JPH03231414A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH03231414A
JPH03231414A JP2610890A JP2610890A JPH03231414A JP H03231414 A JPH03231414 A JP H03231414A JP 2610890 A JP2610890 A JP 2610890A JP 2610890 A JP2610890 A JP 2610890A JP H03231414 A JPH03231414 A JP H03231414A
Authority
JP
Japan
Prior art keywords
capacitor element
film
capacitor
winding
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2610890A
Other languages
Japanese (ja)
Inventor
Shinichi Kaneko
金子 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd, Japan Carlit Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP2610890A priority Critical patent/JPH03231414A/en
Publication of JPH03231414A publication Critical patent/JPH03231414A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deformation of a capacitor element, deterioration of an oxide film, and crack of a conductive macromolecule by forming a capacitor by winding a film-forming metal foil where a dielectric oxide film is formed at a winding core of a required material and a required shape and a spacer. CONSTITUTION:An anode lead 1 is caulking-fixed to a highly pure Al foil anode foil 2 which is made by forming a dielectric oxide film, a conductive macromolecular polypyrrole film 3 is formed by chemical oxidative polymerization, and a capacitor element which is formed along with a separator paper 4 is wound around a winding core 5 which is in cylindrical shape or polygonal cylindrical shape with a ceramic or chemical-resistance material for creating a solid electrolytic capacitor. After winding this capacitor element, if a winding core is left, neither cavity nor void is generated within the capacitor element, mechanical strength against stress is enhanced, and deformation of the capacitor element, deterioration of an oxide film, and crack of a conductive macromolecule are prevented even if press stress is applied in the case of sheathing of the resin mold, thus restricting generation of leak current and short-circuit failure and obtaining a solid electrolytic capacitor with stable and improved electrical characteristics.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、誘電体酸化皮膜の表面に、固体電解質として
導電性高分子膜を形成してなる固体電解コンデンサに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a solid electrolytic capacitor in which a conductive polymer film is formed as a solid electrolyte on the surface of a dielectric oxide film.

[従来の技術] 固体電解コンデンサは、一般に、アルミニウム、タンタ
ルなどの皮膜形成性金属(電極箔)表面に、誘電体であ
る酸化皮膜を形成し、この酸化皮膜上に二酸化マンガン
、TCNQ錯体などの固体電解質層及び導電体層を順次
形成して構成されている。
[Prior Art] Solid electrolytic capacitors generally form an oxide film, which is a dielectric, on the surface of a film-forming metal (electrode foil) such as aluminum or tantalum, and on this oxide film, manganese dioxide, TCNQ complex, etc. It is constructed by sequentially forming a solid electrolyte layer and a conductor layer.

二酸化マンガンを固体電解質として用いたコンデンサは
、製造工程上誘電体酸化皮膜を損傷し易いなどの欠点を
持ち、一方、TCNQ錯体を用いたコンデンサは熱安定
性に乏しいなどの欠点がある。
Capacitors using manganese dioxide as a solid electrolyte have drawbacks such as the dielectric oxide film being easily damaged during the manufacturing process, while capacitors using TCNQ complexes have drawbacks such as poor thermal stability.

これに対し、近年、陽極酸化皮膜」二に酸化剤を用いて
化学酸化重合した導電性高分子膜(化学酸化重合膜)を
形成し、セパレータ紙(スペーサ)及び陰極箔と共に巻
回してコンデンサ素子を形成した後、電解酸化重合によ
り導電性高分子膜(電解酸化重合膜)を形成した構造の
固体電解コンデンサが提案されている。
In response to this, in recent years, a conductive polymer film (chemical oxidation polymerization film) that is chemically oxidized and polymerized using an oxidizing agent is formed on the anodic oxide film (2), and is wound together with separator paper (spacer) and cathode foil to form a capacitor element. A solid electrolytic capacitor has been proposed in which a conductive polymer film (electrolytic oxidative polymer film) is formed by electrolytic oxidative polymerization after forming a conductive polymer film.

この固体電解コンデンサは、静電容量が大きく、温度特
性、周波数特性が良い特徴を有するが、化学酸化重合ま
たは電解酸化重合によって形成された導電性高分子膜が
、皮膜修復性をほとんど有していないために、工程中、
特に外装の時、樹脂モールドなどの加温、溶融樹脂注入
時の圧力などにより、コンデンサ素子にストレスが加わ
ると、コンデンサ素子が変形し、酸化皮膜の劣化、導電
性高分子の亀裂などを生じ、製品の漏れ電流が大きくな
る欠点があった。この漏れ電流が極めて大きくなった場
合には、短絡不良などが発生していた。
This solid electrolytic capacitor has large capacitance and good temperature and frequency characteristics, but the conductive polymer film formed by chemical oxidation polymerization or electrolytic oxidation polymerization has almost no film repairability. During the process, in order to avoid
Particularly during exterior packaging, if stress is applied to the capacitor element due to heating of the resin mold, pressure during injection of molten resin, etc., the capacitor element may be deformed, causing deterioration of the oxide film, cracks in the conductive polymer, etc. The problem was that the product had a large leakage current. When this leakage current becomes extremely large, short circuit failures and the like occur.

さらに、これに伴い、損失角の正接(tanδ)や、静
電容量の分布が大きくなるなど、改良すべき点が残され
ていた。
Furthermore, along with this, there are still some points to be improved, such as an increase in the tangent of the loss angle (tan δ) and an increase in the distribution of capacitance.

一方、従来、コンデンサ素子の巻回に当たっては、鉄製
などの巻芯を使用してこの周囲に素子を形成した後、巻
芯を抜取っているため、素子の巻回中心部に巻芯の寸法
針の空洞が生じており、この空洞自体、或いはこの空洞
周辺のターン間に生じる空隙が、コンデンサ素子のスト
レスに対する機械的強度を弱める要因となっていた。
On the other hand, conventionally, when winding a capacitor element, a winding core made of iron or the like is used to form the element around this core, and then the winding core is removed. A cavity is formed in the needle, and this cavity itself or a gap formed between turns around this cavity becomes a factor that weakens the mechanical strength of the capacitor element against stress.

[発明が解決しようとする課題] 以上説明したように、導電性高分子膜を固体電解質とし
て用いた従来の固体電解コンデンサでは、導電性高分子
膜が皮膜修復性をほとんど有しないことから、樹脂モー
ルド外装時にコンデンサ素子にストレスが加わると、コ
ンデンサ素子が変形し、酸化皮膜の劣化、導電性高分子
の亀裂などを生じるため、各種の特性が劣化してしまう
欠点があった。
[Problems to be Solved by the Invention] As explained above, in conventional solid electrolytic capacitors that use a conductive polymer film as a solid electrolyte, the conductive polymer film has almost no film repairability, so the resin When stress is applied to the capacitor element during mold packaging, the capacitor element deforms, causing deterioration of the oxide film, cracking of the conductive polymer, etc., resulting in the deterioration of various characteristics.

本発明は、このような従来技術の課題を解決するために
提案されたものであり、その目的は、導電性高分子膜を
固体電解質として使用する固体電解コンデンサにおいて
、樹脂モールド外装時にコンデンサ素子にストレスが加
わっても、コンデンサ素子の変形、酸化皮膜の劣化、導
電性高分子の亀裂などを防止可能とすることにより、漏
れ電流が小さく、短絡不良の発生が少なく、コンデンサ
としての電気的特性が安定且つ良好であるような、優れ
た固体電解コンデンサを提供することである。
The present invention was proposed in order to solve the problems of the prior art, and its purpose is to provide a solid electrolytic capacitor that uses a conductive polymer film as a solid electrolyte, in which the capacitor element is covered with a resin mold. Even when stress is applied, it is possible to prevent deformation of the capacitor element, deterioration of the oxide film, and cracking of the conductive polymer, resulting in low leakage current, fewer short circuit defects, and improved electrical characteristics as a capacitor. An object of the present invention is to provide an excellent solid electrolytic capacitor that is stable and good.

[課題を解決するための手段] 本発明は、従来の固体電解コンデンサにおいて、コンデ
ンサ素子の巻回中心部に形成される空洞が、コンデンサ
素子のストレスに対する機械的強度の低下の要因となっ
ていることに着目したものである。
[Means for Solving the Problems] The present invention solves the problem that in conventional solid electrolytic capacitors, a cavity formed at the center of the winding of a capacitor element causes a decrease in the mechanical strength of the capacitor element against stress. This is what we focused on.

すなわち、本発明による固体電解コンデンサは、誘電体
酸化皮膜を生成した皮膜形成性金属箔とスペーサとを巻
回して形成されたコンデンサ素子を使用してなる固体電
解コンデンサにおいて、コンデンサ素子が、その巻回中
心部にセラミックまたは耐薬品性材料による円柱形状ま
たは多角柱形状の巻芯を有し、且つ前記皮膜形成性金属
箔及びスペーサが、少なくとも順次形成された化学酸化
重合膜、電解酸化重合膜、導電性塗膜を具備し、前記皮
膜形成性金属箔と導電性塗膜とから電極引出端子が導出
されていることを特徴としている。
That is, the solid electrolytic capacitor according to the present invention is a solid electrolytic capacitor that uses a capacitor element formed by winding a spacer and a film-forming metal foil on which a dielectric oxide film has been formed, in which the capacitor element is formed by winding a spacer. A chemical oxidation polymer film, an electrolytic oxidation polymer film, which has a cylindrical or polygonal cylinder core made of ceramic or chemical-resistant material at the center of the rotation, and the film-forming metal foil and spacer are formed at least in sequence; It is characterized in that it is provided with a conductive coating film, and an electrode lead terminal is led out from the film-forming metal foil and the conductive coating film.

[作用] 以上のような構成を有する本発明の作用は、次の通りで
ある。
[Function] The function of the present invention having the above configuration is as follows.

まず、本発明は、セラミック或いは耐薬品性材料の巻芯
を使用してコンデンサ素子を形成し、コンデンサ素子の
巻回後も、この巻芯をコンデンサ素子の巻回中心部に残
す構成としているため、形成されたコンデンサ素子内に
空洞または空隙を生ずることがなく、ストレスに対する
機械的強度が高くなっている。従って、樹脂モールド外
装時に素子に加圧ストレスが加わっても、コンデンサ素
子の変形、酸化皮膜の劣化、導電性高分子の亀裂などを
防止できるため、漏れ電流値、及び短絡不良の発生を少
なくでき、コンデンサとしての電気的特性を安定且つ良
好にできる。
First, in the present invention, a capacitor element is formed using a winding core made of ceramic or a chemical-resistant material, and the winding core remains at the center of the winding of the capacitor element even after the capacitor element is wound. , no cavities or voids are formed in the formed capacitor element, and mechanical strength against stress is high. Therefore, even if pressure stress is applied to the element during resin mold exterior packaging, it is possible to prevent deformation of the capacitor element, deterioration of the oxide film, cracking of the conductive polymer, etc., thereby reducing the leakage current value and the occurrence of short circuit failures. , the electrical characteristics as a capacitor can be made stable and good.

ところで、単に巻芯をコンデンサ素子の巻回中心部に残
すだけであると、巻芯の材料によっては、後の各種の処
理により巻芯が劣化してしまう恐れがあるが、本発明に
おいては、巻芯の材料をセラミック或いは耐薬品性材料
に限定しているため、巻回後の各種処理によ−)て巻芯
が劣化することがない。従って、ストレスに対する巻芯
の機械的強度は、各種処理を経た後も確実に維持され、
前記の通り、漏れ電流を小さくでき、短絡不良の発生を
少なくでき、コンデンサとしての電気的特性を安定且つ
良好にできる。
By the way, if the winding core is simply left at the center of the winding of the capacitor element, depending on the material of the winding core, there is a risk that the winding core will deteriorate due to various subsequent treatments, but in the present invention, Since the material of the winding core is limited to ceramic or chemical-resistant materials, the winding core will not deteriorate due to various treatments after winding. Therefore, the mechanical strength of the winding core against stress is reliably maintained even after various treatments.
As described above, the leakage current can be reduced, the occurrence of short circuit failures can be reduced, and the electrical characteristics of the capacitor can be made stable and good.

[実施例] 以下に、本発明による固体電解コンデンサの一実施例に
ついて、図面を参照して具体的に説明する。
[Example] An example of the solid electrolytic capacitor according to the present invention will be specifically described below with reference to the drawings.

まず、第1図に示すように、誘電体酸化皮膜を形成して
なる厚さ401tm、幅3mmの高純度アルミニウム箔
に、かしめ付けにより陽極リード1を取付けた後、22
 m mに切断して陽極箔2を得た。この陽極箔2を2
mol/uピロール/エタノール溶液に5分間浸漬した
後、さらに、0.5m o 1 / l過硫酸アンモニ
ウム水溶液に5分間浸漬して、化学酸化重合によりポリ
ピロール膜3を形成した。
First, as shown in FIG. 1, the anode lead 1 was attached by caulking to a high-purity aluminum foil with a dielectric oxide film formed thereon, 401 tm thick and 3 mm wide.
The anode foil 2 was obtained by cutting into mm pieces. This anode foil 2
After being immersed in a mol/u pyrrole/ethanol solution for 5 minutes, it was further immersed in a 0.5 m o 1/l ammonium persulfate aqueous solution for 5 minutes to form a polypyrrole film 3 by chemical oxidative polymerization.

次に、この陽極箔2にセパレータ紙(スペーサ)4を重
ねて、直径1mmのセラミック製の円柱形状の巻芯5を
使用し、渦巻状に巻回してコンデンサ素子6を作成し、
この後、再化成により誘電体酸化皮膜の修復を行った。
Next, a separator paper (spacer) 4 is layered on this anode foil 2, and a capacitor element 6 is created by winding it in a spiral using a ceramic cylindrical winding core 5 with a diameter of 1 mm.
Thereafter, the dielectric oxide film was repaired by re-forming.

続いて、このコンデ〕/す素子6を、ピロールモノマー
1mol/Jj及び支持電解質としてパラトルエンスル
ホン酸ナトリウム1mol/uを含むアセトニトリル溶
液中に浸漬し、化学重合したポリピロールを陽極とし、
外部陰極との間に定電流電解酸化重合(1mA/’cm
2.30m1 n)を行い、電解酸化重合によりポリピ
ロール膜を形成した。
Subsequently, this conde/su element 6 was immersed in an acetonitrile solution containing 1 mol/J of pyrrole monomer and 1 mol/U of sodium paratoluenesulfonate as a supporting electrolyte, and the chemically polymerized polypyrrole was used as an anode.
Constant current electrolytic oxidative polymerization (1 mA/'cm) is applied between the external cathode and
A polypyrrole film was formed by electrolytic oxidation polymerization.

この後、コンデンサ素子6を、コロイダルヵボンに浸漬
してカーボン層を形成し、さらに銀ペストを塗布して導
電性塗膜を形成し、第2図に示すように、金属フレーム
7に、陽極側は溶接、陰極側は銀接着剤により固着した
。そして、このように金属フレーム7に固着したコンデ
ンサ素子6を、熱硬化性エポキシ樹脂8によりモールド
成形して、定格10v公称静電容量10μFの固体電解
コンデンサを完成した。
Thereafter, the capacitor element 6 is immersed in colloidal carbon to form a carbon layer, and then silver paste is applied to form a conductive coating, and as shown in FIG. Welding and the cathode side were fixed with silver adhesive. The capacitor element 6 thus fixed to the metal frame 7 was molded with thermosetting epoxy resin 8 to complete a solid electrolytic capacitor with a rating of 10V and a nominal capacitance of 10 μF.

以上のように構成した本実施例の固体電解コンデンサの
作用は、次の通りである。
The solid electrolytic capacitor of this embodiment configured as described above operates as follows.

すなわち、セラミックの巻芯5をコンデンサ素子6内に
残して形成しているため、コンデンサ素子6内に空洞ま
たは空隙を生ずることがなく、ストレスに対する機械的
強度が高くなっている。この場合、特に巻芯5の材料と
してセラミックを使用しているため、巻回後の各種処理
に対しても、巻芯5が劣化する恐れがなく、安定した機
械的強度が保たれる。このため、本実施例においては、
熱硬化性エポキシ樹脂8によるモールド成形時に、コン
デンサ素子6に加圧ストレスが加わっても、゛従来のよ
うに、コンデンサ素子6の変形、酸化皮膜の劣化、導電
性高分子の亀裂などを生じる恐れがない。従って、従来
に比べて格段に漏れ電流を小さくでき、短絡不良の発生
を少なくでき、コンデンサとしての電気的特性を安定且
つ良好にできる。
That is, since the ceramic winding core 5 is formed while remaining inside the capacitor element 6, no cavities or voids are formed within the capacitor element 6, and the mechanical strength against stress is high. In this case, in particular, since ceramic is used as the material for the winding core 5, there is no fear that the winding core 5 will deteriorate even during various treatments after winding, and stable mechanical strength can be maintained. Therefore, in this example,
Even if pressure stress is applied to the capacitor element 6 during molding with the thermosetting epoxy resin 8, there is no risk of deformation of the capacitor element 6, deterioration of the oxide film, cracks in the conductive polymer, etc. as in the conventional case. There is no. Therefore, the leakage current can be made much smaller than in the past, the occurrence of short circuit failures can be reduced, and the electrical characteristics of the capacitor can be made stable and good.

なお、以上のような本発明の実施例による固体電解コン
デンサ(本実施例品)の作用効果を具体的に検証するた
めに、従来技術によって、巻芯以外は同様の構成とした
同定格同寸法の固体電解コンデンサ(従来品)を次のよ
うにして製造した。
In addition, in order to specifically verify the effects of the solid electrolytic capacitor according to the embodiment of the present invention (this embodiment product) as described above, a capacitor with the same rating and dimensions with the same configuration except for the winding core was constructed using conventional technology. A solid electrolytic capacitor (conventional product) was manufactured as follows.

すなわち、従来品の製造に当たっては、誘電体酸化皮膜
を形成した同寸法の高純度アルミニウム箔を使用し、陽
極リードを取付け、化学酸化重合によるポリピロール膜
を形成するまでは、本発明による前記実施例と全く同様
に処理する。そして、巻回工程においては、本発明によ
る前記実施例とは異なり、巻芯として直径1mm(同寸
法)の鉄製巻芯を使用し、陽極箔とセパレータ紙(スペ
ーサ)とを重ね、渦巻状に巻回してコンデンサ素子を作
成し、この後、素子を鉄製巻芯より抜取る。
That is, in manufacturing the conventional product, a high-purity aluminum foil of the same size with a dielectric oxide film formed thereon was used, an anode lead was attached, and a polypyrrole film was formed by chemical oxidation polymerization. is processed in exactly the same way. In the winding process, unlike the above-mentioned embodiments of the present invention, an iron winding core with a diameter of 1 mm (same size) is used as the winding core, and the anode foil and separator paper (spacer) are overlapped to form a spiral shape. A capacitor element is created by winding it, and then the element is extracted from the iron winding core.

この後は、再び本発明による前記実施例と同様に、再化
成により誘電体酸化皮膜の修復を行い、化学酸化重合、
定電流電解酸化重合を行いポリピロール膜を形成した後
、コロイダルカーボン及び銀ベーストを塗布して金属フ
レームに固着し、最終的に熱硬化製エポキシ樹脂により
モールド成形して、定格電圧10v、公称静電容量10
μFの固体電解コンデンサを完成した。
After this, the dielectric oxide film is repaired by reconstitution, and chemical oxidation polymerization is performed, as in the above embodiment according to the present invention.
After performing constant current electrolytic oxidation polymerization to form a polypyrrole film, it is coated with colloidal carbon and silver base and fixed to a metal frame, and finally molded with thermosetting epoxy resin to achieve a rated voltage of 10V and a nominal static electricity. Capacity 10
Completed a μF solid electrolytic capacitor.

以上のように完成した本発明による固体電解コンデンサ
(本実施例品)と、従来技術による固体電解コンデンサ
(従来品)とについて、多数の試料を用いて各種特性試
験を行い、静電容量の分布範囲、tanδ及び漏れ電流
の平均値、短絡発生数を調べたところ、以下の第1表に
示すような結果が得られた。
Various characteristic tests were conducted using a large number of samples on the solid electrolytic capacitor according to the present invention (this example product) completed as described above and the solid electrolytic capacitor (conventional product) according to the prior art, and the distribution of capacitance was determined. When the range, average value of tan δ and leakage current, and number of short circuits were investigated, the results shown in Table 1 below were obtained.

第1表 この第1表から、従来品においては、静電容量分布のば
らつきが大きく、tanδが高く、漏れ電流が大きく、
さらに、短絡発生個数も1004細巾85個と多いのに
対し、本発明品においては、静電容量分布のばらつきが
小さく、tanδが低く、もれ電流は小さく (従来品
の2分の1)、短絡発生個数も1016個中8測色、従
来品の約10分の1と格段に少なくなっていることがわ
かる。
Table 1 From Table 1, it can be seen that the conventional product has large variations in capacitance distribution, high tan δ, and large leakage current.
Furthermore, while the number of short circuits occurring is large at 85 for 1004 width, in the product of the present invention, the variation in capacitance distribution is small, tan δ is low, and leakage current is small (half of that of conventional product). It can be seen that the number of short circuits was also significantly reduced to 8 out of 1016, about one-tenth of the conventional product.

これらは、いずれも、本実施例品における巻芯5の作用
効果を実証している。
All of these demonstrate the effects of the winding core 5 in the product of this example.

なお、本発明は前記実施例に限定されるものではなく、
巻芯の形状を多角柱形状とすることも可能であり、巻芯
の断面形状としては、例えば、第3図乃至第5図に示す
ような形状が考えられる。
Note that the present invention is not limited to the above embodiments,
The shape of the winding core may be a polygonal prism, and the cross-sectional shape of the winding core may be, for example, the shapes shown in FIGS. 3 to 5.

これらの図面は、断面形状がそれぞれ、正八角形(第3
図)、正方形(第4図)、正六角形(第5図)の巻芯5
を使用した実施例を示している。これらの実施例におい
ても、前記実施例と全く同様の作用効果を得られる。
These drawings each have a regular octagonal cross-sectional shape (third
Figure), square (Figure 4), regular hexagonal (Figure 5) winding core 5
An example using . These embodiments also provide the same effects as those of the embodiments described above.

また、巻芯5の材質もセラミックに限定されるものでは
なく、他の耐薬品性材料を適宜使用可能である。
Furthermore, the material of the winding core 5 is not limited to ceramic, and other chemically resistant materials can be used as appropriate.

[発明の効果] 以上説明した通り、本発明においては、セラミックまた
は耐薬品性材料による円柱形状または多角柱形状の巻芯
を使用してコンデンサ素子を形成するという簡単な構成
の改良により、従来に比べてストレスに対するコンデン
サ素子の機械的強度を格段に向上できるため、樹脂モー
ルド外装時に素子にストレスが加わっても、素子の変形
、酸化皮膜の劣化、導電性高分子の亀裂などを防止可能
とすることにより、漏れ電流が小さく、短絡不良の発生
が少なく、コンデンサとしての電気的特性が安定且つ良
好であるような、優れた固体電解コンデンサを提供でき
る。
[Effects of the Invention] As explained above, the present invention improves the simple structure of forming a capacitor element using a cylindrical or polygonal pillar-shaped winding core made of ceramic or chemical-resistant material. In comparison, the mechanical strength of the capacitor element against stress can be significantly improved, making it possible to prevent deformation of the element, deterioration of the oxide film, cracking of the conductive polymer, etc. even if stress is applied to the element during resin molding. As a result, it is possible to provide an excellent solid electrolytic capacitor that has low leakage current, less occurrence of short-circuit defects, and stable and good electrical characteristics as a capacitor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明による固体電解コンデンサ
の一実施例を示す図で、第1図は、巻回状態を示す斜視
図、第2図は熱硬化性エポキシ樹脂によるモールド成形
時を示す透過斜視図、第3図乃至第5図は、本発明の他
の実施例を示す断面図であり、巻芯の断面形状の異なる
3種類の実施例を示している。 1・・・陽極リード、2・・・陽極箔、3・・・ポリピ
ロル膜、4・・・セパレータ紙(スペーサ)、5・・・
巻芯、6・・・コンデンサ素子、7・・・金属フレーム
、8・・・熱硬化性エポキシ樹脂。
1 and 2 are diagrams showing one embodiment of a solid electrolytic capacitor according to the present invention. FIG. 1 is a perspective view showing a state of winding, and FIG. FIGS. 3 to 5 are sectional views showing other embodiments of the present invention, and show three types of embodiments with different cross-sectional shapes of the winding core. DESCRIPTION OF SYMBOLS 1...Anode lead, 2...Anode foil, 3...Polypyrrole film, 4...Separator paper (spacer), 5...
Winding core, 6... Capacitor element, 7... Metal frame, 8... Thermosetting epoxy resin.

Claims (1)

【特許請求の範囲】[Claims]  誘電体酸化皮膜を生成した皮膜形成性金属箔とスペー
サとを巻回して形成されたコンデンサ素子を使用してな
る固体電解コンデンサにおいて、前記コンデンサ素子が
、その巻回中心部にセラミックまたは耐薬品性材料によ
る円柱形状または多角柱形状の巻芯を有し、且つ前記皮
膜形成性金属箔及びスペーサが、少なくとも順次形成さ
れた化学酸化重合膜、電解酸化重合膜、導電性塗膜を具
備し、前記皮膜形成性金属箔と導電性塗膜とから電極引
出端子が導出されていることを特徴とする固体電解コン
デンサ。
A solid electrolytic capacitor using a capacitor element formed by winding a film-forming metal foil with a dielectric oxide film and a spacer, wherein the capacitor element has a ceramic or chemical-resistant material at the center of the winding. It has a cylindrical or polygonal columnar core made of material, and the film-forming metal foil and spacer include at least a chemical oxidation polymer film, an electrolytic oxidation polymer film, and a conductive coating film formed in sequence, and the above-mentioned A solid electrolytic capacitor characterized in that an electrode lead terminal is derived from a film-forming metal foil and a conductive coating film.
JP2610890A 1990-02-07 1990-02-07 Solid electrolytic capacitor Pending JPH03231414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2610890A JPH03231414A (en) 1990-02-07 1990-02-07 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2610890A JPH03231414A (en) 1990-02-07 1990-02-07 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH03231414A true JPH03231414A (en) 1991-10-15

Family

ID=12184398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2610890A Pending JPH03231414A (en) 1990-02-07 1990-02-07 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH03231414A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284180A (en) * 2000-03-29 2001-10-12 Nippon Chemicon Corp Solid electrolytic capacitor and method of manufacturing the same
JP2011114026A (en) * 2009-11-24 2011-06-09 Sanyo Electric Co Ltd Method for manufacturing electrolytic capacitor
JP2012084689A (en) * 2010-10-12 2012-04-26 Sanyo Electric Co Ltd Solid electrolytic capacitor
CN103779085A (en) * 2012-10-19 2014-05-07 尼吉康株式会社 Solid electrolytic capacitor
JP2015207681A (en) * 2014-04-22 2015-11-19 日本ケミコン株式会社 Capacitor and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284180A (en) * 2000-03-29 2001-10-12 Nippon Chemicon Corp Solid electrolytic capacitor and method of manufacturing the same
JP4560875B2 (en) * 2000-03-29 2010-10-13 日本ケミコン株式会社 Manufacturing method of solid electrolytic capacitor
JP2011114026A (en) * 2009-11-24 2011-06-09 Sanyo Electric Co Ltd Method for manufacturing electrolytic capacitor
JP2012084689A (en) * 2010-10-12 2012-04-26 Sanyo Electric Co Ltd Solid electrolytic capacitor
CN103779085A (en) * 2012-10-19 2014-05-07 尼吉康株式会社 Solid electrolytic capacitor
JP2014086716A (en) * 2012-10-19 2014-05-12 Nichicon Corp Solid electrolytic capacitor
KR101475367B1 (en) * 2012-10-19 2014-12-22 니치콘 가부시키가이샤 Solid electrolytic capacitor
TWI582809B (en) * 2012-10-19 2017-05-11 Nichicon Corp Solid electrolytic capacitor and its manufacturing method
JP2015207681A (en) * 2014-04-22 2015-11-19 日本ケミコン株式会社 Capacitor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
KR100442073B1 (en) Solid Electrolyte Capacitor and its Manufacture
EP0652576B1 (en) Method of manufacturing solid electrolytic capacitor
US7852614B2 (en) Solid electrolytic capacitor and process for fabricating same
US6906912B2 (en) Solid electrolytic capacitor and method of producing the same
JPH09293639A (en) Solid electrolytic capacitor and manufacture thereof
JPH0794368A (en) Solid electrolytic capacitor and manufacture thereof
JPH11186110A (en) Electrolytic capacitor and manufacture thereof
WO2013088845A1 (en) Solid electrolytic capacitor
JPH03231414A (en) Solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP3806503B2 (en) Solid electrolytic capacitor
JPH06196371A (en) Manufacture of solid electrolytic capacitor
JP4624017B2 (en) Manufacturing method of solid electrolytic capacitor
JP3548035B2 (en) Manufacturing method of electrolytic capacitor
JP2640866B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001068381A (en) Solid state electrolytic capacitor element
JPH04154107A (en) Manufacture of solid electrolytic capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03185805A (en) Solid electrolytic capacitor and manufacture thereof
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor
JPH06204097A (en) Layered solid-state electrolytic capacitor and its manufacture
JP3851128B2 (en) Electrolytic capacitor
JPH05304056A (en) Manufacture of solid electrolytic capacitor
JPH02213113A (en) Solid-state electrolytic capacitor