JPH0451466Y2 - - Google Patents

Info

Publication number
JPH0451466Y2
JPH0451466Y2 JP1987072543U JP7254387U JPH0451466Y2 JP H0451466 Y2 JPH0451466 Y2 JP H0451466Y2 JP 1987072543 U JP1987072543 U JP 1987072543U JP 7254387 U JP7254387 U JP 7254387U JP H0451466 Y2 JPH0451466 Y2 JP H0451466Y2
Authority
JP
Japan
Prior art keywords
separator
solid electrolytic
capacitor
lead
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987072543U
Other languages
Japanese (ja)
Other versions
JPS63180914U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1987072543U priority Critical patent/JPH0451466Y2/ja
Publication of JPS63180914U publication Critical patent/JPS63180914U/ja
Application granted granted Critical
Publication of JPH0451466Y2 publication Critical patent/JPH0451466Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔産業上の利用分野〕 この考案は、二酸化鉛を固体電解質に用いた固
体電解コンデンサに係り、特に固体電解質層を保
持するセパレータの改良に関する。 〔従来の技術〕 固体電解コンデンサは、アルミニウム、タンタ
ル、ニオブなどの絶縁性酸化皮膜が形成されるい
わゆる弁金属を陽極に用い、上記絶縁性酸化皮膜
を誘電体層とし、その上面に二酸化鉛などの金属
酸化物半導体を固体電解質として形成し、この外
部に導電ペーストなどの陰極引出し手段を設けて
構成されている。 陽極の電極形状は弁金属を多孔質のブロツク状
に焼結したものもあるが、箔状の薄板弁金属を巻
回あるいは積層させたものは、コンデンサ素子の
形成が容易で、しかも固体電解質層を析出させ易
いので多用されている。 一般に巻回あるいは積層構造の固体電解コンデ
ンサは、例えば特願昭61−282777号などに示され
るように、隣接した陽極層間にセパレータを介在
させている。このセパレータは、紙、ガラス繊維
布、高分子の織布あるいは不織布などのからな
り、固体電解質析出のための反応母液を浸透させ
るための適度な間隙と、該母液を保持する役目を
果たしている。 〔考案が解決しようとする問題点〕 固体電解質としての二酸化鉛は、従来から多用
されている二酸化マンガンに比べて、電導度が高
く、しかも電解質析出時に高温処理をする必要が
ないことから、内部直列抵抗値が低く、誘電体酸
化皮膜の劣化が少ない。このため高周波特性や損
失特性の優れた固体電解コンデンサが得られる。 ところが実際に固体電解コンデンサを作成する
と、期待した程の高周波特性や損失特性が得られ
ない。これは前述のセパレータが、絶縁性の材料
のため、セパレータ部で電導度が低下し、二酸化
鉛の高電導特性が生かされていないことが原因と
なつている。 そこで、この考案では、セパレータを改良し、
セパレータに保持された固体電解質層の電導度を
向上させて特性の優れた固体電解コンデンサを得
ようとするものである。 〔問題点を解決するための手段〕 この考案の固体電解コンデンサは、表面に誘電
体酸化皮膜が形成された弁金属からなる薄板電極
に、セパレータを重ね合わせて巻回もしくは積層
したコンデンサ素子に、鉛イオンを含む溶液を浸
漬して二酸化鉛電解質層を析出させた固体電解コ
ンデンサにおいて、セパレータにカーボン繊維、
ステンレス繊維を用いたことを特徴としている。 〔作用〕 この考案によれば、二酸化鉛を保持するセパレ
ータが導電材のため、固体電解質層の電導度が向
上し、固体電解質を用いた電解コンデンサの内部
の等価直列抵抗値を低減できる。 なお、液体電解質を用いた電解コンデンサの場
合、導電性のセパレータを用いると、陽極の絶縁
性の酸化皮膜の欠損部と陰極材料間あるいは隣接
の陽極間どうしで短絡をおこすことがあるが、二
酸化鉛を用いた固体電解質の場合、二酸化鉛が酸
化皮膜層の表面およびセパレータの表面を覆つて
いるので短絡のおそれはない。 〔実施例〕 以下実施例に基づいてこの考案を説明する。 第1図はこの考案の巻回構造の固体電解コンデ
ンサの素子構造をあらわした部分分解斜視図であ
る。 図に示すように、帯状に切断されたアルミニウ
ムなどの弁金属箔からなる陽極1は、あらかじめ
エツチング処理により拡面化後その表面に陽極酸
化によつて誘電体酸化皮膜層が形成されている。
また電極1の所定の箇所には、電極引出しのため
の陽極リード2が溶接、かしめ付けなどの手段で
取り付けられている。この陽極1とほぼ同じ寸法
に裁断された導電材からなるセパレータ3が重ね
合わせられ一方端から巻回して円筒状のコンデン
サ素子4が形成されている。 このコンデンサ素子4は、酢酸鉛などの二価の
鉛イオンを含む水溶液と、過流酸アンモニウムな
どの酸化剤の水溶液と混合した液中に浸漬し、二
酸化鉛を析出させた後、その外面にカーボンペー
スト、銀ペーストなどの導電性の陰極手段を設
け、さらに必要に応じて外装ケースに収納した
り、陰極リードを取り付けて固体電解コンデンサ
が完成する。 第2図はこの考案の固体電解コンデンサ素子の
別の実施例をあらわしたもので、2枚の弁金属箔
からなる帯状の陽極10,11を用い、これら陽
極10,11の表面には、第1図の実施例と同じ
ようにエツチングによる拡面化と、陽極酸化処理
による誘電体酸化皮膜層形成が予めおこなわれて
いる。これら陽極10,11は対面して配置さ
れ、導電材からなる2枚のシート状のセパレータ
13が前記陽極10,11間に挟まれて配置さ
れ、一方端から巻回してコンデンサ素子14が形
成されている。そしてこのコンデンサ素子14
に、鉛イオンを含む反応母液を含浸し、二酸化鉛
からなる固体電解質層をセパレータ13の挟まれ
た空隙部に形成析出させる。 これら陽極10,11には各々電極引出しのた
めのリード15,16が溶接等の手段で取り付け
られている。また必要に応じて樹脂等でコンデン
サ素子14の外周を封止すればよい。 この実施例の場合、2枚の陽極を対抗配置した
ので、無極性の構造となり、この場合は陽極引出
しのための導電ペーストは不要となる。 なお、これら実施例はいずれも巻回構造のもの
を例示したが、この考案のコンデンサ素子構造は
巻回したものに限定されるものではなく、板状の
陽極とセパレータを順次積み重ねるようにした積
層構造の素子などであつてもよい。 次に、この考案の固体電解コンデンサと、セパ
レータに絶縁性材料を用いた従来のものとの特性
比較を示す。 まず、エツチングにより表面を拡面化した高純
度のアルミニウム箔を陽極として準備した。この
アルミ箔を95℃の硼酸浴中で70Vの電圧を印加し
て誘電体酸化皮膜を表面に形成した。このときの
静電容量は18.5μF/10cm2(硼酸浴中で測定)であ
つた。 次にこの陽極箔を6×27mmに切断し、箔の一端
に陽極側リード線を超音波溶接によつて接続し
た。この陽極箔に、この考案の〔実施例1〕とし
て、ほぼ同寸法に裁断したカーボン繊維布(日本
カーボン製 厚さ300m)を重ねて巻回したもの
と、〔実施例2〕として、ステンレス繊維(東京
製鋼製 厚さ150μm)を重ねて巻回したコンデン
サ素子を作成した。また〔比較例1〕として、絶
縁性をガラス繊維(本州製紙製 厚さ80μm)を
セパレータとしたコンデンサ素子を作成した。 これらコンデンサ素子を、酢酸鉛50gを水30g
に溶解した水溶液と、過硫酸サンモニウム75gを
水75gに溶解させた水溶液とを混合したものに浸
漬し、80℃の恒温槽中で15分間保持して二酸化鉛
を析出させた。ついでコンデンサ素子を水洗して
乾燥させた。この工程を5度繰り返した後、コン
デンサにコロイダルカーボンを塗布し、さらにそ
の外面に銀ペーストを塗布し、陰極リードを接続
して固体電解コンデンサを得た。 これら固体電解コンデンサの静電容量、損失
(Tanδ)、漏れ電流、100KHzにおける等価直列抵
抗(ESR)をそれぞれ測定したところ、表1の
結果が得られた。
[Industrial Application Field] This invention relates to a solid electrolytic capacitor using lead dioxide as a solid electrolyte, and particularly relates to an improvement of a separator that holds a solid electrolyte layer. [Prior Art] Solid electrolytic capacitors use a so-called valve metal on which an insulating oxide film of aluminum, tantalum, niobium, etc. is formed as an anode, the insulating oxide film is used as a dielectric layer, and lead dioxide, etc. is formed on the top surface of the valve metal. A metal oxide semiconductor is formed as a solid electrolyte, and a cathode extraction means such as a conductive paste is provided outside of the solid electrolyte. The shape of the anode electrode is made by sintering valve metal into a porous block shape, but it is easier to form a capacitor element by winding or laminating thin plate valve metal in the form of foil, and it also has a solid electrolyte layer. It is often used because it is easy to precipitate. In general, a solid electrolytic capacitor having a wound or laminated structure has a separator interposed between adjacent anode layers, as shown in Japanese Patent Application No. 61-282777, for example. This separator is made of paper, glass fiber cloth, polymeric woven fabric or non-woven fabric, and serves to provide an appropriate gap for penetrating the reaction mother liquor for solid electrolyte precipitation and to retain the mother liquor. [Problems that the invention aims to solve] Lead dioxide as a solid electrolyte has higher conductivity than manganese dioxide, which has been widely used in the past, and does not require high-temperature treatment during electrolyte precipitation. The series resistance value is low, and the deterioration of the dielectric oxide film is small. Therefore, a solid electrolytic capacitor with excellent high frequency characteristics and loss characteristics can be obtained. However, when a solid electrolytic capacitor is actually created, the expected high frequency characteristics and loss characteristics cannot be obtained. This is because the above-mentioned separator is an insulating material, so the electrical conductivity decreases in the separator portion, and the high electrical conductivity of lead dioxide is not utilized. Therefore, in this invention, we improved the separator and
The purpose is to improve the conductivity of a solid electrolyte layer held by a separator to obtain a solid electrolytic capacitor with excellent characteristics. [Means for solving the problem] The solid electrolytic capacitor of this invention consists of a thin plate electrode made of valve metal with a dielectric oxide film formed on the surface, a capacitor element that is wound or laminated with a separator superimposed on it, and In solid electrolytic capacitors in which a lead dioxide electrolyte layer is deposited by immersion in a solution containing lead ions, the separator is made of carbon fiber,
It is characterized by the use of stainless steel fiber. [Function] According to this invention, since the separator holding lead dioxide is a conductive material, the conductivity of the solid electrolyte layer is improved, and the equivalent series resistance value inside the electrolytic capacitor using the solid electrolyte can be reduced. In the case of electrolytic capacitors using a liquid electrolyte, if a conductive separator is used, a short circuit may occur between the defective part of the anode's insulating oxide film and the cathode material, or between adjacent anodes. In the case of a solid electrolyte using lead, there is no risk of short circuiting because lead dioxide covers the surface of the oxide film layer and the surface of the separator. [Example] This invention will be explained below based on an example. FIG. 1 is a partially exploded perspective view showing the element structure of the wound solid electrolytic capacitor of this invention. As shown in the figure, an anode 1 made of a valve metal foil such as aluminum cut into strips has been enlarged by etching and then a dielectric oxide film layer is formed on the surface by anodization.
Further, an anode lead 2 for drawing out the electrode is attached to a predetermined location of the electrode 1 by means such as welding or caulking. A separator 3 made of a conductive material cut to approximately the same size as the anode 1 is stacked on top of the other and wound from one end to form a cylindrical capacitor element 4. This capacitor element 4 is immersed in a mixture of an aqueous solution containing divalent lead ions such as lead acetate and an aqueous solution of an oxidizing agent such as ammonium persulfate to precipitate lead dioxide. A solid electrolytic capacitor is completed by providing conductive cathode means such as carbon paste or silver paste, and storing it in an external case or attaching a cathode lead if necessary. FIG. 2 shows another embodiment of the solid electrolytic capacitor element of this invention, in which band-shaped anodes 10 and 11 made of two valve metal foils are used. As in the embodiment shown in FIG. 1, enlarging the surface area by etching and forming a dielectric oxide film layer by anodizing are performed in advance. These anodes 10 and 11 are placed facing each other, and two sheet-like separators 13 made of a conductive material are placed between the anodes 10 and 11 and wound from one end to form a capacitor element 14. ing. And this capacitor element 14
Then, a reaction mother liquor containing lead ions is impregnated, and a solid electrolyte layer made of lead dioxide is formed and deposited in the gap between the separators 13 . Leads 15 and 16 for leading out the electrodes are attached to these anodes 10 and 11, respectively, by means such as welding. Further, the outer periphery of the capacitor element 14 may be sealed with resin or the like, if necessary. In this embodiment, since the two anodes are arranged opposite each other, a non-polar structure is achieved, and in this case, a conductive paste for drawing out the anode is not required. Note that although all of these embodiments have exemplified a wound structure, the capacitor element structure of this invention is not limited to a wound structure, but a laminated structure in which plate-shaped anodes and separators are sequentially stacked. It may also be a structural element. Next, we will compare the characteristics of the solid electrolytic capacitor of this invention and a conventional capacitor that uses an insulating material for the separator. First, a high-purity aluminum foil whose surface had been enlarged by etching was prepared as an anode. A dielectric oxide film was formed on the surface of this aluminum foil by applying a voltage of 70 V in a boric acid bath at 95°C. The capacitance at this time was 18.5 μF/10 cm 2 (measured in a boric acid bath). Next, this anode foil was cut into a size of 6×27 mm, and an anode lead wire was connected to one end of the foil by ultrasonic welding. As [Example 1] of this invention, carbon fiber cloth (manufactured by Nippon Carbon Co., Ltd., thickness 300m) cut to approximately the same size was layered and wound around this anode foil, and as [Example 2], stainless steel fiber (manufactured by Tokyo Steel, 150 μm thick) was wound to create a capacitor element. In addition, as [Comparative Example 1], a capacitor element was prepared using insulating glass fiber (manufactured by Honshu Paper Industries, thickness: 80 μm) as a separator. Add these capacitor elements to 50g of lead acetate and 30g of water.
The sample was immersed in a mixture of an aqueous solution in which 75 g of samonium persulfate was dissolved in 75 g of water, and kept in a constant temperature bath at 80° C. for 15 minutes to precipitate lead dioxide. The capacitor element was then washed with water and dried. After repeating this process five times, colloidal carbon was applied to the capacitor, silver paste was further applied to the outer surface of the capacitor, and a cathode lead was connected to obtain a solid electrolytic capacitor. When the capacitance, loss (Tan δ), leakage current, and equivalent series resistance (ESR) at 100 KHz of these solid electrolytic capacitors were measured, the results shown in Table 1 were obtained.

【表】 この結果から明らかなように、この考案の導電
性のセパレータを用いたものは、損失、ESRの
いずれも比較のものに比べてその値が低く、低損
失で高周波特性に優れる。 次に、第2図に示す無極性構造の固体電解コン
デンサを作成した結果を示す。 実施例1および2で用いた陽極箔と同じものを
2枚準備し、この2枚の陽極箔間に、実施例1と
同じカーボン繊維布を挟んで巻回したものを〔実
施例3〕として作成した。また実施例2と同じス
テンス繊維布を挟んで巻回したものを〔実施例
4〕とした。また〔比較例2〕として、比較例1
と同じガラス繊維布を挟んで巻回したものを用意
した。 これらコンデンサ素子を、前例と同じ酢酸鉛と
過硫酸アンモニウム混合水溶液中に浸漬し、同じ
温度、時間、回数で二酸化鉛の析出をおこなつて
固体電解コンデンサを完成させた。 これらの固体電解コンデンサの特性を測定した
ところ、表2に示す結果が得られた。
[Table] As is clear from the results, the device using the conductive separator of this invention has lower loss and ESR values than the comparative devices, and has excellent high-frequency characteristics with low loss. Next, the results of manufacturing a solid electrolytic capacitor with a non-polar structure shown in FIG. 2 will be shown. [Example 3] was prepared by preparing two sheets of the same anode foil as used in Examples 1 and 2, and winding the same carbon fiber cloth as in Example 1 between the two sheets of anode foil. Created. In addition, [Example 4] was prepared by sandwiching and winding the same stainless fiber cloth as in Example 2. In addition, as [Comparative Example 2], Comparative Example 1
The same glass fiber cloth was sandwiched and wound. These capacitor elements were immersed in the same aqueous solution of lead acetate and ammonium persulfate as in the previous example, and lead dioxide was deposited at the same temperature, time, and number of times to complete a solid electrolytic capacitor. When the characteristics of these solid electrolytic capacitors were measured, the results shown in Table 2 were obtained.

〔考案の効果〕[Effect of idea]

以上述べたように、この考案は、セパレータに
保持された固体電解質層の電導度を向上させ、コ
ンデンサとしての損失や高周波の等価直列抵抗値
を低減して、電気特性に優れた固体電解コンデン
サを得ることができる。
As mentioned above, this idea improves the conductivity of the solid electrolyte layer held by the separator, reduces capacitor loss and high frequency equivalent series resistance, and creates a solid electrolytic capacitor with excellent electrical characteristics. Obtainable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この考案の固体電解コンデンサの素
子構造を説明する部分分解斜視図、第2図は、同
じくこの考案の固体電解コンデンサの別の実施例
の素子構造を説明する部分分解斜視図である。 1,10,11……陽極、2……陽極リード、
3,13……セパレータ、4,14……コンデン
サ素子、15,16……リード。
FIG. 1 is a partially exploded perspective view illustrating the element structure of a solid electrolytic capacitor of this invention, and FIG. 2 is a partially exploded perspective view illustrating the element structure of another embodiment of the solid electrolytic capacitor of this invention. be. 1, 10, 11...anode, 2...anode lead,
3, 13... Separator, 4, 14... Capacitor element, 15, 16... Lead.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 表面に誘電体酸化皮膜が形成された弁金属から
なる薄板電極に、セパレータを重ね合わせて巻回
もしくは積層したコンデンサ素子に、鉛イオンを
含む溶液を浸漬して二酸化鉛電解質層を析出させ
た固体電解コンデンサにおいて、セパレータにカ
ーボン繊維またはステンレス繊維を用いたことを
特徴とする固体電解コンデンサ。
A capacitor element consisting of a thin plate electrode made of valve metal with a dielectric oxide film formed on its surface and a separator layered over the capacitor element, which is then immersed in a solution containing lead ions to deposit a lead dioxide electrolyte layer. A solid electrolytic capacitor characterized by using carbon fiber or stainless steel fiber as a separator.
JP1987072543U 1987-05-15 1987-05-15 Expired JPH0451466Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987072543U JPH0451466Y2 (en) 1987-05-15 1987-05-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987072543U JPH0451466Y2 (en) 1987-05-15 1987-05-15

Publications (2)

Publication Number Publication Date
JPS63180914U JPS63180914U (en) 1988-11-22
JPH0451466Y2 true JPH0451466Y2 (en) 1992-12-03

Family

ID=30916084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987072543U Expired JPH0451466Y2 (en) 1987-05-15 1987-05-15

Country Status (1)

Country Link
JP (1) JPH0451466Y2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412447A (en) * 1977-06-30 1979-01-30 Hitachi Condenser Solid electrolytic capacitor
JPS58123714A (en) * 1982-01-18 1983-07-23 松下電器産業株式会社 Grain boundary layer type porcelain dielectric material and method of producing same
JPS58123715A (en) * 1982-01-18 1983-07-23 三洋電機株式会社 Solid electrolytic condenser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412447A (en) * 1977-06-30 1979-01-30 Hitachi Condenser Solid electrolytic capacitor
JPS58123714A (en) * 1982-01-18 1983-07-23 松下電器産業株式会社 Grain boundary layer type porcelain dielectric material and method of producing same
JPS58123715A (en) * 1982-01-18 1983-07-23 三洋電機株式会社 Solid electrolytic condenser

Also Published As

Publication number Publication date
JPS63180914U (en) 1988-11-22

Similar Documents

Publication Publication Date Title
JP3416053B2 (en) Electrolytic capacitor and method of manufacturing the same
JP2860386B2 (en) Electrolytic capacitor and method of manufacturing the same
JPH0436100Y2 (en)
JPH0451466Y2 (en)
JPH0785461B2 (en) Capacitor
JP2950575B2 (en) Electrolytic capacitor
JP2886195B2 (en) Solid electrolytic capacitors
JP3285045B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0342674Y2 (en)
JPH0376008B2 (en)
JP2001052967A (en) Electrolytic capacitor
JP2538248B2 (en) Solid electrolytic capacitor
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2775762B2 (en) Solid electrolytic capacitors
JPH0620032B2 (en) Electrolytic capacitor
KR900004257B1 (en) Electrolytic capacitor
JPS63263713A (en) Laminated solid electrolytic capacitor
JPS63136509A (en) Solid electrolytic capacitor
JPS63166204A (en) Manufacture of solid electrolytic capacitor
JP2833774B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0393214A (en) Manufacture of solid-state electrolytic capacitor
JPH0547612A (en) Production of solid electrolytic capacitor
JPH0917684A (en) Capacitor
JPH07120614B2 (en) Method for manufacturing solid electrolytic capacitor
JPS63166205A (en) Manufacture of solid electrolytic capacitor