JPH0620032B2 - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JPH0620032B2
JPH0620032B2 JP61144331A JP14433186A JPH0620032B2 JP H0620032 B2 JPH0620032 B2 JP H0620032B2 JP 61144331 A JP61144331 A JP 61144331A JP 14433186 A JP14433186 A JP 14433186A JP H0620032 B2 JPH0620032 B2 JP H0620032B2
Authority
JP
Japan
Prior art keywords
film
electrolytic capacitor
tcnq
valve action
action metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61144331A
Other languages
Japanese (ja)
Other versions
JPS63107A (en
Inventor
清志 坂本
虞美子 成沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGAI DENSHI KOGYO KYODOKUMIAI
Original Assignee
NAGAI DENSHI KOGYO KYODOKUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGAI DENSHI KOGYO KYODOKUMIAI filed Critical NAGAI DENSHI KOGYO KYODOKUMIAI
Priority to JP61144331A priority Critical patent/JPH0620032B2/en
Publication of JPS63107A publication Critical patent/JPS63107A/en
Publication of JPH0620032B2 publication Critical patent/JPH0620032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は新規な構成からなる電解コンデンサに関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an electrolytic capacitor having a novel configuration.

(従来の技術) 一般に乾式箔形電解コンデンサは、例えばアルミニウム
箔からなる一対の陽陰極箔に同じくアルミニウムからな
る一対の引出端子を接続し、前記一対の陽陰極箔相互間
にスペーサを介在させ巻回し、しかるのち駆動用電解液
を含浸しケースに収納し、該ケース開口部を密封してな
るものである。一般にスペーサを介在する目的は一対の
陽陰極箔相互間の絶縁隔離および駆動用電解液の保持で
あり、乾式箔形電解コンデンサにおいては重要な構成要
件である。しかして、一般に用いられているスペーサは
クラフト紙であるか、該クラフト紙は密度が0.3〜
0.8g/cmと密度が比較的高く、またクラフト紙を
構成する繊維の断面形状が偏平のため見掛け上の比抵抗
が大きくなりtanδ特性を損ね、またクラフト紙は抄
紙技術上の問題で厚みは30μm以上であり、これ以上
薄くできず小形化を阻害する要因となっており、さらに
過電圧,逆電圧印加などによるコンデンサ破壊時に着火
し継続燃焼のおそれがあるなどの欠点をもっていた。そ
のため現在クラフト紙に変え低密度のマニラ紙を用いる
傾向にあり、tanδ特性改善に大きく貢献している
が、マニラ紙はクラフト紙に比べて価格が数倍と高く、
加えて抄紙後の強度をコンデンサの製造工程(特に巻取
工程)に耐えさせるためには厚さ40μm以上のものを
用いなければならず依然として小形化の阻害要因となっ
ていた。
(Prior Art) Generally, a dry foil type electrolytic capacitor is formed by connecting a pair of lead terminals also made of aluminum to a pair of positive and negative electrode foils made of aluminum foil and winding a spacer between the pair of positive and negative electrode foils. It is rotated and then impregnated with the driving electrolytic solution, housed in a case, and the case opening is sealed. Generally, the purpose of interposing a spacer is to isolate and insulate a pair of positive and negative electrode foils from each other and to retain a driving electrolytic solution, which is an important constituent factor in a dry foil type electrolytic capacitor. Therefore, the commonly used spacer is kraft paper, or the kraft paper has a density of 0.3 to
The density is comparatively high at 0.8 g / cm 3, and the apparent cross-sectional shape of the fibers that make up the kraft paper has a large apparent specific resistance, which impairs tan δ characteristics. Also, kraft paper is a problem in papermaking technology. The thickness is 30 μm or more, and it cannot be made thinner than that, which is a factor that hinders miniaturization. Further, there is a drawback that ignition may occur at the time of capacitor destruction due to application of overvoltage or reverse voltage, and continuous combustion may occur. For this reason, there is a tendency to use low-density manila paper instead of kraft paper, which greatly contributes to the improvement of tan δ characteristics, but the cost of manila paper is several times higher than kraft paper,
In addition, in order to withstand the strength after papermaking in the manufacturing process (especially the winding process) of the capacitor, the thickness of 40 μm or more must be used, which is still an obstacle to miniaturization.

また液体の駆動用電解液を使用しているためtanδ特
性改善にも限度があり、さらに液体の駆動用電解液は低
温で比抵抗が増大しやすく低温特性が極度に悪化し広温
度範囲で使用するには信頼性に欠けるなど実用上解決す
べき問題をもっているばかりか、素子形状が巻回形で、
しかも引出端子を途中挿入した構造であるため周波数特
性が悪い問題をも抱えていた。
In addition, since the liquid driving electrolyte is used, there is a limit to the improvement of tan δ characteristics. Further, the liquid driving electrolyte has a tendency to increase the specific resistance at low temperatures, and the low temperature characteristics are extremely deteriorated to be used in a wide temperature range. In addition to having problems to be solved in practice, such as lack of reliability, the element shape is a wound type,
Moreover, since the lead-out terminal is inserted midway, it has a problem of poor frequency characteristics.

そのため近年例えば特開昭58−17609号公報、特
開昭58−191414号公報または特開昭59−63
604号公報に開示されているように駆動用電解液にか
え、N−n−プロピル(またはN−イソ−プロピル)イ
ソキノリン、N−エチルイソキノリン、N−n−ブチル
イソキノリン、N位を炭化水素基で置換したキノリン、
イソキノリンまたはピリジンなどからなるTCNQ錯体
を固体電解質として用い、特性を改善したものが提案さ
れている。このようなTCNQ錯体を用いてなる電解コ
ンデンサは、一般にこれらTCNQ錯体を溶融含浸して
用いる訳であるが、TCNQ錯体を溶融含浸するときに
長時間加熱するためTCNQ錯体の伝導度が減少しやす
くtanδ特性に問題があり、また素子形状は従来どお
り引出端子を巻回体の途中に挿入したタイプであるため
高周波数での特性が悪く、しかもスペーサを用いている
ため陽・陰極間(約40〜50μ)が広く、抵抗が大き
いなど依然として解決すべき問題は残っていた。
Therefore, in recent years, for example, JP-A-58-17609, JP-A-58-191414 or JP-A-59-63.
As disclosed in Japanese Patent Publication No. 604, instead of the driving electrolyte, N-n-propyl (or N-iso-propyl) isoquinoline, N-ethylisoquinoline, N-n-butylisoquinoline, and N-position are hydrocarbon groups. Quinoline substituted with,
It has been proposed that a TCNQ complex composed of isoquinoline or pyridine is used as a solid electrolyte to improve the characteristics. In an electrolytic capacitor using such TCNQ complex, generally, these TCNQ complexes are melt-impregnated and used, but since the TCNQ complex is heated for a long time when melt-impregnated, the conductivity of the TCNQ complex easily decreases. There is a problem with tan δ characteristics, and the element shape is a type in which a lead terminal is inserted in the middle of the winding as in the past, so the characteristics at high frequencies are poor, and since a spacer is used, the positive and negative electrodes (about 40 ˜50 μ) is wide and resistance is still large.

しかして本発明者は、上記のような各種欠点を除去する
目的で特願昭60−78649号を出願した。すなわち
該先願技術は第4図に示すように絶縁物21の一面に一
端部を余白部22として形成した弁作用金属膜23表面
に陽極酸化皮膜24を形成し、しかるのち該陽極酸化皮
膜24の前記余白部22の反対側に位置する端面を除い
た面上から前記余白部22面上にTCNQ錯体膜25を
形成し、該TCNQ錯体膜25の前記余白部22の反対
側に位置する端面を除いた面上に陽極電極膜26を形成
した複膜層27を第3図に示すように必要数積層し、両
端面に電極引出部28を形成するようにしたものであ
り、特性改善に大きく貢献するものである。29は外部
端子である。しかしながら、上記構成になる電解コンデ
ンサにおける陽極となる一方の電極引出部28は、前記
弁作用金属膜23端部10μm厚の面積分しかなく、ま
た弁作用金属膜23としてのアルミと電極引出部28と
しての銀接着剤との接触による電気的結合のため接触提
供が大きく、極端な場合は接触不良となり、結局コンデ
ンサとしてのtanδ特性を損ねる結果となっていた。
However, the present inventor applied for a patent application No. 60-78649 for the purpose of eliminating the above-mentioned various defects. That is, according to the prior art, as shown in FIG. 4, an anodic oxide film 24 is formed on the surface of a valve action metal film 23 having one end as a blank part 22 on one surface of an insulator 21, and then the anodic oxide film 24 is formed. The TCNQ complex film 25 is formed on the surface of the blank portion 22 from the surface excluding the end surface located on the opposite side of the blank portion 22, and the end surface of the TCNQ complex film 25 located on the opposite side of the blank portion 22. As shown in FIG. 3, a required number of composite film layers 27 each having an anode electrode film 26 formed on the surface except for the above are laminated, and electrode lead-out portions 28 are formed on both end surfaces. It is a great contribution. 29 is an external terminal. However, the electrode lead-out portion 28, which is one of the anodes in the electrolytic capacitor having the above-described structure, has an area of 10 μm thick at the end portion of the valve action metal film 23, and the aluminum as the valve action metal film 23 and the electrode lead-out portion 28. As a result, the contact is largely provided due to the electrical connection by the contact with the silver adhesive as described above, and in an extreme case, contact failure occurs, and eventually the tan δ characteristic as the capacitor is impaired.

(発明が解決しようとする問題点) 上記のようにTCNQ錯体を用い、かつ素子形状を無誘
導タイプとすることによって、従来技術のものと比較し
特性改善が可能であるが、陽極引出構造に問題があっ
た。
(Problems to be Solved by the Invention) By using the TCNQ complex as described above and making the element shape into a non-inductive type, it is possible to improve the characteristics as compared with the prior art. There was a problem.

本発明は、上記の点に鑑みてなされたもので、弁作用金
属と陽極となる電極引出部の接触構造を改良し、諸特性
安定にして新規な構成からなる電解コンデンサを提供す
ることを目的とするものである。
The present invention has been made in view of the above points, and an object thereof is to provide an electrolytic capacitor having a novel structure by improving the contact structure between the valve action metal and the electrode lead-out portion serving as an anode, and stabilizing various characteristics. It is what

[発明の構成] (問題点を解決するための手段) 本発明の電解コンデンサは、絶縁物の一面または両面に
一端面を余白部とし弁作用金属膜を形成し、該金属膜の
前記余白部と反対側に位置する一端面を除いた表面に陽
極酸化皮膜を形成し、該酸化皮膜上にTCNQ錯体膜を
形成し、該錯体膜上および前記余白部面上に陰極電極膜
を前記弁作用金属膜面上に前記酸化皮膜と接触すること
なく陽極電極膜を形成し、該陽極電極膜および陰極電極
膜を含む表面に樹脂膜を形成した複膜層を複数積層し、
両端面に電極引出部を形成したものである。
[Structure of the Invention] (Means for Solving the Problems) In the electrolytic capacitor of the present invention, a valve action metal film is formed on one surface or both surfaces of an insulator with one end surface being a blank portion, and the blank portion of the metal film is formed. An anodic oxide film is formed on the surface other than the one end face located on the opposite side to the TCNQ complex film on the oxide film, and the cathode electrode film is formed on the complex film and the blank face. An anode electrode film is formed on the surface of the metal film without contacting the oxide film, and a plurality of multiple film layers in which a resin film is formed on the surface including the anode electrode film and the cathode electrode film are laminated,
The electrode lead-out portions are formed on both end surfaces.

(作用) 以上のような構成になる電解コンデンサによれば、陽極
となる弁作用金属膜と電極引出部は弁作用金属膜上に設
けた陽極電極膜を介した構造となるため両者の接触面積
が大きく確保でき電気抵抗が小さくなりバラツキのすぐ
れたtanδ特性を得ることができる。
(Function) According to the electrolytic capacitor configured as described above, the valve action metal film serving as the anode and the electrode lead-out portion have a structure in which the anode electrode film provided on the valve action metal film is interposed, and thus the contact area between the two Can be secured to a large value, the electric resistance can be reduced, and tan δ characteristics with excellent variation can be obtained.

(実施例) 以下、本発明の一実施例につき図面を参照して説明す
る。
(Example) Hereinafter, one example of the present invention will be described with reference to the drawings.

すなわち、第2図に示すように例えばポリエステル,ト
リアセテート,テトラフロロエチレン,ポリカーボネー
ト,ポリアミド,ポリイミドなどからなるプラスチック
フィルム・シートまたはセラミックシートなどの絶縁物
1の一面に一端部を余白部2としてアルミニウム金属を
蒸着またはラミネートし弁作用金属膜3を形成したの
ち、該弁作用金属膜3の前記余白部2と反対側に位置す
る一端面を除いた表面を陽極酸化し陽極酸化皮膜4を形
成し、しかるのち該陽極酸化皮膜4面上に例えば2,
2′−ビピリジニウム(TCNQ)、4−ハイドロオ
キシ−N−ベンジルアニリウム(TCNQ)、4−ア
ミノ−2,3,5,6−テトラメチルアニリニウム(T
CNQ)、ピリジニウム(TCNQ)、4−シアノ
−Nメチル−ピリジニウム(TCNQ)、N−エチル
キノリニウム(TCNQ)、N−(2−フェネチル)
キノリニウム(TCNQ)などからなるTCNQ錯体
を真空蒸着しTCNQ錯体膜5を形成する。つぎに該T
CNQ錯体膜5面上および前記余白部2面上に銀または
銅などの金属をスクリーン印刷,蒸着またはスパッタリ
ングなどの手段にて陰極電極膜6を形成し、前記陽極酸
化皮膜4を形成しない弁作用金属膜3面上に陽極酸化皮
膜4と接触することなく、前記陰極電極膜6形成手段と
同一手段にて陽極電極膜7を形成し、該陽極電極膜7お
よび陰極膜6を含む表面に例えばエポキシ樹脂をスクリ
ーン印刷し樹脂膜8を形成した複膜層9を得る。しかし
て、該複膜槽9を第1図に示すように必要数積層し、両
端面にアルミニウムまたはハンダなどの金属をメタリコ
ンまたは塗布し電極引出部10を形成し、該電極引出部
10に外部端子11を取着し、ケースに収納するか樹脂
被覆などを施し外装(図示せず)形成してなるものであ
る。
That is, as shown in FIG. 2, for example, a plastic film sheet or a ceramic sheet made of polyester, triacetate, tetrafluoroethylene, polycarbonate, polyamide, polyimide or the like is provided on one surface of an insulator 1 with one end as a blank portion 2 made of aluminum metal. Is deposited or laminated to form a valve action metal film 3, and then the surface of the valve action metal film 3 excluding one end face opposite to the blank portion 2 is anodized to form an anodized film 4. Then, on the surface of the anodic oxide film 4, for example, 2,
2'-bipyridinium (TCNQ) 2 , 4-hydroxy-N-benzylanillium (TCNQ) 2 , 4-amino-2,3,5,6-tetramethylanilinium (T
CNQ) 2 , pyridinium (TCNQ) 2 , 4-cyano-N-methyl-pyridinium (TCNQ) 2 , N-ethylquinolinium (TCNQ) 2 , N- (2-phenethyl).
A TCNQ complex made of quinolinium (TCNQ) 2 or the like is vacuum-deposited to form a TCNQ complex film 5. Then the T
A valve action in which a metal such as silver or copper is formed on the CNQ complex film 5 surface and the blank 2 surface by a means such as screen printing, vapor deposition or sputtering, and the anodic oxide film 4 is not formed. An anode electrode film 7 is formed on the surface of the metal film 3 by the same means as the means for forming the cathode electrode film 6 without contacting the anodized film 4, and on the surface including the anode electrode film 7 and the cathode film 6, for example, An epoxy resin is screen-printed to obtain a multiple film layer 9 having a resin film 8 formed thereon. Then, as shown in FIG. 1, a required number of the multi-layered baths 9 are laminated, and metal such as aluminum or solder is applied to both end faces by metallikon or coating to form an electrode lead-out portion 10. The terminal 11 is attached and housed in a case or covered with a resin or the like to form an exterior (not shown).

以上のように構成してなる電解コンデンサは陽極となる
弁作用金属膜3面上に形成した陽極電極膜7が電極引出
部10との接続部となる構造であり、該接続部における
両者の接触面積が大きく確実に確保できるため接続部の
電気抵抗は小さくtanδ特性の阻害要因は解消され、
バラツキのないすぐれたtanδ特性を得ることができ
るのに加え、素子構成としてスペーサレスで駆動用電解
液を用いず、しかも無誘電タイプであるため温度特性,
高周波特性とも従来例と比較して大幅に改善されたすぐ
れた効果を奏する。
The electrolytic capacitor configured as described above has a structure in which the anode electrode film 7 formed on the surface of the valve action metal film 3 serving as an anode serves as a connecting portion with the electrode lead-out portion 10, and the contact between the both at the connecting portion. Since the area is large and can be ensured reliably, the electrical resistance of the connection portion is small and the factor that hinders the tan δ characteristic is eliminated,
In addition to being able to obtain excellent tan δ characteristics with no variations, the element characteristics are spacerless, no driving electrolyte solution is used, and since it is a non-dielectric type, temperature characteristics,
The high-frequency characteristics also have an excellent effect that is significantly improved as compared with the conventional example.

つぎに本発明の実施例と参考例の比較の一例について述
べる。
Next, an example of comparison between the embodiment of the present invention and the reference example will be described.

実施例 ポリエステルフィルムの一面に厚さ10μmのアルミニ
ウムをラミネートしたアルミニウムラミネートフィルム
を用い、TCNQ錯体として2,2′−ビピリジニウム
(TCNQ)を真空蒸着した。陰極電極膜,陽極電極
膜ともAgペーストをスクリーン印刷しエポキシ樹脂を
スクリーン印刷した第2図に示すような構成からなる複
膜層を複数積層し両端面にメタリコン電極を施し、外装
構造としてエポキシ樹脂を被覆してなる定格25WV
1μFの電解コンデンサ(A). 参考例 ポリエステルフィルムの一面に厚さ10μmのアルミニ
ウムをラミネートしたアルミニウムラミネートフィルム
を用い、TCNQ錯体として2,2′−ビピリジニウム
(TCNQ)を真空蒸着した。陰極電極膜としてAg
ペーストをスクリーン印刷しエポキシ樹脂をスクリーン
印刷しエポキシ樹脂をスクリーン印刷した第4図に示す
ような構成からなる複膜層を複数積層し両端面にメタリ
コン電極を施し、外装構造としてエポキシ樹脂を被覆し
てなる定格25WV1μFの電解コンデンサ(B)。
Example Using a laminated aluminum film having a thickness of 10 μm laminated on one surface of a polyester film, 2,2′-bipyridinium (TCNQ) 2 was vacuum-deposited as a TCNQ complex. Both the cathode electrode film and the anode electrode film were screen-printed with Ag paste and screen-printed with epoxy resin. A plurality of multi-layered films having the structure shown in FIG. 2 were laminated, and metallikon electrodes were provided on both end faces, and epoxy resin was used as the exterior structure. Rating of 25 WV
1 μF electrolytic capacitor (A). Reference Example Using an aluminum laminate film obtained by laminating aluminum having a thickness of 10 μm on one surface of a polyester film, 2,2′-bipyridinium (TCNQ) 2 was vacuum-deposited as a TCNQ complex. Ag as cathode electrode film
Screen-printing the paste, screen-printing the epoxy resin, screen-printing the epoxy resin, and laminating a plurality of multi-layers having the structure shown in FIG. 4, applying metallikon electrodes on both end faces, and coating the epoxy resin as the exterior structure. 25WV 1μF electrolytic capacitor (B).

しかして上記本発明に係る実施例(A)と従来の参考例
(B)における諸特性を調べた結果次表に示すようにな
った。試料(A)(B)とも20個である。
However, as a result of examining various characteristics in the example (A) according to the present invention and the conventional reference example (B), the results are shown in the following table. There are 20 samples (A) and (B).

上表から明らかなように、実施例(A)は参考例(B)
と比較し、陽極とメタリコン電極との接触抵抗のバラツ
キは極めて小さく、かつtanδのバラツキも小さく、
よつてtanδ特性がすぐれており、本発明のすぐれた
効果を実証した。
As is clear from the above table, the example (A) is the reference example (B).
Compared with the above, the variation of the contact resistance between the anode and the metallikon electrode is extremely small, and the variation of tan δ is also small.
Therefore, the tan δ characteristic is excellent, demonstrating the excellent effect of the present invention.

なお上記実施例では弁作用金属膜を絶縁物の一面に設け
たものを例示して説明したが、両面に設けたものに適用
できることは勿論であり、また上記実施例では陽極電極
膜としてアルミニウム金属からなるものを例示して説明
したが、たとえばタンタル,チタン,ニオブなどの弁作
用金属を用いたものでも同様の効果を得ることができ
る。
Although the valve metal film provided on one surface of the insulator has been described as an example in the above embodiments, it is needless to say that the invention can be applied to both surfaces, and in the above embodiment, aluminum metal is used as the anode electrode film. However, the same effect can be obtained by using a valve-action metal such as tantalum, titanium, or niobium.

[発明の効果] 以上述べたように、本発明の構成によれば、陽極引出構
造として弁作用金属膜面上に陽極電極膜を設けることに
よってtanδ特性良好にしてスペーサレスでTCNQ
錯体を用い無誘導タイプとして実用的価値の高い電解コ
ンデンサを得ることができる。
[Effects of the Invention] As described above, according to the configuration of the present invention, by providing the anode electrode film on the valve action metal film surface as the anode extraction structure, the tan δ characteristic is improved and TCNQ without a spacer is provided.
It is possible to obtain an electrolytic capacitor of high practical value as a non-induction type using a complex.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は本発明の一実施例に係り第1図は
電解コンデンサを示す正断面図、第2図は第1図を構成
する複膜層を示す斜視図、第3図および第4図は参考例
に係り第3図は電解コンデンサを示す正断面図、第4図
は第3図を構成する複膜層を示す斜視図である。 1……絶縁物、2……余白部 3……弁作用金属膜、4……陽極酸化皮膜 5……TCNQ錯体膜、6……陰極電極膜 7……陽極電極膜、8……樹脂膜 9……複膜層、10……電極引出部
1 and 2 relate to an embodiment of the present invention. FIG. 1 is a front sectional view showing an electrolytic capacitor, FIG. 2 is a perspective view showing a multilayer film constituting FIG. 1, FIG. FIG. 4 relates to a reference example, FIG. 3 is a front sectional view showing an electrolytic capacitor, and FIG. 4 is a perspective view showing a multi-layer film constituting FIG. 1 ... Insulator, 2 ... Blank space 3 ... Valve action metal film, 4 ... Anodic oxide film 5 ... TCNQ complex film, 6 ... Cathode electrode film 7 ... Anode electrode film, 8 ... Resin film 9 ... Composite film layer, 10 ... Electrode extraction part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁物の一面または両面に一端面を余白部
として形成した弁作用金属膜と、該金属膜の前記余白部
と反対側に位置する一端面を除いた表面に形成した陽極
酸化皮膜と、該酸化皮膜上に形成したTCNQ錯体膜
と、該錯体膜上および前記余白部面上に形成した陰極電
極膜と、前記弁作用金属膜面上に前記酸化皮膜と接触す
ることなく形成した陽極電極膜と、該陽極電極膜および
前記陰極電極膜を含む表面に形成した樹脂膜とからなる
複膜層と、該複膜層を複数積層し両端面に形成した電極
引出部とを具備したことを特徴とする電解コンデンサ。
1. A valve action metal film having one end surface formed as a blank portion on one surface or both surfaces of an insulator, and anodization formed on a surface of the metal film excluding the one end surface opposite to the blank portion. A film, a TCNQ complex film formed on the oxide film, a cathode electrode film formed on the complex film and the blank surface, and formed on the valve action metal film surface without contacting the oxide film An anode electrode film, a composite film layer comprising a resin film formed on the surface including the anode electrode film and the cathode electrode film, and electrode lead-out portions formed by stacking a plurality of the composite film layers on both end faces. An electrolytic capacitor characterized in that
JP61144331A 1986-06-19 1986-06-19 Electrolytic capacitor Expired - Lifetime JPH0620032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61144331A JPH0620032B2 (en) 1986-06-19 1986-06-19 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61144331A JPH0620032B2 (en) 1986-06-19 1986-06-19 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS63107A JPS63107A (en) 1988-01-05
JPH0620032B2 true JPH0620032B2 (en) 1994-03-16

Family

ID=15359623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61144331A Expired - Lifetime JPH0620032B2 (en) 1986-06-19 1986-06-19 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0620032B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01128835U (en) * 1988-02-24 1989-09-01
JPH02137939U (en) * 1989-04-24 1990-11-16
WO2014188833A1 (en) * 2013-05-19 2014-11-27 株式会社村田製作所 Solid electrolytic capacitor and method for manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6057693B2 (en) * 1979-05-29 1985-12-16 松下電器産業株式会社 metal oxide capacitor
JPS57177518A (en) * 1981-04-24 1982-11-01 Tdk Electronics Co Ltd Laminated condenser and method of producing same

Also Published As

Publication number Publication date
JPS63107A (en) 1988-01-05

Similar Documents

Publication Publication Date Title
US6563693B2 (en) Solid electrolytic capacitor
US7038905B2 (en) Capacitor
JPH02105512A (en) Electrolytic capacitor and its manufacture
JPH0620032B2 (en) Electrolytic capacitor
JP2001332446A (en) Capacitor
JP2832651B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JPS61245515A (en) Electrolytic capacitor
JPS61251112A (en) Electrolytic capacitor
JPS61270809A (en) Manufacture of laminated electrolytic capacitor
JPS61278126A (en) Manufacture of laminated electrolytic capacitor
JP2504301B2 (en) Composite parts
JPS61270807A (en) Manufacture of laminated electrolytic capacitor
JPS61270808A (en) Manufacture of laminated electrolytic capacitor
JPS61270810A (en) Manufacture of laminated electrolytic capacitor
JPH0451466Y2 (en)
JPS61278125A (en) Manufacture of laminated electrolytic capacitor
JPS6294909A (en) Manufacture of toroidal electrolytic capacitor
JPS6294913A (en) Manufacture of toroidal electrolytic capacitor
JPS63104319A (en) Manufacture of laminated paper-less electrolytic capacitor
JPS62216212A (en) Electrolytic capacitor
JPS6294911A (en) Manufacture of toroidal electrolytic capacitor
JPH0758670B2 (en) Method for manufacturing laminated paperless electrolytic capacitor
JPS6294910A (en) Manufacture of toroidal electrolytic capacitor
JPS6294914A (en) Manufacture of toroidal electrolytic capacitor
JPS6370412A (en) Manufacture of laminated paper-less electrolytic capacitor