液を含浸する方法およびこの方法を実施する装置に関するものである。   The present invention relates to a method for impregnating a capacitor element with an electrolytic solution in the production of an electrolytic capacitor and an apparatus for carrying out this method.

電解コンデンサは、高純度アルミニウム箔をエッチングしてその表面積を拡大し、表面を陽極酸化して誘電体化した陽極箔と、この陽極箔と対向して配置した、エッチングされた陰極箔との間にセパレータ(電解紙、隔離紙など)を介在させて巻回した構造のコンデンサ素子に、電解液を含浸し、これをケースに封入したものである。   An electrolytic capacitor is made by etching a high-purity aluminum foil to enlarge its surface area, and anodic oxidation of the surface to form a dielectric, and an etched cathode foil disposed opposite to the anode foil. A capacitor element having a structure in which a separator (electrolytic paper, separator paper, etc.) is wound around is impregnated with an electrolytic solution and enclosed in a case.

電解液の含浸は製造される電解コンデンサの電気特性や信頼性に大きな影響を及ぼすため、電解コンデンサ製造において最も重要な工程の一つである。コンデンサ素子に含浸する電解液の量は多い程電解コンデンサの寿命が長くなり望ましいといえる。しかしながら、多過ぎると製造されるコンデンサの実際の使用において電解液の漏れや素子封入ケースの膨張といった不具合が発生することがあり、極端な場合には素子封入ケースに予め設けた安全弁を作動させてしまうという問題が生じる。また、電解液の含浸量にバラツキがあると製造される同一種のコンデンサ製品間に寿命のバラツキが生ずるという問題のほか、耐熱性にもバラツキが生じ、表面実装タイプのコンデンサにおいてはリフロー時に、コンデンサケースの膨張という不具合が生じることがある。   Since the impregnation with the electrolytic solution has a great influence on the electrical characteristics and reliability of the electrolytic capacitor to be manufactured, it is one of the most important processes in manufacturing the electrolytic capacitor. It can be said that the larger the amount of electrolyte impregnated in the capacitor element, the longer the life of the electrolytic capacitor, which is desirable. However, if the amount is too large, problems such as electrolyte leakage and expansion of the element enclosing case may occur in actual use of the manufactured capacitor. In extreme cases, a safety valve provided in advance in the element enclosing case is activated. Problem arises. In addition to the problem of variations in the impregnation amount of the electrolyte, there will be variations in the life of capacitor products of the same type that are manufactured, as well as variations in heat resistance. The problem of expansion of the capacitor case may occur.

含浸する電解液の量と同様に重要なことは、エッチングして電極箔表面に形成した微細な凹凸、すなわちピット内に電解液が十分侵入しているかどうかという点である。これはコンデンサの電気的性能に大きく影響する。電極箔のピット内に電解液が十分侵入していないと電極表面と電解液とが接触していない、空孔部分が形成され、電解コンデンサのtanδや等価直列抵抗(ESR)が増加し、満足のいく電気特性が得られなかった。   As important as the amount of the electrolyte to be impregnated, it is important whether the electrolyte is sufficiently penetrated into fine irregularities formed on the surface of the electrode foil by etching, that is, pits. This greatly affects the electrical performance of the capacitor. If the electrolyte does not penetrate sufficiently into the pits of the electrode foil, the electrode surface is not in contact with the electrolyte, and voids are formed, increasing the tan δ and equivalent series resistance (ESR) of the electrolytic capacitor. No good electrical characteristics were obtained.

上記した技術的意義をもつ電解液の含浸方法として、現在、真空含浸法が広く利用されている。真空含浸法はコンデンサ素子を容器に入れて排気し、その中に電解液を入れて素子を完全に覆った後、容器を大気圧に戻して行う方法である。この方法の具体例としては、たとえば、複数のコンデンサ素子のリード線をクランプ冶具で挟持、あるいはテーピングして貼着し、コンデンサ素子を含浸槽内に搬送し、この含浸槽を真空状態にした後、含浸槽内に電解液を供給してコンデンサ素子に含浸させる方法がある(例えば特許文献1参照)。   Currently, the vacuum impregnation method is widely used as an impregnation method of the electrolytic solution having the above technical significance. The vacuum impregnation method is a method in which a capacitor element is put in a container and evacuated, and an electrolytic solution is put therein to completely cover the element, and then the container is returned to atmospheric pressure. As a specific example of this method, for example, the lead wires of a plurality of capacitor elements are clamped or taped and attached, and the capacitor elements are transported into an impregnation tank, and the impregnation tank is evacuated. There is a method in which an electrolytic solution is supplied into an impregnation tank to impregnate a capacitor element (for example, see Patent Document 1).

このような真空含浸法は電解液を急速に素子に含浸させることができるので、工業的生産における量産効果に優れているという特徴をもっている。また、真空含浸法は減圧してから大気圧に戻して含浸を行うため、電解液が電極箔のピットの奥まで侵入し、後述する定量含浸法に比べて優れた電気特性をもった電解コンデンサをつくることができるという特徴を有している。この反面、この方法は含浸する電解液量を一定にコントロールすることが難しい。また脱液工程によりある程度電解液量をコントロールできるが、脱液量を一定にすることが難しいため電解液量のバラツキが生じてしまう。このためコンデンサ素子に含浸して素子封入ケースに取り込まれる電解液の量に大きなバラツキが生じ、製造される同一種類の電解コンデンサ製品間において製品寿命のバラツキとなって現われるという問題がある。また、真空含浸法は、実際の工業的生産の場においては素子に含浸する電解液の量が過多になりがちで、叙述した液漏れやケースの膨張といった問題が内在しやすい。   Such a vacuum impregnation method has a feature that it is excellent in mass production effect in industrial production because an element can be rapidly impregnated with an electrolytic solution. In addition, since the vacuum impregnation method reduces pressure and then returns to atmospheric pressure to perform impregnation, the electrolytic solution penetrates deep into the pits of the electrode foil, and has an excellent electrical characteristic compared to the quantitative impregnation method described later. It has the feature that can be made. On the other hand, in this method, it is difficult to control the amount of the electrolyte to be impregnated at a constant level. Moreover, although the amount of electrolyte solution can be controlled to some extent by a liquid removal process, since it is difficult to make the amount of liquid removal constant, the amount of electrolyte solution will vary. For this reason, there is a problem that the amount of electrolytic solution impregnated in the capacitor element and taken into the element enclosing case is greatly varied, and the product life varies among the same type of electrolytic capacitor products manufactured. Also, the vacuum impregnation method tends to have an excessive amount of electrolyte solution impregnated in the device in an actual industrial production, and problems such as the described liquid leakage and case expansion tend to be inherent.

また定量含浸法と称される含浸する電解液の量を一定にするための方法がある。この方法は素子封入ケースに規定量の電解液を入れ、この中にコンデンサ素子を挿入して浸漬し、素子に電解液が含浸するのを待つというものである。しかしこの方法は電解液の入った素子封入ケースにコンデンサ素子を挿入した際、ポンピング現象などによりケースと素子の間隙から電解液が飛び出すことがあり、必ずしもケースに入れた規定量の電解液を確実に素子に含浸させることにはならないという問題がある。また電解液が溢れ出すことによりコンデンサの製造におけるコストおよび環境面での問題もある。この解決方法として、電解液の体積とコンデンサ素子の体積と封口体の体積の和よりも素子封入用ケースの体積を大きくするという方法が提案されているが(特許文献2参照)、素子封入ケースを大きくしなければならない点で、近年の電解コンデンサの小型化の要求を満足することにはならない。   There is also a method for making the amount of electrolytic solution to be impregnated constant called a quantitative impregnation method. In this method, a specified amount of electrolytic solution is placed in an element enclosing case, a capacitor element is inserted and immersed therein, and the element is waited to be impregnated with the electrolytic solution. However, in this method, when a capacitor element is inserted into an element enclosing case containing an electrolyte, the electrolyte may jump out of the gap between the case and the element due to a pumping phenomenon or the like, and the specified amount of electrolyte in the case is not guaranteed. There is a problem that the element is not impregnated. In addition, the overflow of the electrolyte also causes cost and environmental problems in manufacturing the capacitor. As a solution to this problem, a method has been proposed in which the volume of the element enclosing case is made larger than the sum of the volume of the electrolytic solution, the volume of the capacitor element, and the volume of the sealing body (see Patent Document 2). However, it does not satisfy the recent demand for miniaturization of electrolytic capacitors.

さらにこの方法は電解液の含浸を自然に任せるので、含浸に時間がかかるという問題がある。また、真空含浸法に比べ電極箔表面のピット内に十分電解液を侵入させることが難しく、同じ量の電解液を使用しても、製造されるコンデンサの間で電気的特性に優劣が生じやすいという問題がある。特に高い粘度の電解液ではこの現象が顕著となる。   Furthermore, since this method leaves the impregnation of the electrolyte solution naturally, there is a problem that it takes time for the impregnation. In addition, it is difficult for the electrolyte to sufficiently penetrate into the pits on the surface of the electrode foil as compared with the vacuum impregnation method, and even if the same amount of electrolyte is used, superiority or inferiority in electrical characteristics is likely to occur between manufactured capacitors. There is a problem. In particular, this phenomenon becomes remarkable in an electrolyte solution having a high viscosity.

特開2000−357639号公報JP 2000-357639 A 特開平9−213591号公報Japanese Patent Laid-Open No. 9-213591

本発明は従来の定量含浸法や真空含浸法の上記した種々の問題点を解決した改良した電解液の含浸方法および装置を提供しようとするものである。   The present invention seeks to provide an improved electrolytic solution impregnation method and apparatus that solves the above-mentioned various problems of the conventional quantitative impregnation method and vacuum impregnation method.

すなわち、本発明は、素子封入ケースの寸法を大きくすることなしに、規定量の電解液を過不足なく、確実にコンデンサ素子に含浸する方法を提供することを目的としている。これによって、ケースに取り込む電解液が過多にならずまた素子に含浸する電解液の量のバラツキが少ない信頼性に優れ、しかも電気的特性においても従来の真空含浸法によって得られるものと同等の特性を有する電解コンデンサを提供しようとするものである。   That is, an object of the present invention is to provide a method for reliably impregnating a capacitor element with a specified amount of electrolyte without excess or deficiency without increasing the size of the element enclosure case. As a result, the electrolyte to be taken into the case is not excessive, and there is little variation in the amount of electrolyte to be impregnated into the device, and it is excellent in reliability, and the electrical characteristics are equivalent to those obtained by the conventional vacuum impregnation method. It is an object of the present invention to provide an electrolytic capacitor having

上記した課題を解決するため、請求項1に記載した電解コンデンサ製造における電解液の含浸方法は陽極箔と陰極箔とその間にセパレータを介在させて巻回したコンデンサ素子を、規定量の電解液を入れた素子封入用のケースに挿入して素子に電解液を含浸させる電解コンデンサ製造における電解液の含浸方法であって、前記ケース内の電解液が溢れ出さない限度でコンデンサ素子の一部を電解液に浸漬し、素子に電解液を吸収させる第1の含浸工程と、前記素子をケース内に完全に収容して残余の電解液を素子に吸収させる第2の含浸工程とを含んで構成され、少なくとも前記2つの含浸工程のいずれかにおいて、含浸を減圧状態の雰囲気で行った後大気圧雰囲気に戻す減圧工程を含んでいることを特徴とする。   In order to solve the above-mentioned problems, the method for impregnating an electrolytic solution in the production of an electrolytic capacitor according to claim 1 includes a capacitor element wound with an anode foil, a cathode foil, and a separator interposed therebetween, and a specified amount of the electrolyte solution. A method for impregnating an electrolytic solution in manufacturing an electrolytic capacitor in which an element is impregnated with an electrolytic solution by inserting the device into an encapsulated device case, and electrolyzing a part of the capacitor element to the extent that the electrolytic solution in the case does not overflow. A first impregnation step in which the element is immersed in the solution and the element absorbs the electrolyte; and a second impregnation step in which the element is completely accommodated in the case and the remaining electrolyte is absorbed in the element. In addition, at least one of the two impregnation steps includes a pressure reduction step in which the impregnation is performed in a reduced pressure atmosphere and then returned to the atmospheric pressure atmosphere.

請求項2に記載の含浸方法は、請求項1に記載の方法において第1の含浸工程を実施する前に、コンデンサ素子と規定量の電解液を入れたケースとを減圧雰囲気下に置くことを特徴とする。   In the impregnation method according to claim 2, before the first impregnation step in the method according to claim 1, the capacitor element and the case containing the specified amount of electrolytic solution are placed in a reduced pressure atmosphere. Features.

請求項3に記載の含浸方法は、請求項1または請求項2に記載する含浸方法において減圧工程を第1の含浸工程で実施することを特徴とする。   The impregnation method according to claim 3 is characterized in that in the impregnation method according to claim 1 or claim 2, the decompression step is performed in the first impregnation step.

請求項4に記載の含浸方法は、請求項1または請求項2に記載する含浸方法において減圧工程を第2の含浸工程で実施することを特徴とする。   The impregnation method according to claim 4 is characterized in that in the impregnation method according to claim 1 or claim 2, the decompression step is performed in the second impregnation step.

請求項5に記載の含浸方法は、請求項1または請求項2に記載する含浸方法において減圧工程を第1の含浸工程および第2の含浸工程で実施することを特徴とする。   The impregnation method according to claim 5 is characterized in that in the impregnation method according to claim 1 or claim 2, the decompression step is performed in the first impregnation step and the second impregnation step.

請求項6に記載の含浸方法は、請求項1ないし請求項5いずれか一つに記載する含浸方法において、減圧工程を複数回繰り返し実施することを特徴とする。   The impregnation method according to claim 6 is the impregnation method according to any one of claims 1 to 5, wherein the pressure reduction step is repeatedly performed a plurality of times.

請求項7は、請求項1ないし請求項6いずれか一つに記載する含浸方法を実施するための手段を備えたことを特徴とする電解コンデンサ製造における電解液の含浸装置である。   According to a seventh aspect of the present invention, there is provided an apparatus for impregnating an electrolytic solution in the production of an electrolytic capacitor, comprising means for carrying out the impregnation method according to any one of the first to sixth aspects.

本発明の含浸方法によれば、コンデンサ素子への電解液の含浸が、素子封入ケースから電解液が溢れ出さない限度でコンデンサ素子の一部を浸漬して行う予備的な含浸工程(第1の含浸工程)を経て行うので、この予備的含浸によってケース中の電解液の液面を低下させることができる。したがって、この状態でコンデンサ素子をケースに完全に収容しても、電解液が溢れ出すことを防止することができる。さらに電解液がケース外に溢れ出すことを防止できるのでコンデンサの製造におけるコストおよび環境面での問題を解決することができる。   According to the impregnation method of the present invention, the impregnation of the electrolytic solution into the capacitor element is performed by a preliminary impregnation step (first step) in which a part of the capacitor element is immersed to the extent that the electrolytic solution does not overflow from the element enclosure case. Since the impregnation step is performed, the liquid level of the electrolytic solution in the case can be lowered by the preliminary impregnation. Therefore, even if the capacitor element is completely accommodated in the case in this state, it is possible to prevent the electrolyte from overflowing. Furthermore, since the electrolytic solution can be prevented from overflowing outside the case, it is possible to solve the cost and environmental problems in manufacturing the capacitor.

このように本発明の含浸方法によれば、素子封入ケースに入れた規定量の電解液を、溢れ出させることなく、その全量を確実にコンデンサ素子に含浸させることができるので、ケースの寸法を大きくすることなしに、電解液含浸量のバラツキの少ない電解コンデンサを製造することができる。   Thus, according to the impregnation method of the present invention, the capacitor element can be reliably impregnated with the entire amount of the electrolyte contained in the element enclosing case without overflowing. Without increasing the size, an electrolytic capacitor with little variation in the amount of electrolyte impregnation can be produced.

また、本発明の方法は、電解液の含浸工程において、含浸を減圧状態の雰囲気で行った後、大気圧雰囲気に戻すという減圧工程を含んでいるので、電解液の含浸は急速に行われかつ電極箔のピットの奥まで電解液を侵入させることができる。この結果、定量含浸法の利点を生かしながら、真空含浸法で得られるものと同じ電気的特性をもつ電解コンデンサを製造することができる。   In addition, since the method of the present invention includes a pressure reducing step in which the impregnation step of the electrolytic solution is performed in an atmosphere in a reduced pressure state and then returned to the atmospheric pressure atmosphere, the impregnation of the electrolytic solution is performed rapidly and Electrolyte can be penetrated deep into the pits of the electrode foil. As a result, it is possible to produce an electrolytic capacitor having the same electrical characteristics as those obtained by the vacuum impregnation method while taking advantage of the quantitative impregnation method.

以下、本発明に係る電解コンデンサ製造における電解液の含浸方法の実施の形態を、図面を参照して説明する。図1の(a)ないし(f)は本発明の含浸方法を示す概念図である。   Embodiments of an electrolytic solution impregnation method in the production of an electrolytic capacitor according to the present invention will be described below with reference to the drawings. (A) thru | or (f) of FIG. 1 is a conceptual diagram which shows the impregnation method of this invention.

この図において1はコンデンサ素子を封入するためのケースであり、このケース1を、台7に固定された断面が凹状の保持具8に嵌めこみ、設置する(a図)。素子封入ケース1は電解コンデンサにおいて通常用いられるアルミニウムやアルミニウム合金からつくられており、有底筒状の形をしている。   In this figure, reference numeral 1 denotes a case for enclosing a capacitor element, and the case 1 is fitted into a holder 8 having a concave section fixed to the base 7 and installed (FIG. A). The element enclosing case 1 is made of aluminum or aluminum alloy that is usually used in an electrolytic capacitor, and has a bottomed cylindrical shape.

ケース1に規定量の電解液2を注入し、電解液2に浸漬させないようにコンデンサ素子3を配置する(b図)。   A prescribed amount of the electrolytic solution 2 is injected into the case 1 and the capacitor element 3 is arranged so as not to be immersed in the electrolytic solution 2 (FIG. B).

電解液の粘度が高い場合には、電解液の注入に際して電解液注入器具にヒーターを取り付けたり円滑な含浸を行うため保持具8にヒーターを取付けて加温も可能である。   When the electrolyte solution has a high viscosity, it is possible to attach the heater to the electrolyte injection device when injecting the electrolyte solution or to heat the holder 8 with a heater in order to perform smooth impregnation.

コンデンサ素子3はアルミニウム箔をエッチングして拡面処理し、さらに陽極酸化によって誘電体皮膜を形成した陽極箔とアルミニウム箔をエッチングして拡面処理を行った陰極箔との間に天然繊維あるいは合成繊維のセパレータを介して巻回して構成する。陽極箔および陰極箔には、それぞれ外部引出し用のリード端子4および5が取り付けられている。またコンデンサ素子3には封口体6が装着されている。封口体の装着は、封口体6に形成した一対の穴にリード端子4および5を通して行われる。封口体装着のタイミングは電解液の含浸作業が終了した後でもよい。本発明で用いられるリード端子や封口体は、電解コンデンサの製造において通常使用しているものがそのまま使用できる。   Capacitor element 3 is surface-treated by etching aluminum foil, and further, natural fiber or synthetic material between anode foil formed with a dielectric film by anodic oxidation and cathode foil subjected to surface-expansion treatment by etching aluminum foil. It is constituted by winding through a fiber separator. Lead terminals 4 and 5 for external lead are attached to the anode foil and the cathode foil, respectively. Further, a sealing body 6 is attached to the capacitor element 3. The sealing body is attached through lead terminals 4 and 5 through a pair of holes formed in the sealing body 6. The timing of mounting the sealing body may be after the impregnation work of the electrolytic solution is completed. As the lead terminals and sealing bodies used in the present invention, those normally used in the production of electrolytic capacitors can be used as they are.

コンデンサ素子3の配置は、1対のリード端子4、5を、たとえば素子の運搬保持具に付設したチャックに挟持しあるいはテーピング材に貼着して行うことができる。   The capacitor element 3 can be arranged by holding a pair of lead terminals 4 and 5 on, for example, a chuck attached to a carrying holder of the element or by adhering it to a taping material.

次に、容器9を覆せ(c図)、容器内を排気して減圧する。排気は容器に設けた排気口10から真空ポンプを用いて行う。減圧することによって、コンデンサ素子に含まれる水分および電解液中の水分が容易に蒸発する。これによりコンデンサ素子に含まれる水分および電解液中の水分を減少させることができるので、コンデンサ内に水分が入ることによる電気特性への影響を少なくすることができる。容器9内部の減圧は、上記したように水分除去が目的であり、迅速な水分除去のためには減圧の程度はできるだけ低いことが望ましい。効率的な生産を考慮すると好ましくは10〜50mmHg、さらに好ましくは10〜30mmHgである。   Next, the container 9 is covered (FIG. C), and the inside of the container is evacuated and decompressed. Exhaust is performed using a vacuum pump from an exhaust port 10 provided in the container. By reducing the pressure, the water contained in the capacitor element and the water in the electrolyte easily evaporate. As a result, the moisture contained in the capacitor element and the moisture in the electrolytic solution can be reduced, so that the influence on the electrical characteristics due to the moisture entering the capacitor can be reduced. As described above, the purpose of reducing the pressure inside the container 9 is to remove moisture, and it is desirable that the degree of decompression is as low as possible for rapid moisture removal. Considering efficient production, it is preferably 10 to 50 mmHg, more preferably 10 to 30 mmHg.

次に、コンデンサ素子を電解液に浸漬して含浸を行う。本発明方法では、電解液の含浸は2つの工程に分けて実施する。先ず、予備的な含浸を行う第1の工程では、ケース1内の電解液2が溢れ出さない限度で、コンデンサ素子3の一部を電解液2に浸漬し、電解液を吸収させる(d図およびe図)。次いで、第2の含浸工程ではコンデンサ素子3を、ケース1の底面に接するまで完全に挿入し、残余の電解液2を素子3に吸収させる(f図)。   Next, the capacitor element is immersed in an electrolytic solution for impregnation. In the method of the present invention, the impregnation with the electrolytic solution is performed in two steps. First, in the first step of performing the preliminary impregnation, a part of the capacitor element 3 is immersed in the electrolytic solution 2 to the extent that the electrolytic solution 2 in the case 1 does not overflow to absorb the electrolytic solution (FIG. D). And e). Next, in the second impregnation step, the capacitor element 3 is completely inserted until it contacts the bottom surface of the case 1, and the remaining electrolyte 2 is absorbed by the element 3 (FIG. F).

本発明の方法では上記した第1の含浸工程と第2の含浸工程の少なくともいずれか一方の工程は、容器9内部を排気して減圧雰囲気で含浸を行い、次いでこの雰囲気を大気圧下に戻すという減圧処理の工程を含んで構成される。こうすることによって素子への電解液の含浸速度を速めることができかつ電極箔のピットの奥まで電解液を侵入させることができる。したがって、より好ましくは第1及び第2の含浸工程のそれぞれにおいて、上記した減圧処理を行うことが望ましい。   In the method of the present invention, at least one of the first impregnation step and the second impregnation step described above is performed by evacuating the inside of the container 9 and performing impregnation in a reduced pressure atmosphere, and then returning the atmosphere to atmospheric pressure. It is comprised including the process of the decompression process. By so doing, the impregnation rate of the electrolytic solution into the element can be increased, and the electrolytic solution can be penetrated deep into the pits of the electrode foil. Therefore, it is more preferable to perform the above-described decompression process in each of the first and second impregnation steps.

減圧の程度は、電解液の粘度によって適宜選択する。含浸工程の効率を考慮すると、減圧の程度は好ましくは5〜100mmHg、さらに好ましくは5〜40mmHgである。   The degree of pressure reduction is appropriately selected depending on the viscosity of the electrolytic solution. Considering the efficiency of the impregnation step, the degree of decompression is preferably 5 to 100 mmHg, more preferably 5 to 40 mmHg.

含浸処理の終了後、容器9を外し、ケース1の上部の封口体6と対応する部分を絞り加工してケース1の開口部を封口する。   After completion of the impregnation process, the container 9 is removed, and the portion corresponding to the sealing body 6 on the upper part of the case 1 is drawn to seal the opening of the case 1.

巻回構造のアルミニウム電解コンデンサ(35WV、200μF、φ8×10L)を、通常実施される下記の手順で作成し、その電気的性能および電解液の含浸量を測定した。比較のため、従来の含浸法で作成した電解コンデンサについても同様の測定を行った。
〔コンデンサ素子〕
高純度のアルミニウム箔を電気化学的にエッチング処理し、化成処理して表面に酸化皮膜を形成して陽極箔をつくった。また、別のアルミニウム箔にも、同じくエッチング処理を施し、陰極箔をつくった。陽電極と陰電極にそれぞれ電極引出し用のリード線を取り付けた後、両電極箔の間にセパレータを挟んで巻回し、コンデンサ素子を作成した。
〔電解液〕
表1に示した組成の電解液を使用した。
A wound-structure aluminum electrolytic capacitor (35 WV, 200 μF, φ8 × 10 L) was prepared by the following procedure, which was usually performed, and the electrical performance and the amount of impregnation of the electrolytic solution were measured. For comparison, the same measurement was performed on an electrolytic capacitor prepared by a conventional impregnation method.
[Capacitor element]
A high-purity aluminum foil was electrochemically etched and subjected to chemical conversion treatment to form an oxide film on the surface to produce an anode foil. In addition, another aluminum foil was similarly subjected to an etching process to produce a cathode foil. Electrode lead wires were attached to the positive electrode and the negative electrode, respectively, and then wound with a separator sandwiched between both electrode foils to produce a capacitor element.
[Electrolyte]
An electrolytic solution having the composition shown in Table 1 was used.

Figure 2007305898
Figure 2007305898

〔コンデンサ素子と電解液の水分除去〕
コンデンサ素子封入用のケースとして円筒形の有底アルミニウムケースに、目標値160mgの電解液を注入し、チャックでコンデンサ素子のリード端子部を固定して上記した素子封入ケースに挿入し、電解液に浸漬しない位置で保持した。上から容器を被せ、素子と電解液の入ったケースを密閉した空間に置き、真空ポンプを用いて排気し、容器内を30mmHgの減圧状態にして水分除去を行った。
〔含浸処理〕
実施例1の含浸方法
上記した減圧状態を維持したまま、電解液がケースから溢れ出さない限度で、コンデンサ素子の下方部分を電解液に浸漬し、この状態で容器内の雰囲気を大気圧に戻して、素子に電解液を吸収させた。次に、コンデンサ素子をケースの底まで完全に挿入し、残った電解液を自然吸収させた。
[Removal of water from capacitor element and electrolyte]
As a case for encapsulating a capacitor element, an electrolytic solution having a target value of 160 mg is injected into a cylindrical bottomed aluminum case, and the lead terminal portion of the capacitor element is fixed with a chuck and inserted into the above-described element enclosing case. It was held at a position where it was not immersed. The container was covered from above, the case containing the element and the electrolyte was placed in a sealed space, and evacuated using a vacuum pump to remove moisture by reducing the pressure in the container to 30 mmHg.
(Impregnation treatment)
The impregnation method of Example 1 The lower part of the capacitor element is immersed in the electrolytic solution to the extent that the electrolytic solution does not overflow from the case while maintaining the above-described reduced pressure state, and the atmosphere in the container is returned to atmospheric pressure in this state. The element was made to absorb the electrolytic solution. Next, the capacitor element was completely inserted to the bottom of the case, and the remaining electrolyte solution was absorbed naturally.

実施例2の含浸方法
コンデンサ素子および電解液の上記した減圧、水分除去を行った後、容器内の圧力を一旦大気圧の状態に戻してから、ケースから電解液が溢れ出さない限度でコンデンサ素子の下方部を電解液に浸漬した。次に排気し、容器内を40mmHgまで減圧して、この減圧状態を維持しながらコンデンサ素子をケースの底まで完全に挿入し、容器内の圧力を大気圧に戻して含浸を終えた。
The impregnation method of Example 2 Capacitor element and electrolytic solution were subjected to the above depressurization and water removal, and the pressure in the container was once returned to the atmospheric pressure, and then the capacitor element was limited to the extent that the electrolytic solution did not overflow from the case The lower part of was immersed in an electrolytic solution. Next, the container was evacuated, the inside of the container was decompressed to 40 mmHg, the capacitor element was completely inserted to the bottom of the case while maintaining this decompressed state, and the pressure inside the container was returned to atmospheric pressure to complete the impregnation.

比較例1の含浸方法
リード端子をテーピングによって固定してコンデンサ素子を含浸槽に入れ、真空ポンプを用いて含浸槽内を30mmHgまで減圧した。次に電解液槽から電解液を含浸槽内に注入し、減圧を解除して含浸槽内を大気圧に戻し電解液の含浸を行った。次いで、脱液処理により電解液量が160mgとなるようにし、電解液を含浸した素子を封入ケースに入れた。
The impregnation method of Comparative Example 1 The lead terminal was fixed by taping, the capacitor element was placed in the impregnation tank, and the inside of the impregnation tank was decompressed to 30 mmHg using a vacuum pump. Next, the electrolytic solution was injected from the electrolytic solution tank into the impregnation tank, the decompression was released, the interior of the impregnation tank was returned to atmospheric pressure, and the electrolytic solution was impregnated. Next, the amount of the electrolytic solution was adjusted to 160 mg by liquid removal treatment, and the element impregnated with the electrolytic solution was placed in an enclosing case.

比較例2の含浸方法
素子封入ケースに目標値160mgの電解液を注入し、リード端子をチャックで固定してコンデンサ素子を容器内に挿入し、電解液を自然含浸させた。
〔素子封入ケースの封口〕
封口体に設けた1対の貫通孔のそれぞれにリード端子を通して封口体をコンデンサ素子を装着し、封口体が位置するケース上部を絞り加工してケースを封口した。
Impregnation method of Comparative Example 2 An electrolyte solution having a target value of 160 mg was injected into the element enclosing case, the lead terminal was fixed with a chuck, the capacitor element was inserted into the container, and the electrolyte solution was naturally impregnated.
[Sealing of element enclosure]
A capacitor element was attached to the sealing body through a lead terminal in each of a pair of through holes provided in the sealing body, and the upper part of the case where the sealing body was located was drawn to seal the case.

以上のようにして、35WV、200μFの巻回構造アルミニウム電解コンデンサ(φ8×10L)を作成した。
〔電気性能の比較試験〕
本発明に係る電解液の含浸法によって作成した電解コンデンサ(実施例1および実施例2)の電気性能を試験し、従来の含浸方法で作成した電解コンデンサ(比較例1および比較例2)のものと比較した。測定は負荷前および高温電圧負荷後(105℃、35V、時間1000時間)の2通りで行った。なお、コンデンサ特性の測定は全て25℃で行った。容量とTanδ値は120Hzで測定し、ESR値は10KHzで測定した。またLC(漏れ電流)は35V印加1分後の電流値を測定した。この結果を表2に示す。
As described above, a 35 WV, 200 μF winding structure aluminum electrolytic capacitor (φ8 × 10 L) was prepared.
[Electrical performance comparison test]
Electrolytic capacitors (Examples 1 and 2) prepared by the electrolytic solution impregnation method according to the present invention were tested, and the electrolytic capacitors (Comparative Examples 1 and 2) prepared by the conventional impregnation method were used. Compared with. The measurement was performed in two ways before loading and after loading at high temperature voltage (105 ° C., 35 V, time 1000 hours). All capacitor characteristics were measured at 25 ° C. The capacity and Tan δ value were measured at 120 Hz, and the ESR value was measured at 10 KHz. LC (leakage current) was measured as a current value 1 minute after application of 35V. The results are shown in Table 2.

Figure 2007305898
Figure 2007305898

表2に示すデータから判るように、本発明の含浸方法によって作成した電解コンデンサ(実施例1および実施例2)は、従来の真空含浸法によって作成した電解コンデンサ(比較例1)と比較して、負荷前および高温負荷後ともに静電容量、Tanδ、漏れ電流およびESR値が、同等またはそれ以上の特性を示している。比較例2の定量含浸法によって作成した電解コンデンサと比べると、TanδおよびESR値が低くなっている。特に、高温電圧負荷後の比較例2のTanδおよびESR値の変化は実施例1および実施例2の場合よりも大きい。
〔電解液含浸量のバラツキ試験〕
本発明方法によって作成した電解コンデンサ(実施例1および実施例2)の電解液の含浸量を測定し、従来の方法によって作成した電解コンデンサ(比較例1および比較例2)のものと比較した。この結果を表3に示した。なお、電解液の含浸量の測定は次のようにして行った。
As can be seen from the data shown in Table 2, the electrolytic capacitors (Example 1 and Example 2) prepared by the impregnation method of the present invention are compared with the electrolytic capacitor (Comparative Example 1) prepared by the conventional vacuum impregnation method. The electrostatic capacity, Tan δ, leakage current, and ESR value are equivalent or better before and after loading. Compared with the electrolytic capacitor prepared by the quantitative impregnation method of Comparative Example 2, the Tan δ and ESR values are low. In particular, changes in Tan δ and ESR values in Comparative Example 2 after high-temperature voltage loading are larger than those in Examples 1 and 2.
[Variation test of electrolyte impregnation amount]
The amount of electrolytic solution impregnated in the electrolytic capacitors (Example 1 and Example 2) prepared by the method of the present invention was measured and compared with those of electrolytic capacitors (Comparative Example 1 and Comparative Example 2) prepared by the conventional method. The results are shown in Table 3. In addition, the amount of electrolyte impregnation was measured as follows.

あらかじめ個々のコンデンサ素子、アルミケース、封口ゴムの重量を測定した後含浸装置に投入し、個々のコンデンサ重量を測定した。個々のコンデンサ重量から個々の材料の重量を引いて電解液量とした。   The weights of individual capacitor elements, aluminum cases, and sealing rubbers were measured in advance and then put into an impregnation apparatus, and the individual capacitor weights were measured. The amount of the electrolyte was obtained by subtracting the weight of each material from the weight of each capacitor.

Figure 2007305898
Figure 2007305898

表3に示す結果から、従来の真空含浸法によって作成された電解コンデンサでは、電解液の含浸量のバラツキが大きいことがわかる。電解液量におけるバラツキは、電解コンデンサの寿命特性のバラツキとなって表われる。また、表面実装型電解コンデンサの場合には、耐熱性のバラツキを招き、外観不良(ケースの膨張)の原因となる。本発明に係る実施例1および実施例2の電解コンデンサにおいては電解液量のバラツキが小さいので、安定した寿命特性および耐熱性を得ることができる。   From the results shown in Table 3, it can be seen that the electrolytic capacitor produced by the conventional vacuum impregnation method has a large variation in the amount of impregnation of the electrolytic solution. Variations in the amount of the electrolytic solution appear as variations in the life characteristics of the electrolytic capacitor. Further, in the case of a surface mount type electrolytic capacitor, variation in heat resistance is caused, which causes appearance defects (case expansion). In the electrolytic capacitors of Example 1 and Example 2 according to the present invention, the variation in the amount of the electrolytic solution is small, so that stable life characteristics and heat resistance can be obtained.

本発明の電解液の含浸方法を説明するための概念図である。It is a conceptual diagram for demonstrating the impregnation method of the electrolyte solution of this invention.

符号の説明Explanation of symbols

1 コンデンサ素子封入ケース
2 電解液
3 コンデンサ素子
9 容器
10 排気口
1 Capacitor element enclosing case 2 Electrolyte 3 Capacitor element 9 Container 10 Exhaust port

Claims (7)

陽極箔と陰極箔とその間にセパレータを介在させて巻回したコンデンサ素子を、規定量の電解液を入れた素子封入用のケースに挿入して素子に電解液を含浸させる電解コンデンサ製造における電解液の含浸方法であって、前記ケース内の電解液が溢れ出さない限度でコンデンサ素子の一部を電解液に浸漬し、素子に電解液を吸収させる第1の含浸工程と、前記素子をケースに完全に収容して残余の電解液を素子に吸収させる第2の含浸工程とを含んで構成され、少なくとも前記2つの含浸工程のいずれかにおいて、含浸を減圧状態の雰囲気で行った後大気圧雰囲気に戻す減圧工程を含んでいることを特徴とする電解コンデンサ製造における電解液の含浸方法。   Electrolytic solution in electrolytic capacitor production in which a capacitor element wound with an anode foil and a cathode foil and a separator interposed between them is inserted into a case for encapsulating the element containing a specified amount of electrolyte and the element is impregnated with the electrolyte A first impregnation step of immersing a part of the capacitor element in the electrolyte solution as long as the electrolyte solution in the case does not overflow, and absorbing the electrolyte solution in the device; and the element in the case A second impregnation step in which the element is completely accommodated and the remaining electrolyte is absorbed by the device, and after at least one of the two impregnation steps, impregnation is performed in a reduced-pressure atmosphere, A method for impregnating an electrolytic solution in the production of an electrolytic capacitor, comprising the step of reducing the pressure to return to 1. 第1の含浸工程を実施する前に、コンデンサ素子と規定量の電解液を入れたケースとを減圧雰囲気下に置くことを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the capacitor element and the case containing the specified amount of electrolytic solution are placed in a reduced-pressure atmosphere before the first impregnation step. 減圧工程を第1の含浸工程で実施することを特徴とする請求項1または請求項2に記載の方法。   The method according to claim 1 or 2, wherein the decompression step is performed in the first impregnation step. 減圧工程を第2の含浸工程で実施することを特徴とする請求項1または請求項2に記載の方法。   The method according to claim 1 or 2, wherein the decompression step is performed in the second impregnation step. 減圧工程を第1の含浸工程および第2の含浸工程で実施することを特徴とする請求項1または請求項2に記載の方法。   The method according to claim 1 or 2, wherein the decompression step is performed in the first impregnation step and the second impregnation step. 減圧工程を複数回繰り返し実施することを特徴とする請求項1ないし請求項5いずれか一つに記載の方法。   The method according to any one of claims 1 to 5, wherein the decompression step is repeatedly performed a plurality of times. 請求項1ないし請求項6いずれか一つに記載する含浸方法の実施手段を備えたことを特徴とする電解コンデンサ製造における電解液の含浸装置。   An apparatus for impregnating an electrolytic solution in the production of an electrolytic capacitor, comprising means for implementing the impregnation method according to any one of claims 1 to 6.
JP2006134868A 2006-05-15 2006-05-15 Electrolytic solution impregnation method and impregnation apparatus in electrolytic capacitor production Active JP4566156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006134868A JP4566156B2 (en) 2006-05-15 2006-05-15 Electrolytic solution impregnation method and impregnation apparatus in electrolytic capacitor production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134868A JP4566156B2 (en) 2006-05-15 2006-05-15 Electrolytic solution impregnation method and impregnation apparatus in electrolytic capacitor production

Publications (2)

Publication Number Publication Date
JP2007305898A true JP2007305898A (en) 2007-11-22
JP4566156B2 JP4566156B2 (en) 2010-10-20

Family

ID=38839547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134868A Active JP4566156B2 (en) 2006-05-15 2006-05-15 Electrolytic solution impregnation method and impregnation apparatus in electrolytic capacitor production

Country Status (1)

Country Link
JP (1) JP4566156B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219730A (en) * 1982-06-16 1983-12-21 シ−ケ−デイ株式会社 Method of immersing electrolyte of condenser
JPS5972125A (en) * 1982-10-19 1984-04-24 シ−ケ−デイ株式会社 Method of immersing electrolyte of condenser element
JP2000049059A (en) * 1998-07-27 2000-02-18 Matsushita Electric Ind Co Ltd Manufacture of aluminum electrolytic capacitor and its manufacturing apparatus
JP2000357639A (en) * 1999-06-17 2000-12-26 Nippon Chemicon Corp Method and system for impregnating electrolytic capacitor element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219730A (en) * 1982-06-16 1983-12-21 シ−ケ−デイ株式会社 Method of immersing electrolyte of condenser
JPS5972125A (en) * 1982-10-19 1984-04-24 シ−ケ−デイ株式会社 Method of immersing electrolyte of condenser element
JP2000049059A (en) * 1998-07-27 2000-02-18 Matsushita Electric Ind Co Ltd Manufacture of aluminum electrolytic capacitor and its manufacturing apparatus
JP2000357639A (en) * 1999-06-17 2000-12-26 Nippon Chemicon Corp Method and system for impregnating electrolytic capacitor element

Also Published As

Publication number Publication date
JP4566156B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
EP1096519B1 (en) Solid electrolytic capacitor and method for manufacturing the same
CN101000826B (en) Electric container and manufacturing method thereof
CN109196611B (en) Electrolytic capacitor and method for manufacturing the same
US6605127B2 (en) Method of manufacturing an aluminum solid electrolyte capacitor
JP4566156B2 (en) Electrolytic solution impregnation method and impregnation apparatus in electrolytic capacitor production
JP7116993B2 (en) Electrolytic capacitor
JP3416637B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3339511B2 (en) Method for manufacturing solid electrolytic capacitor
JP2023542073A (en) Solid electrolytic capacitor with deoxidizing anode
JP2021185626A (en) Electrode for aluminum electrolytic capacitor
JP2009206242A (en) Solid electrolytic capacitor
CN103280332A (en) Manufacturing method for solid electrolyte aluminum electrolytic capacitor suitable for alternating current circuit
JP4066473B2 (en) Solid electrolytic capacitor and manufacturing method thereof
EP1278217A1 (en) Method of manufacturing a solid-electrolyte capacitor
KR20030004663A (en) Method of manufacturing an aluminum solid electroyte capacitor
JP2007095801A (en) Manufacturing method of solid-state electrolytic capacitor
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JPH03297120A (en) Electrolytic capacitor
JP5208843B2 (en) Electrolytic capacitor manufacturing method
JPH0365007B2 (en)
JP3307136B2 (en) Manufacturing method of electrolytic capacitor
JPH06163326A (en) Solid electrolytic capacitor and manufacture thereof
JP2012243856A (en) Manufacturing method of solid electrolytic capacitor
JP5377115B2 (en) Manufacturing method of solid electrolytic capacitor
JP3474986B2 (en) Solid electrolytic capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

R150 Certificate of patent or registration of utility model

Ref document number: 4566156

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250