JPS6294913A - Manufacture of toroidal electrolytic capacitor - Google Patents

Manufacture of toroidal electrolytic capacitor

Info

Publication number
JPS6294913A
JPS6294913A JP23593485A JP23593485A JPS6294913A JP S6294913 A JPS6294913 A JP S6294913A JP 23593485 A JP23593485 A JP 23593485A JP 23593485 A JP23593485 A JP 23593485A JP S6294913 A JPS6294913 A JP S6294913A
Authority
JP
Japan
Prior art keywords
tcnq
film
electrolytic capacitor
vacuum
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23593485A
Other languages
Japanese (ja)
Inventor
清志 坂本
成沢 虞美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGAI DENSHI KOGYO KYODO KUMIA
NAGAI DENSHI KOGYO KYODO KUMIAI
Original Assignee
NAGAI DENSHI KOGYO KYODO KUMIA
NAGAI DENSHI KOGYO KYODO KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGAI DENSHI KOGYO KYODO KUMIA, NAGAI DENSHI KOGYO KYODO KUMIAI filed Critical NAGAI DENSHI KOGYO KYODO KUMIA
Priority to JP23593485A priority Critical patent/JPS6294913A/en
Publication of JPS6294913A publication Critical patent/JPS6294913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野1 本発明は新規な構成からなる巻回形電解コンデンサの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention 1] The present invention relates to a method of manufacturing a wound electrolytic capacitor having a novel configuration.

[発明の技術的背田とその問題点] 一般に乾式薄形電解コンデンサは、例えばアルミニウム
箔からなる一対の陽陰に!鴎に同じくアルミニウムから
なる一対の引出端子を接続し、前記一対の陽陰極箔相n
間にスベーりを介在させ巻回し、しかるのち駆動用電解
液を含浸しケースに収納し、該ケース開口部を密封して
なるものである。
[Technical aspects of the invention and its problems] In general, dry type thin electrolytic capacitors have a pair of positive and negative sides made of aluminum foil, for example! A pair of lead-out terminals also made of aluminum are connected to the hook, and the pair of anode and cathode foil phases are connected to each other.
It is wound up with a substrate interposed therebetween, then impregnated with a driving electrolyte, housed in a case, and the opening of the case is sealed.

一般にスペーサを介在する目的は一対の陽陰極箔相互間
の絶縁隔離および駆動用電解液の保持であり、乾式筒形
電解コンデンザにおいては重要な構成要件である。しか
して、一般に用いられているスペーサはクラフト紙であ
るが、該クラフト紙は密度が0.3〜O,BQ/cm3
と密度が比較的高く、また!&INが平べったくつぶれ
ているため見掛は上の比抵抗が大きくなりtanδ特性
を損ね、またクラフト紙は抄紙技術上の問題で厚みは3
0μ7n以上あり、これ以上薄くできず小形化を阻害す
る要因となっており、さらに加電圧、逆電圧印加などに
よるコンデンサ破壊時に着火し継続燃焼のおそれがある
などの欠点をもっていた。そのため現在クラフト紙に変
え低密度のマニラ紙を用いる傾向にあり、tanδ特性
改善に大きく貢献しているが、マニラ紙はクラフト紙に
比べて価格が数倍と高く、加えて抄紙後の強度をコンデ
ンサの製造工程(特に巻取工程)に耐えうるためには厚
さ40μm以上のものを用いなければならず依然として
小形化の阻害要因となっていた。 また液体の駆動用電
解液を使用しているためtanδ特性改善にも限度があ
り、ざらに液体の駆動用電解液は低温で比抵抗が上がり
低温特性が極度に悪化し広温度範囲で使用するには信頼
性に欠けなど実用上解決すべき問題をもっているばかり
か、引出端子を陽・陰極箔途中にステッチして引出した
構造であるため周波数特性が悪い問題をも抱えていた。
Generally, the purpose of interposing a spacer is to insulate and isolate a pair of anode and cathode foils and to retain a driving electrolyte, and is an important component in a dry type cylindrical electrolytic capacitor. However, the commonly used spacer is kraft paper, but the kraft paper has a density of 0.3 to O, BQ/cm3.
And the density is relatively high, also! Since &IN is flattened, the apparent resistivity increases and the tan δ characteristics are impaired, and the thickness of kraft paper is 3 due to paper-making technology issues.
It has a thickness of 0 μ7n or more, which prevents it from being made any thinner and hinders miniaturization.Furthermore, it has drawbacks such as the risk of ignition and continued combustion when the capacitor is destroyed by applied voltage or reverse voltage. Therefore, there is currently a trend to use low-density manila paper instead of kraft paper, which greatly contributes to improving tanδ properties. However, manila paper is several times more expensive than kraft paper, and in addition, it has poor strength after paper making. In order to withstand the capacitor manufacturing process (particularly the winding process), it is necessary to use a capacitor with a thickness of 40 μm or more, which continues to be an impediment to miniaturization. Furthermore, since a liquid driving electrolyte is used, there is a limit to the improvement of tan δ characteristics, and roughly liquid driving electrolytes increase resistivity at low temperatures, resulting in extremely poor low-temperature characteristics, making them difficult to use over a wide temperature range. Not only did it have problems that needed to be solved in practice, such as a lack of reliability, but it also had a problem with poor frequency characteristics because the lead terminal was stitched in the middle of the anode and cathode foils.

そのため近年、例えば特開昭58−17609号公報、
特開昭58−191414号公報または特開昭59−6
3604号公報に開示されているように駆動用電解液に
かえ、N−n−プロピル(またはN−イソ−プロピル)
イソキノリン、N−エチルイソキノリン、N−n−ブチ
ルイソキノリン、N位を炭化水素基で置換したキノリン
、イソキノリンまたはピリジンなどからなるTCNQ錯
塩を用い、特性を改善したものが提案されている。しか
して、このようなTCNQ錯塩を用いてなる電解コンデ
ンサは一般にこれらTCNQ錯塩を溶融含浸して用いる
訳であるが、TCNQ錯塩を溶融含浸する時に加熱され
るためTCNQ錯塩の伝導度が変わりやす<tanδ特
性に問題があり、また従来どおり引出端子を巻回体の途
中に挿入したタイプであるため高周波数での特性が悪く
、しかもスペーサを用いているため陽・陰極間(約40
〜50μTrL)が広く、等価直列抵抗が大きいなど依
然として解決すべき問題は残っていた。さらに上記公報
に開示されたTCNQ錯塩は真空蒸着が難しいばかりか
、それ自体の温度特性もそれほど良くない問題をももっ
ていた。
Therefore, in recent years, for example, Japanese Patent Application Laid-open No. 58-17609,
JP-A-58-191414 or JP-A-59-6
As disclosed in Publication No. 3604, instead of the driving electrolyte, N-n-propyl (or N-iso-propyl)
TCNQ complex salts made of isoquinoline, N-ethylisoquinoline, N-n-butylisoquinoline, quinoline substituted with a hydrocarbon group at the N position, isoquinoline, or pyridine have been proposed to have improved properties. However, electrolytic capacitors using such TCNQ complex salts are generally used by melting and impregnating these TCNQ complex salts, but since the TCNQ complex salts are heated during melting and impregnation, the conductivity of the TCNQ complex salts tends to change. There is a problem with the tan δ characteristics, and since the lead terminal is inserted in the middle of the winding as in the past, the characteristics at high frequencies are poor.Furthermore, because a spacer is used, there is a
There were still problems to be solved, such as a wide range of 50μTrL) and a large equivalent series resistance. Furthermore, the TCNQ complex salt disclosed in the above-mentioned publication was not only difficult to vacuum evaporate, but also had the problem that its temperature characteristics were not very good.

[発明の目的] 本発明は上記の点に鑑みてなされたもので、上記問題を
一気に解決し、広い温度範囲の使用においても安定した
閉時性が得られる新規な構成からなる巻回層電解コンデ
ンサの製造方法を提供することを目的とするものである
[Object of the Invention] The present invention has been made in view of the above points, and it solves the above problems at once and provides a wound layer electrolysis device with a novel configuration that provides stable closing performance even when used in a wide temperature range. The object of the present invention is to provide a method for manufacturing a capacitor.

[発明の概要コ 本発明の巻回形電解コンデンサ′の製造方法は、絶縁物
の片面よlζは両面に弁作用金属を真空蒸着し弁作用金
属膜を形成し、つぎに該金属膜の表面に生成した陽極酸
化皮膜上にTCNQ錯塩を真空蒸着し有機半導体膜を形
成し、該有償半導体股上に金属を真空蒸着し陰極電極膜
を形成し基本素子を1qたのら、該基本素子を巻回し一
端部に電極引出部を形成することを特徴としたものであ
る。
[Summary of the Invention] The method for manufacturing a wound electrolytic capacitor of the present invention is to vacuum-deposit a valve metal on one side and both sides of an insulator to form a valve metal film, and then deposit the valve metal film on the surface of the metal film. A TCNQ complex salt is vacuum-deposited on the anodic oxide film produced in 1 to form an organic semiconductor film, and a metal is vacuum-deposited on the paid semiconductor to form a cathode electrode film. This device is characterized in that an electrode lead-out portion is formed at one end of the turn.

[発明の実施例] 以下本発明の一実施例につき詳細に説明する。[Embodiments of the invention] An embodiment of the present invention will be described in detail below.

すなわら、第2図に示すように例えばポリエステル、ト
リアセテート、テトラフロロエチレン、ポリカーボネ−
1へ、ポリアミド、ポリイミドなどからなるプラスナッ
クフィルムまたはプラスデックシートなどの絶縁物(1
)の片面に一端部を余白部(2)としてアルミニウム金
属を真空蒸着し弁作用金属膜(3)部を形成したのち、
該弁作用金属膜(3)を陽極酸化し該弁作用金属pA(
3)表面に陽極酸化皮膜(4)を生成し、しかる後該陽
Vi酸化皮膜(4)の前記余白部(2)の反対側に位置
する端面を除いた面上から前記余白部(2)面上に例え
ば2.2′−ビピリディニウム(TCNQ)2.4−ハ
イドロオキシ−N−ペンジルアニリニウム(TCNQ>
  、  4−7ミノー2.3.5.6一テ1〜ラメチ
ルアニリニウム(TCNQ)2、ビリディニウム(TC
NQ>  、 4−シアノ−Nメチル−ビリデニウム(
TCNQ)  、  N−Eエチルキノリニウム(TC
NQ)2、 N−(2−フエニチル)キノリニウム(T
CNQ)2などからなるTCNQ錯塩を真空蒸着し有様
半導体膜(5)を形成する。つぎに該有機半導体膜(5
)の面記余白部(2)の反対側に位置する端面を除いた
面上に銀、銅または金などの金属を真空蒸着して陰極電
極膜(6)を形成し基本素子(7)を得る。
That is, as shown in FIG. 2, for example, polyester, triacetate, tetrafluoroethylene, polycarbonate, etc.
To 1, insulators such as plastic snack film or plastic deck sheet made of polyamide, polyimide, etc.
), one end is left as a margin (2) and aluminum metal is vacuum-deposited to form a valve metal film (3).
The valve metal film (3) is anodized to form the valve metal pA(
3) An anodic oxide film (4) is formed on the surface, and then the margin part (2) is formed on the surface of the anodic Vi oxide film (4) excluding the end face located on the opposite side of the margin part (2). For example, 2,2'-bipyridinium (TCNQ), 2,4-hydroxy-N-penzylanilinium (TCNQ>
, 4-7 Minnow 2.3.5.6 1 Te 1 ~ La Methyanilinium (TCNQ) 2, Viridinium (TC
NQ>, 4-cyano-N-methyl-pyridenium (
TCNQ), N-E ethylquinolinium (TC
NQ)2, N-(2-phenythyl)quinolinium (T
A TCNQ complex salt such as CNQ)2 is vacuum deposited to form a structured semiconductor film (5). Next, the organic semiconductor film (5
) is vacuum-deposited with a metal such as silver, copper, or gold on the surface excluding the end surface located on the opposite side of the surface margin (2) to form a cathode electrode film (6), and then form a basic element (7). obtain.

しかして、該基本素子(7)を第1図に示すように巻回
し、両端面に銀または銅ペーストを塗布−乾燥するかま
たは亜鉛、アルミニウムまたはハンダなどの金属をメタ
リコンし電極引出部(8)を形成し、該電極引出部(8
)に外部端子(9)を取着し、ケースに収納するか樹脂
被覆などを施し外装(図示せず)形成してなるものであ
る。
Then, the basic element (7) is wound as shown in Fig. 1, and both end faces are coated with silver or copper paste and dried, or a metal such as zinc, aluminum or solder is coated with metal such as zinc, aluminum or solder. ), and the electrode lead-out part (8
) to which an external terminal (9) is attached and housed in a case or coated with resin or the like to form an exterior (not shown).

以上のように構成してなる巻回形電解コンデンサの製造
方法によれば、有機半導体膜形成として前述のようなT
 CN Q #ff塩を用いるため真空蒸着が容易とな
り、従来例の溶融含浸のように加熱されないので伝導度
が高<tan6特性が良好であり、また前述のようなT
CNQ錯塩は温度変化による比抵抗の変化は小さく、し
かもスベー勺を用いないため陽・陰極間の抵抗も小さく
でき、よって低温から高温の広い温度範囲においてta
nδ特性の変化・静電容量の変化および漏れ゛耐流特性
の変化も少なく、さらには従来例と違い素子形状が無誘
導タイプとなるため高周波数でのインピーダンス特性が
大幅に改善されるなど多くのすぐれた効果を奏する利点
を有する。
According to the method for manufacturing the wound electrolytic capacitor configured as described above, the above-mentioned T
Since the CN Q #ff salt is used, vacuum evaporation is easy, and unlike conventional melt impregnation, it is not heated, so the conductivity is high and the tan6 characteristics are good.
CNQ complex salt has a small change in resistivity due to temperature changes, and since it does not use a substrate, the resistance between the anode and cathode can be reduced, so it can be used in a wide temperature range from low to high temperatures.
There are few changes in nδ characteristics, changes in capacitance, and changes in leakage and current characteristics.Furthermore, unlike conventional models, the element shape is non-inductive, so impedance characteristics at high frequencies are significantly improved. It has the advantage of producing excellent effects.

つぎに本発明の実施例と従来の参考例との比較の一例に
ついて述べる。
Next, an example of comparison between an embodiment of the present invention and a conventional reference example will be described.

実  施  例 ポリエステルフィルムの片面にアルミニウム金属を真空
蒸着して形成した厚さ1μmのアルミニウム膜表面を、
アジピン酸アンモニウム10%水溶液中でi oovの
電圧を印加し陽極酸化し、該陽極酸化によってアルミニ
ウム膜表面に生成した陽極酸化皮膜上に、2,2、−ビ
ピリディニウム(TCNQ)2を温度150℃、5分間
の条件で真空蒸着し厚さ5μmの有機半導体膜を形成し
、つぎに該有機半導体股上にAgを真空蒸着し厚さ5μ
mの陰極電極膜を形成し得た第2図に示すような構成か
らなる基本素子を巻回し両端面にAQペーストを塗布−
乾燥し電極引出部を形成し、該電極引出部に引出端子を
溶着し、外装構造としてエポキシ樹脂を被覆してなる定
格25WV、DC−0,1μFの巻回形電解コンデンサ
(A)参  考  例 アルミニウム箔表面を粗面化したのち陽極酸化皮膜生成
した陽極箔とアルミニウム箔表面を粗面化した陰極箔間
にスペーサとしてマニラ紙を介在し巻回した素子に、N
−n−プロビルイソノキノリンのTCNQ錯塩を溶融含
浸し、金属ケース外装トシテナル定格25’WV、DC
−0,1μF(7)電解コンデンサ(B) なお上記(B)における引出端子は陽・陰極箔にステッ
チし引出した構造である。
Example The surface of an aluminum film with a thickness of 1 μm formed by vacuum-depositing aluminum metal on one side of a polyester film was
A voltage of i oov was applied in a 10% ammonium adipate aqueous solution to perform anodization, and 2,2-bipyridinium (TCNQ) 2 was applied at a temperature of 150°C on the anodic oxide film formed on the surface of the aluminum film by the anodic oxidation. Vacuum deposition was performed for 5 minutes to form an organic semiconductor film with a thickness of 5 μm, and then Ag was vacuum deposited on the organic semiconductor film to a thickness of 5 μm.
A basic element having the structure shown in Fig. 2, which can form a cathode electrode film of 10 m, is wound and AQ paste is applied to both end faces.
A wound type electrolytic capacitor (A) with a rating of 25WV, DC-0, 1μF, which is dried to form an electrode lead-out part, a lead-out terminal is welded to the electrode lead-out part, and an epoxy resin is coated as an exterior structure.Reference example N
- Melt-impregnated with TCNQ complex salt of n-probylisonoquinoline, metal case exterior tocitenal rating 25'WV, DC
-0.1 μF (7) Electrolytic capacitor (B) The lead terminal in (B) above has a structure in which the anode and cathode foils are stitched and drawn out.

しかして上記本発明に係る実施例<A>と従来の参考例
(B)の温度に対する静電容ra変化率およびtanδ
、さらには漏れ電流を調べた結果第3図〜第5図に示す
ようになり、また周波数−インピーダンス特性を調べた
結果第6図に示すようになった。
However, the capacitance ra change rate and tan δ with respect to temperature in the above embodiment <A> according to the present invention and the conventional reference example (B)
Furthermore, the results of investigating the leakage current were as shown in FIGS. 3 to 5, and the results of investigating the frequency-impedance characteristics were as shown in FIG. 6.

第3図〜第6図から明らかなように、いずれの特性にお
いても実施例(A)は参考例([3)より安定しており
、特に高周波数でのインピーダンス特性がすぐれており
、本発明のすぐれた効果を実証した。
As is clear from FIGS. 3 to 6, Example (A) is more stable than Reference Example ([3) in all characteristics, and has particularly excellent impedance characteristics at high frequencies. demonstrated its excellent effectiveness.

なお上記実施例では弁作用金属膜形成としてアルミニウ
ム金属を用いるものを例示して説明したが、例えばタン
タル、チタン、ニオブなどの他の弁作用金属を用いたも
のでも同様の効果を(7ることかできる。また上記各実
施例では基本素子構成として絶縁物の片面にのみ弁作用
金属膜、有感半導体膜、陰極電極膜を形成するものを例
示して説明したが、絶縁物の両面に形成するようにして
も同様の効果が1qられることは言うまでもない。
In the above embodiments, aluminum metal is used to form the valve metal film, but similar effects can be obtained using other valve metals such as tantalum, titanium, and niobium. In addition, in each of the above embodiments, the basic element configuration is exemplified in which the valve metal film, the sensitive semiconductor film, and the cathode electrode film are formed only on one side of the insulator. It goes without saying that even if you do this, the same effect will be obtained by 1q.

[発明の効果1 本発明によればスペーサを廃止し、しかも有機半導体膜
として新規なTCNQ錯塩を用いることによって安定し
た特性が得られる既存の電解コンデンサ構成の枠を越え
た全りfr規な構成からなる実用的価値の高い巻同形電
解コンデン(lの製造方法を得ることができる。
[Effect of the invention 1] According to the present invention, a spacer is abolished and stable characteristics are obtained by using a new TCNQ complex salt as an organic semiconductor film, which is a completely conventional structure that goes beyond the framework of existing electrolytic capacitor structures. It is possible to obtain a method for producing a highly practical volume homomorphic electrolytic capacitor (l) consisting of a highly practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例に係り第1図は
巻回形電解コンデンサを示す正断面図、第2図は第1図
を構成する基本素子を示す斜視図、第3図は温度−静電
容邑変化率特性曲線図、第4図は温度−tanδ特性曲
線図、第5図は温度−漏れ電流特性曲線図、第6図は周
波数−インピーダンス特性曲線図である。 (1)・・・・・・絶縁物    (2)・・・・・・
余白部(3)・・・・・・弁作用金属膜 (4)・・・
・・・陽極酸化皮膜(5)・・・・・・有機半導体膜 
(6)・・・・・・陰極電極膜(7)・・・・・・基本
素子   (8)・・・・・・Sfi極引出部14訂出
願人  長井電子工業協同組合第1図 第5図 第6図 手  続  補  正  よ    (自発)1、事件
の表示 昭和60年特許願第235934号 26発明の名称 巻回形電解コンデンリの製造方法 3、補正をする者 事件との関係  特許出願人 住所 山形県長井市時13工1960番地用話 長井(
0238)84−4403郵便番号  999−05 名称 長井電子工業協同組合 別紙のとおり 明     細      占 1、発明の名称 巻回形電解コンデンサの製造方法 2、特許請求の範囲 (1)絶縁物のハ面または両面に弁作用金属を真空蒸着
し弁作用金属膜を形成する手段と、該金属膜の表面に陽
極酸化皮膜を生成する手段と、該耐化皮躾上にTCNQ
錯塩を真空蒸着し有機半導体膜を形成する手段と、該イ
jIa半導体股上に金属を真空蒸着し陰KA電極膜を形
成し基本素子を1ミする手段と、該基本素子を巻回し両
端面に電極引出部を形成づる手段とを貝協したことを特
徴とする巻回形電解コンデンサの製造方法。 (2)絶縁物がプラスチックフィルム、プラスチックシ
ー1〜からなることを特徴とする特許請求の範囲第(1
)項記載の巻回形電解コンデンザの製造 方 ンム 。 (3) 1’ C,N Q It塩が2.2′−ビピリ
ジニウム(TCNQ>  、 4−ハイドロオキシ−N
−ペンジルアニリニウム(TCNQ)2.4−アミノ−
2,3,5,6−テトラメチルアニリニウム(TCNQ
)  、 ピリジニウム(TCNQ)  、 4−シア
ノ−Nメチル−ピリジニウム(TCNQ)  、 N−
■チルキノリニウム(TCNQ>  、 N−(2−フ
エネヂル)キノリニウム(−r CN Q ) 2から
なることを特徴とする特許請求の範囲第(1)項または
特許請求の範囲第(2)項記載の巻回形電解コンデンサ
の製造方法。 3、発明の詳細な説明 [発明の技術分野1 本発明は新規な構成からなる巻回形電解コンデンサの製
造方法に関する。 [発明の技術的背景とその問題点] 一般に乾式薄形電解コンデンサは、例えばアルミニウム
箔からなる一対の陽陰極箔に同じくアルミニウムからな
る一対の引出端子を接続し、前記一対の陽陰極箔相互間
にスペーサを介在させ巻回し、しかるのち駆動用電解液
を含浸しケースに収納し、該ケース開口部を密封してな
るものである。 一般にスペーサを介在づる目的は一対の陽陰I41f+
ji相H間の絶縁隔離J3よび駆動用電解液の保持であ
り、乾式筒形雷解=lンデンリにおいては重要な構成要
件である。しかして、一般に用いられているスペーサは
クラフト紙であるが、該クラフト紙は密度が0.3〜0
.80/cm”と密度が比較的高く、またクラフト紙を
構成する繊維の断面形状が偏平のため見掛は上の比抵抗
が大きくなりtanδ特性を旧ね、またクラフト紙は抄
紙技術上の問題で厚みは30μm以上あり、これ以上薄
くできず小形化を阻害する要因となっており、ざらに過
電1F、逆電圧印加などによるコンデンサ破壊u、1に
4火し継続燃焼のおそれがあるなどの欠点をもっていた
。そのため現在クラフト紙に変え低密度の7ニラ紙を用
いる傾向にあり、tanδ特性改善に大ぎく貢献してい
るが、マニラ紙はクラフト紙に比べて価格が数倍と高く
、加えて抄紙後の強度をコンデンサの製造工程(特に巻
取工程)に耐えさけるためには厚さ40μmrL以上の
6のを用いなりればならず依然どして小形化の阻害要因
となっていた。 また液体の駆動用電解液を使用しているためtanδ特
性改善にも限度があり、さらに液体の駆動用電解液は低
温で比抵抗が増大しやすく低温特性が極度に悪化し広温
度範囲で使用するには信頼性に欠けるなど実用上解決す
べき問題をもっているばかりか、引出端子を陽・陰極酒
途中にステッチして引出した構造であるため周波数特性
が悪い問題をも抱えていた。 そのため近年、例えば特開昭58−17609号公報、
特開昭58−191414号公報または特開昭59−6
3604号公報に開示されているように駆動用電解液に
かえ、N−n−プロピル(またはN−イソ−プロピル)
イソキノリン、N−エチルイソキノリン、N−「)−ブ
チルイソキノリン、N位を炭化水素基で置換したキノリ
ン、イソキノリンまたはピリジンなどからなるT CN
 Q錯塩を固体電解質として用い、特性を改善したもの
が提案されている。しかして、このようなT CNQ錯
塩を用いてなる電解コンデンIすは一般にこれら丁CN
Q錯塩を溶融含浸して用いる訳であるが、TCNQ錯塩
を溶融含浸する時に長時間加熱づるためTCNQ♀11
塩の伝導度が減少しゃJ′りtanδ特性に問題があり
、また従来どおり引出端子を巻回体の途中に挿入したタ
イプであるため高周波数での特性が悪く、しがもスペー
サを用いているため陽・陰極間(約40〜50μm)が
広く、等lll1i直列抵抗が大きいなど依然として解
決すべき問題は残っていた。さらに上記公報に開示され
たTCNQ錯塩は錯塩蒸着が難しいばかりが、それ自体
の温度特性もそれほど良くない問題をもしっていた。 [発明の目的1 本発明は上記の点に鑑みてなされたもので、上記問題を
一気に解決し、広い温度範囲の使用にJ3いてム安定し
た品持性が(!1られる新規な構成からなる巻回形電解
コンデンサの製造方法を提供することを目的とづるもの
である。 [発明の概要1 本発明の巻回形電解コンデンサの製造方法は、絶縁物の
片面または両面に弁作用金属を真空蒸着し弁作用金属膜
を形成し、つぎに該金属膜の表面に生成した陽極酸化皮
成上にTCNQ錯塩を真空蒸着し有機半導体膜を形成し
、該有機半導体膜上に金属を真空蒸着し陰極電極膜を形
成し基本素子を得たのら、該基本素子を巻回し両端面に
電極引出部を形成することを特徴としたものである。 [発明の実施例] 以下本発明の一実施例につき詳細に説明する。 1゛なわら、第2図に示すように例えばポリエステル、
トリアセテート、テ1−ラフ[10エチレン、ポリカー
ボネート、ポリアミド、ポリイミドなどからなるプラス
チックフィルムまたはプラスチックシートなどの絶縁物
(1)の片面に一端部を余白部(2)としてアルミニウ
ム金属を真空蒸着し弁作用金属膜(3)部を形成したの
ら、該弁作用金属膜(3)を陽極酸化し該弁作用金属膜
(3)表面に陽極酸1ヒ皮膜(4)を生成し、しかるの
ち該陽極酸化皮膜(4)の前記余白部(2)の反対側に
位置する端面を除いた面上から前記余白部(2)面上に
例えば2.2′−ビピリジニウム(TCNQ) 2.4
−ハイドロオキシ−N−ペンジルアニリニ1クム(TC
NQ)  、  4−アミノ−2,3,5,6一チトラ
メヂルアニリニウム(TCNQ>2、ピリジニウム(T
CNQ)  、 4−シアノ−Nメチル−ピリジニウム
(T CN Q ) 2、 N−エチルキノリニウム(
TCNQ)  、 N−(2−)1ネヂル)キノリニウ
ム(TCNQ)2などからなるTCNQ錯塩を錯塩蒸着
し有機半導体膜(5)を形成Jる。つぎに該有機半導体
膜(5)の前記余白部(2)の反対側に位置する端面を
除いた面上に銀、銅または金などの金属を真空蒸着して
陰極電極膜(6)を形成し基本素子(1)を得る。しか
して、該基本素子(7)を第1図に承りように巻回し、
両端面に銀または銅ペーストを塗布−乾燥するかまたは
亜鉛、アルミニウムまたはハンダなどの金属をメタリコ
ンし電極引出部(8)を形成し、該電極引出部(8)に
外部端子(9)を取着し、ケースに収納づるか樹脂被覆
などを施し外装(図示せず)形成してなる乙のである。 以上のように構成してなる巻回正電解コンデンリの製造
方法によれば、有機半導体膜形成として前述のようなT
CNQ錯塩を錯塩るため真空盟着が容易となり、従来例
の溶融含浸のように加熱されないので伝導度が高<ta
nδ特性が良好であり、また前述のようなTCNQ錯塩
は錯塩変化による比抵抗の変化は小さく、しかもスベー
Vを用いないため陽・陰極間の抵抗も小さくでき、よっ
て低温から高温の広い温UvA囲に33いてtanδ特
性の変化・静電容量の変化および漏れ電流特性の変化も
少なく、さらには従来例と追い素子形状が無誘導タイプ
となるため高周波数でのインピーダンス特性が大幅に改
善されるなど多くのずぐれた効果を奏する利点を有する
。 つぎに本発明の実施例と従来の参考例との比較の一例に
ついて述べる。 実  施  例 ポリエステルフィルムの片面にアルミニウム金属を真空
蒸着して形成した厚さ1μ7nのアルミニウム膜表面を
、アジピン酸アンモニウム10%水溶液中で100Vの
電圧を印加し陽極酸化し、該陽極酸化によってアルミニ
ウム膜表面に生成した陽極酸化皮IjIA上に、2,2
′−ビピリジニウム(TCNQ> 28温度150℃、
5分間の条件で真空蒸着し厚さ5μmの有機半導体膜を
形成し、つぎに該有機半導体股上にACIを真空蒸着し
厚さ5μmの陰14電極膜を形成し得た第2図に承りよ
うな構成からなる基本素子を巻回し両端面にAQペース
トを塗布−乾燥し電極引出部を形成し、該電極引出部に
引出端子を溶着し、外装構造とじてエポキシ樹脂を被覆
してなる定格25WV0.1μFの巻回形電解コンデン
サ(A)。 参  考  例 アルミニウム箔表面を粗面化したのち陽4[化皮膜生成
した陽極箔とアルミニウム箔表面を粗面化した陰極箔間
にスベーザとしてマニラ紙を介在し巻回した素子に、N
−n−プロビルイソノキノリンのTCNQ釦塩を溶融含
浸し、金属ケース外装としてなる定′!825WV0.
1μFの電解コンデンサ(1B)。 なお上記(B)における引出端子は陽・陰極箔にステッ
チし引出した構造である。 しかして上記本発明に係る実施例(A)と従来の参考例
(B)の温度に対する静電容量変化率およびtanδ、
ざらには漏れ電流を調べた結果第3図〜第5図に示すよ
うになり、また周波数−インピーダンス特性を調べた結
果第6図に示ずようになった。 第3図〜第6図から明らかなように、いずれの特性にお
いても実施例(A)は参考例(8)より安定しており、
特に高周波数でのインビルダンス特性がすぐれてJ3す
、本発明のすぐれた効果を実証した。 なa3上記実施例では弁作用金属膜形成としてアルミニ
ウム金属を用いるものを例示して説明したが、例えばタ
ンタル、チタン、ニオブなどの伯の弁作用金属を用いた
ものでも同様の効果を得ることかできる。また上記各実
施例では基本素子構成として絶縁物の片面にのみ弁作用
金属膜、fi償半導体膜、陰極゛電極膜を形成するもの
を例示して説四したが、絶縁物の両面に形成するように
してb同様の効果が得られることは言うまでもない。 [発明の効果1 本発明によればスベー4)を廃止し、しかも有機半導体
膜として新規なTCNQ錯塩を用いることによって安定
した特性が151られる既存の電解コンデンサ構成の枠
を越えた全く新規な構成からなる実用的価値の高い巻回
形電解コンデンサの製造方法を得ることができる。 4、図面のfi!111iな説明 第1図および第2図は本発明の一実施例に係り第1図【
よ巻回形電解コンデンサを示す1所面図、第2図は第1
図を構成する基本素子を示づ斜視図、第3図は温度−静
電容量変化率特性曲線図、第4図は湯度−tanδ特性
曲線図、第5図は温度−漏れ電流特性曲線図、第6図は
周波数−インピーダンス特性曲線図である。 (1)・・・・・・絶縁物    (2)・・・・・・
余白部(3)・・・・・・弁作用金属膜 (4)・・・
・・・陽極酸化皮膜(5)・・・・・・有機半導体膜 
(6)・・・・・・陰極電極膜(1)・・・・・・基本
素子   (8)・・・・・・電極引出部特  許  
出  願  人 長井電子工業協同組合
1 and 2 relate to one embodiment of the present invention; FIG. 1 is a front sectional view showing a wound type electrolytic capacitor, FIG. 2 is a perspective view showing basic elements constituting FIG. 1, and FIG. 4 is a temperature-tan δ characteristic curve, FIG. 5 is a temperature-leakage current characteristic curve, and FIG. 6 is a frequency-impedance characteristic curve. (1)・・・Insulator (2)・・・・・・
Margin area (3)...Valve action metal membrane (4)...
...Anodized film (5) ...Organic semiconductor film
(6)...Cathode electrode film (7)...Basic element (8)...Sfi electrode extraction part 14th edition Applicant Nagai Electronics Industrial Cooperative Association Figure 1 Figure 5 Figure 6 Procedures Amendment (voluntary) 1. Indication of the case 1985 Patent Application No. 235934 26 Name of the invention Method for manufacturing rolled electrolytic condenser 3. Person making the amendment Relationship to the case Patent applicant Address: 1960 Toki 13, Nagai City, Yamagata Prefecture, Nagai (
0238) 84-4403 Postal code 999-05 Name Nagai Electronic Industrial Cooperative Association Details as per the attached sheet 1. Name of the invention Method for manufacturing a wound electrolytic capacitor 2. Claims (1) Insulating material means for forming a valve metal film by vacuum-depositing a valve metal on both surfaces; means for forming an anodic oxide film on the surface of the metal film;
a means for vacuum-depositing a complex salt to form an organic semiconductor film; a means for vacuum-depositing a metal on the IjIa semiconductor to form a negative KA electrode film to form a basic element; A method for manufacturing a wound electrolytic capacitor, characterized in that a means for forming an electrode lead-out portion is used in combination with a means for forming an electrode lead-out portion. (2) Claim No. 1 characterized in that the insulator is made of a plastic film or a plastic sheet 1 to 1.
) Method of manufacturing the wound type electrolytic capacitor described in section 2. (3) 1'C,NQ It salt is 2,2'-bipyridinium (TCNQ>, 4-hydroxy-N
-penzylanilinium (TCNQ) 2,4-amino-
2,3,5,6-tetramethylanilinium (TCNQ
), pyridinium (TCNQ), 4-cyano-Nmethyl-pyridinium (TCNQ), N-
■The volume described in claim (1) or claim (2), characterized in that it consists of tilquinolinium (TCNQ>, N-(2-phenedyyl)quinolinium (-rCNQ) 2) Method for manufacturing a wound electrolytic capacitor. 3. Detailed description of the invention [Technical field of the invention 1 The present invention relates to a method for manufacturing a wound electrolytic capacitor having a novel configuration. [Technical background of the invention and its problems] In general, dry type thin electrolytic capacitors are made by connecting a pair of anode and cathode foils made of aluminum foil to a pair of lead terminals also made of aluminum, winding the anode and cathode foils with a spacer interposed between them, and then driving the capacitor. The spacer is impregnated with an electrolytic solution, stored in a case, and the opening of the case is sealed.Generally, the purpose of interposing a spacer is to connect a pair of positive and negative I41f+
These are insulation isolation J3 between the two phases H and retention of the driving electrolyte, which are important structural requirements in a dry cylindrical lightning reactor. However, the commonly used spacer is kraft paper, but the kraft paper has a density of 0.3 to 0.
.. The density is relatively high at 80/cm", and the cross-sectional shape of the fibers that make up kraft paper is flat, so the apparent resistivity becomes large, which deteriorates the tan δ property. In addition, kraft paper has problems in papermaking technology. The thickness of the capacitor is over 30 μm, and it cannot be made any thinner, which is a factor that hinders miniaturization.There is a risk of capacitor destruction due to overcurrent of 1 F, application of reverse voltage, etc., and there is a risk of continuous combustion due to 1 to 4 ignition. Therefore, there is a current tendency to use low-density 7-Ni paper instead of kraft paper, which greatly contributes to improving tanδ characteristics, but Manila paper is several times more expensive than kraft paper. In addition, in order to maintain the strength after paper making to withstand the capacitor manufacturing process (particularly the winding process), it is necessary to use a sheet with a thickness of 40 μm rL or more, which remains an impediment to miniaturization. Furthermore, since a liquid driving electrolyte is used, there is a limit to the improvement of tan δ characteristics.Furthermore, liquid driving electrolytes tend to increase resistivity at low temperatures, resulting in extremely poor low-temperature characteristics, making them difficult to use over a wide temperature range. Not only did it have problems that needed to be solved in practice, such as a lack of reliability, but it also had the problem of poor frequency characteristics because the lead terminal was stitched in the middle of the positive and negative poles. In recent years, for example, Japanese Patent Application Laid-Open No. 17609/1983,
JP-A-58-191414 or JP-A-59-6
As disclosed in Publication No. 3604, instead of the driving electrolyte, N-n-propyl (or N-iso-propyl)
TCN consisting of isoquinoline, N-ethylisoquinoline, N-'-butylisoquinoline, quinoline substituted with a hydrocarbon group at the N position, isoquinoline or pyridine, etc.
A Q complex salt with improved properties has been proposed as a solid electrolyte. However, electrolytic capacitors I made using such TCNQ complex salts are generally made using these TCNQ complex salts.
Q complex salt is used by melting and impregnating it, but TCNQ♀11 is heated for a long time when melting and impregnating TCNQ complex salt.
If the conductivity of the salt decreases, there is a problem with the J' tan δ characteristics, and since the lead terminal is inserted in the middle of the winding as before, the characteristics at high frequencies are poor, so it is necessary to use a spacer. Therefore, there were still problems to be solved, such as the distance between the anode and cathode (approximately 40 to 50 μm) and the large series resistance. Furthermore, the TCNQ complex salt disclosed in the above-mentioned publication was not only difficult to deposit by complex salt deposition, but also had the problem that its temperature characteristics were not so good. [Objective of the Invention 1] The present invention has been made in view of the above points, and it solves the above problems at once, and has a novel structure that can be used in a wide temperature range and has stable quality (!1). The purpose of this invention is to provide a method for manufacturing a wound type electrolytic capacitor. [Summary of the Invention 1 The method for manufacturing a wound type electrolytic capacitor of the present invention is to provide a method for manufacturing a wound type electrolytic capacitor by applying a valve metal to one or both sides of an insulator under vacuum. A valve metal film is formed by vapor deposition, then a TCNQ complex salt is vacuum-deposited on the anodic oxide film formed on the surface of the metal film to form an organic semiconductor film, and a metal is vacuum-deposited on the organic semiconductor film. This method is characterized in that after forming a cathode electrode film and obtaining a basic element, the basic element is wound and electrode extension parts are formed on both end faces. [Embodiments of the Invention] Hereinafter, one embodiment of the present invention will be described. An example will be explained in detail. 1. As shown in FIG. 2, for example, polyester,
Triacetate, Te1-Rough [10 Ethylene, polycarbonate, polyamide, polyimide, etc., are insulators (1) such as plastic films or sheets. Aluminum metal is vacuum-deposited on one side of the insulating material (1) with one end left as a margin (2) to form a valve. After forming the metal film (3), the valve metal film (3) is anodized to form an arsenic anodic acid film (4) on the surface of the valve metal film (3), and then the anode For example, 2.2'-bipyridinium (TCNQ) 2.4 is applied from the surface of the oxide film (4) excluding the end surface located on the opposite side of the margin section (2) to the surface of the margin section (2).
-Hydroxy-N-penzylanilini 1 cum (TC
NQ), 4-amino-2,3,5,6-titramedylanilinium (TCNQ>2, pyridinium (T
CNQ), 4-cyano-Nmethyl-pyridinium (TCNQ) 2, N-ethylquinolinium (
An organic semiconductor film (5) is formed by depositing a TCNQ complex salt such as TCNQ), N-(2-)1Nedyl)quinolinium (TCNQ)2, or the like. Next, a cathode electrode film (6) is formed by vacuum-depositing a metal such as silver, copper, or gold on the surface of the organic semiconductor film (5) excluding the end face located on the opposite side of the margin (2). Then, basic element (1) is obtained. Then, the basic element (7) is wound as shown in FIG.
Apply silver or copper paste to both end faces and dry or metallize with metal such as zinc, aluminum or solder to form an electrode lead-out part (8), and connect an external terminal (9) to the electrode lead-out part (8). It is either mounted in a case, or coated with resin or the like to form an exterior (not shown). According to the method for manufacturing the wound positive electrolytic condenser constructed as described above, the above-described T
Because the CNQ complex salt is a complex salt, vacuum bonding is easy, and unlike conventional melt impregnation, heating is not required, resulting in high conductivity.
The TCNQ complex salt has good nδ characteristics, and the change in resistivity due to changes in the complex salt is small, and since sub-V is not used, the resistance between the anode and cathode can be reduced, so it can be used at a wide range of temperature UvA from low to high temperatures. 33, there are few changes in tan δ characteristics, changes in capacitance, and changes in leakage current characteristics, and furthermore, since the shape of the follower element is non-inductive compared to the conventional example, the impedance characteristics at high frequencies are significantly improved. It has the advantage of producing many outstanding effects. Next, an example of comparison between an embodiment of the present invention and a conventional reference example will be described. Example The surface of an aluminum film with a thickness of 1 μ7n formed by vacuum vapor deposition of aluminum metal on one side of a polyester film was anodized by applying a voltage of 100 V in a 10% aqueous solution of ammonium adipate, and the aluminum film was formed by the anodization. On the anodic oxide skin IjIA generated on the surface, 2,2
'-Bipyridinium (TCNQ>28 temperature 150℃,
An organic semiconductor film with a thickness of 5 μm was formed by vacuum deposition for 5 minutes, and then ACI was vacuum deposited on the organic semiconductor to form a negative 14 electrode film with a thickness of 5 μm, as shown in Figure 2. A basic element consisting of the following configuration is wound, AQ paste is applied to both end faces, dried to form an electrode lead-out part, a lead-out terminal is welded to the electrode lead-out part, and the exterior structure is coated with epoxy resin, rated at 25WV0. .1μF wound type electrolytic capacitor (A). Reference Example After roughening the surface of aluminum foil, manila paper was interposed as a smoother between the anode foil on which a 4[N] conversion film was formed and the cathode foil on which the surface of the aluminum foil was roughened.
- Molten and impregnated with TCNQ button salt of n-probylisonoquinoline to form a metal case exterior! 825WV0.
1μF electrolytic capacitor (1B). The lead terminal in (B) above has a structure in which the anode and cathode foils are stitched and drawn out. Therefore, the capacitance change rate and tan δ with respect to temperature of the above-mentioned Example (A) according to the present invention and the conventional reference example (B),
Roughly speaking, the results of investigating the leakage current were as shown in FIGS. 3 to 5, and the results of investigating the frequency-impedance characteristics were as shown in FIG. 6. As is clear from FIGS. 3 to 6, Example (A) is more stable than Reference Example (8) in all characteristics.
In particular, J3 had excellent inbuilt-dance characteristics at high frequencies, demonstrating the excellent effects of the present invention. A3 In the above embodiment, aluminum metal is used to form the valve metal film, but it is possible to obtain the same effect by using other valve metals such as tantalum, titanium, niobium, etc. can. Furthermore, in each of the above embodiments, the basic element configuration has been described by way of example in which the valve metal film, the fi compensation semiconductor film, and the cathode/electrode film are formed only on one side of the insulator. It goes without saying that the same effect as b can be obtained in this way. [Effect of the invention 1 According to the present invention, a completely new configuration beyond the framework of existing electrolytic capacitor configurations is achieved in which stable characteristics are obtained by abolishing the substrate 4) and using a new TCNQ complex salt as an organic semiconductor film. A method for manufacturing a wound electrolytic capacitor of high practical value can be obtained. 4.Fi of drawings! 111i Description FIGS. 1 and 2 relate to one embodiment of the present invention.
Figure 2 is a top view showing a well-wound electrolytic capacitor.
Figure 3 is a temperature-capacitance change rate characteristic curve diagram, Figure 4 is a hot water temperature-tanδ characteristic curve diagram, and Figure 5 is a temperature-leakage current characteristic curve diagram. , FIG. 6 is a frequency-impedance characteristic curve diagram. (1)・・・Insulator (2)・・・・・・
Margin area (3)...Valve action metal membrane (4)...
...Anodized film (5) ...Organic semiconductor film
(6)...Cathode electrode film (1)...Basic element (8)...Patent for electrode lead-out portion
Applicant Nagai Electronics Industrial Cooperative Association

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁物の片面または両面に弁作用金属を真空蒸着
し弁作用金属膜を形成する手段と、該金属膜の表面に陽
極酸化皮膜を生成する手段と、該酸化皮膜上にTCNQ
錯塩を真空蒸着し有機半導体膜を形成する手段と、該有
機半導体膜上に金属を真空蒸着し陰極電極膜を形成し基
本素子を得る手段と、該基本素子を巻回し両端面に電極
引出部を形成する手段とを具備したことを特徴とする巻
回形電解コンデンサの製造方法。
(1) Means for vacuum-depositing a valve metal on one or both sides of an insulator to form a valve metal film, means for forming an anodized film on the surface of the metal film, and TCNQ on the oxide film.
means for vacuum-depositing a complex salt to form an organic semiconductor film; means for vacuum-depositing a metal on the organic semiconductor film to form a cathode electrode film to obtain a basic element; 1. A method for manufacturing a wound electrolytic capacitor, comprising means for forming a wound electrolytic capacitor.
(2)絶縁物がプラスチックフィルム、プラスチックシ
ートからなることを特徴とする特許請求の範囲第(1)
項記載の巻回形電解コンデンサの製造方法。
(2) Claim (1) characterized in that the insulator is made of a plastic film or a plastic sheet.
A method for manufacturing a wound type electrolytic capacitor as described in .
(3)TCNQ錯塩が2、2′−ビピリディニウム(T
CNQ)_2、4−ハイドロオキシ−N−ベンジルアニ
リニウム(TCNQ)2、 4−アミノ−2、3、5、6−テトラメチルアニリニウ
ム(TCNQ)_2、ピリデイニウム(TCNQ)_2
、4−シアノ−Nメチル−ピリデニウム(TCNQ)_
2、N−Eエチルキノリニウム(TCNQ)_2、N−
(2−フエニチル)キノリニウム(TCNQ)_2から
なることを特徴とする特許請求の範囲第(1)項または
特許請求の範囲第(2)項記載の巻回形電解コンデンサ
の製造方法。
(3) TCNQ complex salt is 2,2'-bipyridinium (T
CNQ)_2,4-hydroxy-N-benzylanilinium (TCNQ)2, 4-amino-2,3,5,6-tetramethylanilinium (TCNQ)_2, pyridinium (TCNQ)_2
, 4-cyano-N methyl-pyridenium (TCNQ)_
2, N-E ethylquinolinium (TCNQ)_2, N-
A method for manufacturing a wound electrolytic capacitor according to claim (1) or claim (2), characterized in that it is made of (2-phenythyl)quinolinium (TCNQ)_2.
JP23593485A 1985-10-21 1985-10-21 Manufacture of toroidal electrolytic capacitor Pending JPS6294913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23593485A JPS6294913A (en) 1985-10-21 1985-10-21 Manufacture of toroidal electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23593485A JPS6294913A (en) 1985-10-21 1985-10-21 Manufacture of toroidal electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS6294913A true JPS6294913A (en) 1987-05-01

Family

ID=16993394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23593485A Pending JPS6294913A (en) 1985-10-21 1985-10-21 Manufacture of toroidal electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6294913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6865071B2 (en) 1998-03-03 2005-03-08 Acktar Ltd. Electrolytic capacitors and method for making them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6865071B2 (en) 1998-03-03 2005-03-08 Acktar Ltd. Electrolytic capacitors and method for making them

Similar Documents

Publication Publication Date Title
JP2950670B2 (en) Solid electrolytic capacitors
JPS6294913A (en) Manufacture of toroidal electrolytic capacitor
JPS6294914A (en) Manufacture of toroidal electrolytic capacitor
JPS6294912A (en) Manufacture of toroidal electrolytic capacitor
JPS63107A (en) Electrolytic capacitor
JPS61278126A (en) Manufacture of laminated electrolytic capacitor
JPS61270808A (en) Manufacture of laminated electrolytic capacitor
JPS6294911A (en) Manufacture of toroidal electrolytic capacitor
JPS6294909A (en) Manufacture of toroidal electrolytic capacitor
JPS6294910A (en) Manufacture of toroidal electrolytic capacitor
JP2876843B2 (en) Capacitor and method of manufacturing the same
JP2811915B2 (en) Method for manufacturing solid electrolytic capacitor
JPS61278125A (en) Manufacture of laminated electrolytic capacitor
JPS6358815A (en) Manufacture of laminated type paperless electrolytic capacitor
JPS61270807A (en) Manufacture of laminated electrolytic capacitor
JPS61270810A (en) Manufacture of laminated electrolytic capacitor
JPS61245515A (en) Electrolytic capacitor
JPS61270809A (en) Manufacture of laminated electrolytic capacitor
JPS61251112A (en) Electrolytic capacitor
JP2730345B2 (en) Manufacturing method of capacitor
JPH0451466Y2 (en)
JPH0440856B2 (en)
JPS63126212A (en) Solid electrolytic capacitor
JPS62216212A (en) Electrolytic capacitor
JP3519906B2 (en) Method for manufacturing solid electrolytic capacitor