JPH03297120A - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JPH03297120A
JPH03297120A JP10078490A JP10078490A JPH03297120A JP H03297120 A JPH03297120 A JP H03297120A JP 10078490 A JP10078490 A JP 10078490A JP 10078490 A JP10078490 A JP 10078490A JP H03297120 A JPH03297120 A JP H03297120A
Authority
JP
Japan
Prior art keywords
separator
anode
electrode
capacitor element
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10078490A
Other languages
Japanese (ja)
Other versions
JP2950575B2 (en
Inventor
Susumu Ando
進 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP10078490A priority Critical patent/JP2950575B2/en
Publication of JPH03297120A publication Critical patent/JPH03297120A/en
Application granted granted Critical
Publication of JP2950575B2 publication Critical patent/JP2950575B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a loss, to maintain a stable characteristic and to realize a small size by a method wherein a separator is laid between an anode electrode and a cathode electrode and the separator containing a polyamideimide fiber is used. CONSTITUTION:A high-purity aluminum foil 90mum in thickness is used for an anode 2 of a capacitor element 1; it is etched electrochemically; after that, 90V is applied to the surface by an anodic oxidation treatment; a dielectric layer of aluminum oxide is formed. An aluminum foil 50mum in thickness is used for a cathode foil; it is cut to be a belt shape in the same manner as the anode foil. Extraction leads 5, 6 for electrode extraction use are connected to the electrode foils; a belt-shaped separator 3, 40mum in thickness, composed of a polyamideimide fiber is laid between both electrode foils; it is wound at a winding tension of 2kg; the capacitor element is constituted. Then, the element is impregnated with an electrolyte whose main solute is ammonium adipate; an electrolytic capacitor is formed. Thereby, the smallsized electrolytic capacitor whose loss is small is formed, a stable characteristic is maintained and a small size is realized.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、電極間に電解質をセパレータによって保持
してなる電解コンデンサに関する。
The present invention relates to an electrolytic capacitor in which an electrolyte is held between electrodes by a separator.

【従来の技術】[Conventional technology]

電解コンデンサは、アルミニウム、タンタル、ニオブな
どの金属表面に絶縁性の酸化皮膜が形成されるいわゆる
弁金属を少なくとも陽極電極に用い、この陽極金属を陽
極酸化処理等の操作によって、所望の厚さの絶縁性の酸
化皮膜を形成し、この皮膜を誘電体層として用いる。 陽極電極の形状は種々のものがあるが、主なものは長尺
の箔状物を同様に長尺のセパレータ、陰極と共に巻回し
た素子構造のものがある。また箔状の電極とセパレータ
とを重ね合わせた積層型のコンデンサ素子もある。これ
らのコンデンサ素子には、液体あるいは固体状の電解質
をセパレータで保持させ、この電解質が誘電体酸化皮膜
層に直接接触して真の陰極としての機能を果たす。 またこの発明の対象範囲外であるが、素子にセパレータ
を用いずに、ブロック状の多孔質弁金属体を陽極に用い
たものなどが知られている。 液体の電解質は、エチレングリコール、T−フチロラク
トンなど各種の有機溶媒や水などに有機酸、無機酸ある
いはこれらの塩類を溶解させたものを用いている。また
固体電解質としては、二酸化マンガン、二酸化鉛などの
半導体無機化合物や、テトラシアノキノジメタン、ポリ
アセチレン、ポリピロールなどの導電性有機化合物など
を用いている。 セパレータは、前述したように電解質を電極間に保持さ
せるとともに、陽極、陰極間の短絡を防止する機能を有
している。セパレータの材料は、液体電解質の場合、紙
が用いられることが多く、その原料にはクラフトと呼ば
れる比較的長繊維のパルプを用いたものや、マニラ麻繊
維を用いたものなどが多用されている。また固体電解質
で、熱変成工程が必要な二酸化マンガンを用いた固体電
解質の場合には、紙取外のガラス繊維布の薄手のものが
用いられることがある。
Electrolytic capacitors use at least a so-called valve metal, in which an insulating oxide film is formed on the surface of a metal such as aluminum, tantalum, or niobium, for the anode electrode, and the anode metal is heated to a desired thickness by anodizing or other operations. An insulating oxide film is formed and this film is used as a dielectric layer. There are various shapes of anode electrodes, but the main one has an element structure in which a long foil-like material is wound together with a similarly long separator and a cathode. There are also laminated capacitor elements in which foil electrodes and separators are stacked one on top of the other. In these capacitor elements, a liquid or solid electrolyte is held by a separator, and this electrolyte comes into direct contact with the dielectric oxide film layer and functions as a true cathode. Although outside the scope of the present invention, devices are known in which a block-shaped porous valve metal body is used as an anode without using a separator in the element. The liquid electrolyte used is one obtained by dissolving an organic acid, an inorganic acid, or a salt thereof in various organic solvents such as ethylene glycol and T-phthyrolactone, or water. As the solid electrolyte, semiconductor inorganic compounds such as manganese dioxide and lead dioxide, and conductive organic compounds such as tetracyanoquinodimethane, polyacetylene, and polypyrrole are used. As described above, the separator has the function of holding the electrolyte between the electrodes and preventing short circuit between the anode and the cathode. In the case of liquid electrolytes, paper is often used as the material for the separator, and its raw materials are often made from relatively long-fiber pulp called kraft or Manila hemp fibers. Further, in the case of a solid electrolyte using manganese dioxide which requires a thermal conversion process, a thin glass fiber cloth without paper removal may be used.

【発明が解決しようとする課題】[Problem to be solved by the invention]

セパレータに要求される機能は、陽極、陰極電極間に電
解質を必要かつ十分な量を保持するとともに、両電極間
に介在することから、損失特性などが悪化しないように
十分な電導度が維持することが求められる。しかしなが
ら電導度の向上を図るために、セパレータの厚さや密度
を必要以上に下げると、電極間の短絡などの事故が発生
することになる。またセパレータを一定以上に薄くする
のは困難で、紙の場合で20gm程度、ガラス繊維の場
合数十μmが実用上の限度であり、これ以上薄くすると
強度不足などにより、素子形成時にセパレータの切断が
起きるなどの不都合が生じる。 さらに液体電解質を用いた電解コンデンサの場合、製造
時あるいは使用温度範囲が著しく高(なることはないが
、固体電解質特に二酸化マンガンを用いた場合などは、
コンデンサ素子に浸漬した硝酸マンガンを二酸化マンガ
ンに変成させる時に250°C以上の温度で熱変成させ
る工程を繰り返すことから、セパレータも耐熱性を持っ
たものが要求される場合もある。 この発明は、上述した問題点を解決することを目的とし
たもので、新規なセパレータを採用することにより、特
性の優れた電解コンデンサを得ようとするものである。
The functions required of the separator are to maintain the necessary and sufficient amount of electrolyte between the anode and cathode electrodes, and to maintain sufficient conductivity to prevent loss characteristics from worsening since it is interposed between the two electrodes. That is required. However, if the thickness and density of the separator are reduced more than necessary in order to improve conductivity, accidents such as short circuits between electrodes may occur. In addition, it is difficult to make the separator thinner than a certain level; the practical limit is about 20 gm for paper, and several tens of μm for glass fiber. This may cause inconveniences such as. Furthermore, in the case of electrolytic capacitors using liquid electrolytes, the manufacturing or operating temperature range is extremely high (although this does not occur when solid electrolytes, especially manganese dioxide, are used).
When converting manganese nitrate immersed in a capacitor element into manganese dioxide, the process of thermally converting it at a temperature of 250°C or higher is repeated, so the separator may also be required to be heat resistant. This invention aims to solve the above-mentioned problems, and aims to obtain an electrolytic capacitor with excellent characteristics by employing a new separator.

【課題を解決するための手段] この発明の電解コンデンサは、表面に誘電体酸化皮膜層
が形成された陽極電極と、陰極電極との間にセパレータ
を介在させ巻回あるいは積層させて形成し、前記セパレ
ータにポリアミドイミド繊維を含んだものを用いたこと
を特徴としている。 ポリアミドイミド樹脂は、 の基本骨格を有する構造で、熱安定性が極めて高いとと
もに、引張強度、弾性係数等の機械的特性にも優れたも
ので、従来から樹脂加工品として、各種の用途に用いら
れている。 この発明で用いるセパレータは、ポリアミドイミド繊維
を抄いてシート状にしたものか、あるいは既存のパルプ
やマニラ麻繊維に混抄して用いる。 ポリアミドイミド繊維は、繊維素の径が10μm以下の
ものが実用化されており、このように特に細いものを用
いることで、厚さが20μm以下の薄いセパレータが得
られる。 【作   用】 ポリアミドイミド繊維は上記したように、極めて高い引
張強度と、耐熱性、耐薬品性を持つので、この繊維をそ
の全てに、あるいは混抄して用いたセパレータは、高い
引張り強度とともに、耐熱性、耐薬品性を有する。 このため、巻回素子の製造時にセパレータに掛かる張力
を上げ、コンデンサ素子を強固に巻き上げることができ
る。また同じ引張強度を得るために従来より薄いセパレ
ータを用いることができるので単位体積あたりの静電容
量値を増加させ、損失を低減させる。 さらに耐熱性、耐薬品性に優れるので、二酸化マンガン
電解質形成時のように、高温処理や発生するガスによる
影響を受けることがない。
[Means for Solving the Problems] The electrolytic capacitor of the present invention is formed by winding or laminating a separator interposed between an anode electrode on which a dielectric oxide film layer is formed and a cathode electrode, The present invention is characterized in that the separator contains polyamide-imide fibers. Polyamide-imide resin has a structure with the basic skeleton of , and has extremely high thermal stability as well as excellent mechanical properties such as tensile strength and elastic modulus, and has traditionally been used as a resin processed product for various purposes. It is being The separator used in this invention is made of polyamide-imide fibers made into a sheet, or mixed with existing pulp or Manila hemp fibers. Polyamide-imide fibers with cellulose diameters of 10 μm or less are in practical use, and by using such particularly thin fibers, a thin separator with a thickness of 20 μm or less can be obtained. [Function] As mentioned above, polyamide-imide fiber has extremely high tensile strength, heat resistance, and chemical resistance, so a separator using this fiber in its entirety or as a mixture has high tensile strength as well as Has heat resistance and chemical resistance. Therefore, the tension applied to the separator during manufacturing of the wound element can be increased, and the capacitor element can be wound up firmly. Furthermore, since a thinner separator can be used than before to obtain the same tensile strength, the capacitance value per unit volume is increased and loss is reduced. Furthermore, since it has excellent heat resistance and chemical resistance, it is not affected by high temperature treatment or generated gases, unlike when forming a manganese dioxide electrolyte.

【実 施 例】【Example】

以下実施例に基づいてこの発明を更に詳しく説明する。 第1図は、この発明の電解コンデンサの素子構造をあら
れしたものである。図は巻回構造のコンデンサ素子1の
一部を分解した正面図であり、帯状に裁断されたアルミ
ニウム、タンタルなどの弁金属箔を陽極2として用い、
陽極2よりも僅かに幅広のセパレータ3と、前記陽極と
ほぼ同幅に裁断された金属箔からなる陰極4とを図示の
ように重ね合わせて、その一端から巻回し円筒状のコン
デンサ素子1を形成するものである。なおこの場合、セ
パレータ3は2枚用い、巻回の裏面側でも陽極2と陰極
4とが接触しないようになっている。 また陽極2および陰極4にはそれぞれ外部と電気的接続
を得るための引出しり−ド5.6が各々接続され、巻回
一方の巻回端面部から導出されている。 このコンデンサ素子1に、液体あるいは固体の電解質を
所定の工程によりセパレータ3に浸透させ維持させる。 電解質の浸透処理の終わったコンデンサ素子1は、必要
に応じて金属ケース内に収納あるいは樹脂で外面を密閉
して外装処理をおこなえばよい。 この発明の実施例として、まず液体電解質を用いた電解
コンデンサを作成してその特性を調べた。 (本発明例1) この発明例で用いた電解コンデンサは、巻回型のコンデ
ンサ素子を用いたもので、定格電圧63V定格静電容量
1000μFのものである。コンデンサ素子は、陽極に
厚さ90μmの高純度アルミニウム箔を用い、このアル
ミニウム箔の表面積拡大のため、電気化学的エツチング
処理を施した後、表面に陽極酸化処理によって90Vを
印加して、酸化アルミニウムの誘電体層を形成した。こ
の陽極箔を幅24[lll11、長さ450肛の帯状に
切断し陽極引出しリードを加締付けによって接続した。 陰極箔には、厚さ50pmのアルミニウム箔を用い、や
はり帯状に切断した。これら電極箔に、電極引出しのた
めのり一部を接続し、両電極箔間に厚さ40μmのポリ
アミドイミド繊維からなる帯状のセパレータを介在させ
、2kgの巻回張力で巻回しコンデンサ素子を得た。 次に、このコンデンサ素子にアジピン酸アンモニウムを
主溶質とした電解液を含浸し、筒状のアルミニウムケー
スに収納し、開口部を弾性ゴムで密閉して電解コンデン
サとした。 (比較例1) 陽極箔、陰極箔は本発明例1と同じものを用いた。セパ
レータには、マニラ麻混抄の厚さ40μmの電解紙を用
いこれらを重ね合わせて1kgの巻回張力で巻回してコ
ンデンサ素子を形成した。 このコンデンサ素子に本発明例1と同じ電解液を含浸し
、同様の方法で外装を施し電解コンデンサとした。 これらの電解コンデンサの特性を測定したところ以下の
表1に示す結果が得られた。 なお損失は120Hzにおける値、漏れ電流は定格電圧
印加後1分の値である。 次に、電解質に固体電解質を用いた実施例について説明
する。 (本発明例2) コンデンサ素子の形成は、陽極側電極、セパレータは本
発明例1と同じ材料を用いた。また巻回張力についても
本発明例1と同じ値とした。このコンデンサ素子を硝酸
マンガン水溶液中に浸漬し、その後加熱炉中で、250
°C110分間加熱し硝酸マンガンを二酸化マンガンに
変成させた。この工程を3度繰り返した。 (比較例2) 陽極側電極は本発明例1と同しものを用い、セパレータ
は、ガラス繊維からなる厚さ100μmのものを使用し
、1kgの巻回張力で巻回してコンデンサ素子とした。 このコンデンサ素子を本発明例2と同じの方法で二酸化
マンガンからなる固体電解質層を形成した。 このようにして作成した固体電解質を用いた電解コンデ
ンサの初期の電気特性を測定したところ、表2に示す結
果が得られた。 これらの結果かられかるように、まず液体電解質を用い
た電解コンデンサの場合、この発明のセパレータを用い
た電解コンデンサは、高い巻回張力で巻くことができる
。また繊維径が細いことによって、繊維間の空隙が均一
になってセパレータの透気度が向上する。そして透気度
の向上と電極間距離の接近によって、同様に損失の小さ
なコンデンサが得られる。 また本発明例2では、セパレータを薄くでき、この結果
コンデンサ素子の直径が小さくなっている。逆にコンデ
ンサ素子の直径を従来のものと同じにすれば、電極の巻
き込み量を増やすことができ、その分静電容量が増大す
る。
The present invention will be explained in more detail below based on Examples. FIG. 1 shows the element structure of an electrolytic capacitor according to the present invention. The figure is a partially exploded front view of a capacitor element 1 with a wound structure, in which valve metal foil such as aluminum or tantalum cut into strips is used as an anode 2.
A separator 3 slightly wider than the anode 2 and a cathode 4 made of metal foil cut to approximately the same width as the anode are superimposed as shown in the figure, and a cylindrical capacitor element 1 is wound from one end thereof. It is something that forms. In this case, two separators 3 are used so that the anode 2 and cathode 4 do not come into contact even on the back side of the winding. Further, a lead-out cord 5.6 for obtaining an electrical connection with the outside is connected to the anode 2 and the cathode 4, respectively, and is led out from the end face of one of the windings. In this capacitor element 1, a liquid or solid electrolyte is permeated into the separator 3 through a predetermined process and maintained therein. The capacitor element 1 that has been subjected to the electrolyte infiltration treatment may be packaged by storing it in a metal case or sealing the outer surface with resin, if necessary. As an example of this invention, an electrolytic capacitor using a liquid electrolyte was first created and its characteristics were investigated. (Example 1 of the present invention) The electrolytic capacitor used in this example of the invention uses a wound type capacitor element, and has a rated voltage of 63V and a rated capacitance of 1000 μF. The capacitor element uses high-purity aluminum foil with a thickness of 90 μm as the anode, and after performing electrochemical etching treatment to expand the surface area of this aluminum foil, the surface is anodized and 90V is applied to it to form aluminum oxide. A dielectric layer was formed. This anode foil was cut into a strip having a width of 24 mm and a length of 450 mm, and an anode lead was connected by crimping. Aluminum foil with a thickness of 50 pm was used as the cathode foil, and was also cut into strips. A part of the glue for drawing out the electrodes was connected to these electrode foils, a band-shaped separator made of polyamideimide fiber with a thickness of 40 μm was interposed between both electrode foils, and a capacitor element was obtained by winding with a winding tension of 2 kg. . Next, this capacitor element was impregnated with an electrolytic solution containing ammonium adipate as the main solute, housed in a cylindrical aluminum case, and the opening was sealed with elastic rubber to form an electrolytic capacitor. (Comparative Example 1) The same anode foil and cathode foil as in Example 1 of the present invention were used. Electrolytic paper made of Manila hemp mixed paper with a thickness of 40 μm was used as the separator, and these sheets were overlapped and wound with a winding tension of 1 kg to form a capacitor element. This capacitor element was impregnated with the same electrolytic solution as in Example 1 of the present invention, and an exterior was applied in the same manner to obtain an electrolytic capacitor. When the characteristics of these electrolytic capacitors were measured, the results shown in Table 1 below were obtained. Note that the loss is the value at 120 Hz, and the leakage current is the value for 1 minute after the rated voltage is applied. Next, an example in which a solid electrolyte is used as the electrolyte will be described. (Example 2 of the present invention) In forming the capacitor element, the same materials as in Example 1 of the present invention were used for the anode side electrode and the separator. Further, the winding tension was also set to the same value as in Example 1 of the present invention. This capacitor element was immersed in a manganese nitrate aqueous solution, and then heated in a heating furnace at 250°C.
It was heated at 110 minutes at °C to convert manganese nitrate into manganese dioxide. This process was repeated three times. (Comparative Example 2) The anode side electrode was the same as in Inventive Example 1, and the separator was made of glass fiber with a thickness of 100 μm and was wound with a winding tension of 1 kg to form a capacitor element. A solid electrolyte layer made of manganese dioxide was formed on this capacitor element in the same manner as in Example 2 of the present invention. When the initial electrical characteristics of the electrolytic capacitor using the solid electrolyte thus prepared were measured, the results shown in Table 2 were obtained. As can be seen from these results, first, in the case of an electrolytic capacitor using a liquid electrolyte, an electrolytic capacitor using the separator of the present invention can be wound with high winding tension. Furthermore, since the fiber diameter is small, the voids between the fibers become uniform, improving the air permeability of the separator. Similarly, by improving air permeability and reducing the distance between the electrodes, a capacitor with low loss can be obtained. Furthermore, in Example 2 of the present invention, the separator can be made thinner, and as a result, the diameter of the capacitor element is reduced. Conversely, if the diameter of the capacitor element is the same as that of the conventional capacitor element, the amount of electrode wrapping can be increased, and the capacitance will increase accordingly.

【発明の効果】【Effect of the invention】

以上述べたように、この発明のポリアミドイミド繊維を
含むセパレータを用いた電解コンデンサは、ポリアミド
イミド繊維の機械的強度が高いため、高い張力でコンデ
ンサ素子を形成できるので、損失の小さい小型の電解コ
ンデンサが得られる。 また、耐熱性に優れかつガラス繊維布に比べて薄く形成
できるので、安定した特性を維持するとともに、コンデ
ンサの小型化を図ることができる。
As described above, an electrolytic capacitor using a separator containing polyamide-imide fibers of the present invention can be used to form a capacitor element with high tension due to the high mechanical strength of the polyamide-imide fibers. is obtained. Furthermore, since it has excellent heat resistance and can be formed thinner than glass fiber cloth, it is possible to maintain stable characteristics and downsize the capacitor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の電解コンデンサの素子構造を示す一
部を分解した正面図。 1・・コンデンサ素子、2・・陽極、3・・セパレータ
、4・・陰極、5,6・・引出しリード。 特  許  出  願  人 日本ケミコン株式会社
FIG. 1 is a partially exploded front view showing the element structure of the electrolytic capacitor of the present invention. 1. Capacitor element, 2. Anode, 3. Separator, 4. Cathode, 5, 6. Output lead. Patent application: Nippon Chemi-Con Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)表面に誘電体酸化皮膜層が形成された陽極電極と
、陰極電極との間にポリアミドイミド繊維からなるセパ
レータを介在させ巻回あるいは積層させてコンデンサ素
子を形成し、前記コンデンサ素子のセパレータ部に電解
質を保持させてなる電解コンデンサ。
(1) A separator made of polyamide-imide fiber is interposed between an anode electrode having a dielectric oxide film layer formed on its surface and a cathode electrode, and is wound or laminated to form a capacitor element, and the separator of the capacitor element An electrolytic capacitor that holds an electrolyte.
(2)表面に誘電体酸化皮膜層が形成された陽極電極と
、陰極電極との間にポリアミドイミド繊維を混抄したセ
パレータを介在させ巻回あるいは積層させてコンデンサ
素子を形成し、前記コンデンサ素子のセパレータ部に電
解質を保持させてなる電解コンデンサ。
(2) A separator made of mixed polyamide-imide fiber is interposed between the anode electrode, which has a dielectric oxide film layer formed on its surface, and the cathode electrode, and is wound or laminated to form a capacitor element. An electrolytic capacitor whose separator part holds electrolyte.
JP10078490A 1990-04-17 1990-04-17 Electrolytic capacitor Expired - Lifetime JP2950575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10078490A JP2950575B2 (en) 1990-04-17 1990-04-17 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10078490A JP2950575B2 (en) 1990-04-17 1990-04-17 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH03297120A true JPH03297120A (en) 1991-12-27
JP2950575B2 JP2950575B2 (en) 1999-09-20

Family

ID=14283088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10078490A Expired - Lifetime JP2950575B2 (en) 1990-04-17 1990-04-17 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2950575B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013552A1 (en) * 2005-07-29 2007-02-01 Toyo Boseki Kabushiki Kaisha Polyamide imide fiber, non-woven fabric composed of the fiber, process for manufacture of the non-woven fabric, and separator for electronic component
JP2007059388A (en) * 2005-07-29 2007-03-08 Toyobo Co Ltd Separator for electronic component
US20100165545A1 (en) * 2008-12-26 2010-07-01 Sanyo Electric Co., Ltd. Electrolytic capacitor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305899A (en) 2006-05-15 2007-11-22 Matsushita Electric Ind Co Ltd Aluminum electrolytic capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007013552A1 (en) * 2005-07-29 2007-02-01 Toyo Boseki Kabushiki Kaisha Polyamide imide fiber, non-woven fabric composed of the fiber, process for manufacture of the non-woven fabric, and separator for electronic component
JP2007059388A (en) * 2005-07-29 2007-03-08 Toyobo Co Ltd Separator for electronic component
US9023534B2 (en) 2005-07-29 2015-05-05 Toyo Boseki Kabushiki Kaisha Polyamide imide fiber, non-woven fabric composed of the fiber, process for manufacture of the non-woven fabric, and separator for electronic component
US20100165545A1 (en) * 2008-12-26 2010-07-01 Sanyo Electric Co., Ltd. Electrolytic capacitor
US8320104B2 (en) * 2008-12-26 2012-11-27 Sanyo Electric Co., Ltd. Electrolytic capacitor

Also Published As

Publication number Publication date
JP2950575B2 (en) 1999-09-20

Similar Documents

Publication Publication Date Title
KR100442073B1 (en) Solid Electrolyte Capacitor and its Manufacture
TWI416558B (en) Solid electrolytic capacitor and manufacturing method thereof
JP2007173773A (en) Electrolytic capacitor
JPH09293639A (en) Solid electrolytic capacitor and manufacture thereof
JP5293743B2 (en) Capacitor electrode foil and electrolytic capacitor using the same
JP4654637B2 (en) Manufacturing method of aluminum electrolytic capacitor
JPH03297120A (en) Electrolytic capacitor
JP2009064959A (en) Aluminum electrolytic capacitor
JP2009064958A (en) Aluminum electrolytic capacitor
JP2007180404A (en) Solid electrolytic capacitor and manufacturing method thereof
JP3033971B2 (en) Electrolytic capacitor
JP2010074089A (en) Electrolytic capacitor, and method of manufacturing the same
JPH01278713A (en) Electrolytic capacitor
JPH09232189A (en) Electrolytic capacitor
JP3285045B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03231414A (en) Solid electrolytic capacitor
JPS6449213A (en) Manufacture of solid electrolytic capacitor
JP6433216B2 (en) Aluminum electrolytic capacitor
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2001052967A (en) Electrolytic capacitor
JPH02213113A (en) Solid-state electrolytic capacitor
US3255390A (en) Electrical capacitor
JPH0451466Y2 (en)
JPH11145003A (en) Electrolytic capacitor and its manufacture
JPS5832770B2 (en) Electrolytic capacitor and its manufacturing method

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11