JPS61270808A - Manufacture of laminated electrolytic capacitor - Google Patents

Manufacture of laminated electrolytic capacitor

Info

Publication number
JPS61270808A
JPS61270808A JP11287985A JP11287985A JPS61270808A JP S61270808 A JPS61270808 A JP S61270808A JP 11287985 A JP11287985 A JP 11287985A JP 11287985 A JP11287985 A JP 11287985A JP S61270808 A JPS61270808 A JP S61270808A
Authority
JP
Japan
Prior art keywords
tcnq
film
electrolytic capacitor
manufacturing
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11287985A
Other languages
Japanese (ja)
Inventor
清志 坂本
成沢 虞美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP11287985A priority Critical patent/JPS61270808A/en
Publication of JPS61270808A publication Critical patent/JPS61270808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は新規な構成からなる積層形電解コンデンサの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a multilayer electrolytic capacitor having a novel configuration.

[発明の技術的背景とその問題点] 一般に乾式薄形電解コンデンサは、例えばアルミニウム
箔からなる一対の陽陰極箔に同じくアルミニウムからな
る一対の引出端子を接続し、前記一対の陽陰極箔相互間
にスペーナを介在させ巻回し、しかるのち駆動用電解液
を含浸しケースに収納し、該ケース開口部を密封してな
るものである。
[Technical background of the invention and its problems] In general, a dry type thin electrolytic capacitor has a pair of anode and cathode foils made of, for example, aluminum foil connected to a pair of lead-out terminals also made of aluminum, and a connection between the pair of anode and cathode foils. A spanner is interposed between the coils and the coil is wound, and then impregnated with a driving electrolyte and housed in a case, and the opening of the case is sealed.

一般にスペーサを介在する目的は一対の陽陰極箔相互間
の絶縁隔離および駆動用電解液の保持であり、乾式薄形
電解コンデンサにおいては重要な構成要件である。しか
して、一般に用いられているスペーサはクラフト紙であ
るが、該クラフト紙は@度が0.3〜0.8Gl/α3
と密度が比較的高く、また繊維が平べったくつぶれてい
るため見掛は上の比抵抗が大きくなりtanδ特性を損
ね、またクラフト紙は抄紙技術上の問題で厚みは30μ
m以上あり、これ以上薄くできず小形化を阻害する要因
となっており、さらに加電圧、逆電圧印加などによるコ
ンデンサ破壊時に着火し継続燃焼のおそれがあるなどの
欠点をもっていた。そのため現在クラフト紙に変え低密
度のマニラ紙を用いる傾向にあり、tanδ特性改善に
大きく貢献しているが、マニラ紙はクラフト紙に比べて
価格が数倍と高(、加えて抄紙後の強度をコンデンサの
製造工程(特に巻取工程)に耐えつるためには厚さ40
μm以上のものを用いなければならず依然として小形化
の阻害要因となっていた。 また液体の駆動用電解液を
使用しているためtanδ特性改善にも限度があり、さ
らに液体の駆動用電解液は低温で比抵抗が上がり低温特
性が極度に悪化し広温度範囲で使用するには信頼性に欠
けなど実用土解決すべき問題をもっているばかりか素子
形状が巻回形でしかも引出端子を途中挿入した構造であ
るため周波数特性が悪い問題番も抱えていた。
Generally, the purpose of interposing a spacer is to insulate and isolate a pair of anode and cathode foils and to retain a driving electrolyte, which is an important component in a dry type thin electrolytic capacitor. However, the commonly used spacer is kraft paper, but the kraft paper has a degree of 0.3 to 0.8 Gl/α3.
The density of kraft paper is relatively high, and since the fibers are flattened, the apparent resistivity increases, impairing the tan δ properties.Kraft paper has a thickness of 30 μm due to paper-making technology issues.
m or more, which prevents the capacitor from being made any thinner and hinders miniaturization.Furthermore, it has drawbacks such as the risk of ignition and continued combustion when the capacitor is destroyed by applied voltage or reverse voltage. Therefore, there is currently a trend to use low-density manila paper instead of kraft paper, which greatly contributes to improving tanδ characteristics, but manila paper is several times more expensive than kraft paper (in addition, it has a higher In order to withstand the capacitor manufacturing process (especially the winding process), the thickness must be 40 mm.
It is necessary to use a material having a diameter of μm or more, which is still an impediment to miniaturization. In addition, since a liquid driving electrolyte is used, there is a limit to the improvement of tanδ characteristics.Furthermore, liquid driving electrolytes have a specific resistance at low temperatures, resulting in extremely poor low-temperature characteristics, making them difficult to use over a wide temperature range. Not only did they have problems that needed to be resolved in practical use, such as a lack of reliability, but they also had problems with poor frequency characteristics because the element was wound and the lead terminal was inserted midway.

そのなめ近年、例えば特開昭58−17609号公報、
特開昭58−191414M公報または特開昭59−6
3604号公報に開示されているように駆動用電解液に
かえ、N−n−プロピル(またはN−イソ−プロピル)
イソキノリン、N−エチルイソキノリン、N−n−ブチ
ルイソキノリン、N位を炭化水素基で置換したキノリン
、イソキノリンまたはとリジンなどからなるTCNQ錯
塩を用い、特性を改善したものが提案されている。しか
して、このようなTCNQti塩を用いて    1な
る電解コンデンサは一般にこれらTCNQ!塩を溶融含
浸して用いる訳であるが、TCNQ錯塩を溶融含浸する
時に加熱されるためTCNQ錯塩の伝導度が変わりやす
(tanδ特性に問題があり、また素子形状は従来どお
り引出端子を巻回体の途中に挿入したタイプであるため
高周波数での特性が悪く、しかもスペーサを用いている
ため陽・陰極間(約40〜50μm)が広く、等価直列
抵抗が大きいなど依然として解決すべき問題は残ってい
た。さらに上記公報に開示されたTCNQ錯塩は真空蒸
着が難しいばかりか、それ自体の温度特性もそれほど良
くない問題をも持っていた。
In recent years, for example, Japanese Patent Application Laid-open No. 17609/1983,
JP-A-58-191414M or JP-A-59-6
As disclosed in Publication No. 3604, instead of the driving electrolyte, N-n-propyl (or N-iso-propyl)
TCNQ complex salts consisting of isoquinoline, N-ethylisoquinoline, N-n-butylisoquinoline, quinoline substituted with a hydrocarbon group at the N position, isoquinoline, or lysine, etc., have been proposed to have improved properties. Therefore, electrolytic capacitors using such TCNQti salts are generally made of these TCNQ! The salt is used by melting and impregnating it, but the conductivity of the TCNQ complex salt tends to change because it is heated when melting and impregnating it (there is a problem with tan δ characteristics, and the element shape is the same as before, with the lead terminal being wound around Since it is a type that is inserted midway through the body, its characteristics at high frequencies are poor, and since it uses a spacer, the distance between the anode and cathode is wide (approximately 40 to 50 μm), and the equivalent series resistance is large.There are still problems that need to be solved. Moreover, the TCNQ complex salt disclosed in the above-mentioned publication was not only difficult to vacuum evaporate, but also had the problem that its temperature characteristics were not so good.

[発明の目的] 本発明は、上記の点に鑑みてなされたもので、上記問題
を一気に解決し、広い温度範囲の使用においても安定し
た緒特性が得られる新規な構成からなる積層形電解コン
デンサの製造方法を提供することを目的とするものであ
る。
[Object of the Invention] The present invention has been made in view of the above points, and provides a multilayer electrolytic capacitor with a novel configuration that solves the above problems at once and provides stable performance characteristics even when used in a wide temperature range. The purpose of this invention is to provide a method for manufacturing.

[発明の概要1 本発明の積層形電解コンデンサの製造方法は絶縁物の片
面または両面に弁作用金属を真空蒸着し弁作用金属膜を
形成し、つぎに該金属膜の表面に生成した陽極酸化皮膜
上にTCNQti塩を真空蒸着し有機半導体膜を形成し
、該有機半導体膜上に金属ペーストをスクリーン印刷し
陰極電極膜を形成し基本素子を得たのち、該基本素子を
複数積層し両端面に電極引出部を形成することを特徴と
したものである。
[Summary of the Invention 1 The method for manufacturing a multilayer electrolytic capacitor of the present invention involves vacuum-depositing a valve metal on one or both sides of an insulator to form a valve metal film, and then anodizing the surface of the metal film. TCNQti salt is vacuum-deposited on the film to form an organic semiconductor film, and a metal paste is screen printed on the organic semiconductor film to form a cathode electrode film to obtain a basic element. A plurality of the basic elements are laminated and both end faces are formed. This feature is characterized in that an electrode lead-out portion is formed at the top.

[発明の実施例] 以下本発明の一実施例につき詳細に説明する。[Embodiments of the invention] An embodiment of the present invention will be described in detail below.

すなわう、第2図に示すように例えばポリエステル、ト
リアセテート、テトラフロロエチレン、ポリカーボネー
ト、ポリアミド、ポリイミドなどからなるプラスチック
フィルム・シートまたはセラミックシートなどの絶縁物
(1)の片面に一端部を余白部(2)としてアルミニウ
ム金属を蒸着し弁作用金属It! (3)を形成したの
ち、該弁作用金属膜(3)を陽極酸化し該弁作用金属膜
(3)表面に陽極酸化皮膜(4)を生成し、しかる後該
陽極酸化皮膜(4)の前記余白部(2)の反対側に位置
する端面を除いた面上から前記余白部(2)面上に例え
ば2゜2′−ビビリディニウム(TCNQ)2、4−ハ
イドロオキシ−N−ペンジルアニリニウム(TCNQ>
  、 4−アミノ−2,3,5,6−テトラメチルア
ニリニウム(TCNQ)  、 ビリディニウム  (
TCNQ)  、 4−シアノ−Nメチル−ビリデニウ
ム(TCNQ)  、 N−Eエチルキノリニウム(T
CNQ)  、 N−(2−フエニチル)キノリニウム
(TCNQ)2などからなるTCNQ錯塩を真空蒸着し
有機半導体膜(5)を形成する。つぎに該有機半導体膜
(5)の前記余白部(2)の反対側に位置する端面を除
いた面上に銀、銅または金などの金属ペーストをスクリ
ーン印刷して陰極電極WA(6)を形成し基本素子(7
)を得る。しかして、該基本素子(7)を第1図に示す
ように必要数1[し、両端面に銀または銅ペーストを塗
布−乾燥するかまたは亜鉛、アルミニウムまたはハンダ
などの金属をメタリコンし電極引出部(8)を形成し、
該電極引出部(8)に外部端子(9)を取着し、ケース
に収納するか樹脂被覆などを施し外装(図示せず)形成
してなるものである。
That is, as shown in FIG. 2, one end is placed on one side of an insulating material (1) such as a plastic film sheet or a ceramic sheet made of polyester, triacetate, tetrafluoroethylene, polycarbonate, polyamide, polyimide, etc. as a margin. (2) Aluminum metal is vapor-deposited and valve action metal It! (3), the valve metal film (3) is anodized to form an anodic oxide film (4) on the surface of the valve metal film (3), and then the anodic oxide film (4) is For example, 2゜2'-biviridinium (TCNQ) 2,4-hydroxy-N-pen is applied onto the surface of the margin section (2) from the surface excluding the end surface located on the opposite side of the margin section (2). Zylanilinium (TCNQ>
, 4-amino-2,3,5,6-tetramethylanilinium (TCNQ), viridinium (
TCNQ), 4-cyano-N methyl-pyridenium (TCNQ), N-E ethylquinolinium (T
A TCNQ complex salt consisting of N-(2-phenythyl)quinolinium (TCNQ) 2 or the like is vacuum-deposited to form an organic semiconductor film (5). Next, a metal paste such as silver, copper or gold is screen printed on the surface of the organic semiconductor film (5) excluding the end surface located on the opposite side of the margin portion (2) to form the cathode electrode WA (6). Form basic elements (7
). Then, as shown in Figure 1, the basic element (7) is attached to the required number of units [1], and then silver or copper paste is applied to both end faces and dried, or metallized with metal such as zinc, aluminum or solder, and the electrodes are drawn out. forming part (8);
An external terminal (9) is attached to the electrode lead-out part (8), and the external terminal (9) is housed in a case or coated with resin or the like to form an exterior (not shown).

以上のように構成し−てなる積層形電解コンデンサの製
造方法によれば有機半導体膜形成として前述のようなT
CNQ錯塩を用いるため真空蒸着が容易となり、従来例
の溶融含浸のように加熱されないので伝導度が高くta
nδ特性が良好であり、また前述のようなTCNQ錯塩
は温度変化による比抵抗の変化は小さく、しかもスペー
サを用いないため陽・陰極間の抵抗も小さくでき、よっ
て低温から^濡の広い温度範囲においてtanδ特性の
変化・静電容量の変化および漏れ電流特性の変化も少な
く、さらには従来例と違い素子形状が無誘導タイプとな
るため高周波数でのインピーダンス特性が大幅に改善さ
れるなど多くのすぐれた効果を奏する利点を有する。
According to the method for manufacturing a multilayer electrolytic capacitor constructed as described above, the above-described T
Since CNQ complex salt is used, vacuum deposition is easy, and unlike conventional melt impregnation, heating is not required, resulting in high conductivity.
The TCNQ complex salt has good nδ characteristics, and the change in specific resistance due to temperature changes is small, and since no spacer is used, the resistance between the anode and cathode can be reduced, so it can be used in a wide temperature range from low temperatures to wet temperatures. In addition, there are few changes in tan δ characteristics, changes in capacitance, and changes in leakage current characteristics, and unlike conventional examples, the element shape is non-inductive, so impedance characteristics at high frequencies are significantly improved. It has the advantage of having excellent effects.

つぎに本発明の実施例と従来の参考例との比較の一例に
ついて述べる。
Next, an example of comparison between an embodiment of the present invention and a conventional reference example will be described.

実  施  例 ポリエステルフィルムの片面にアルミニウム金属を蒸着
して形成した厚さ1μmのアルミニウム膜表面をアジピ
ン酸アンモニウム10%水溶液中でi oovの電圧を
印加し陽極酸化し、該陽極酸化によってアルミニウム膜
表面に生成した陽極酸化皮膜上に、2.2′〜ごビリデ
ィニウム(TCNQ)2を温度150℃、5分間の条件
で真空蒸着し厚さ5μmの有機半導体膜を形成し、つぎ
に該有機半導体膜上にAgペーストをスクリーン印刷(
スクリーンメツシュ200)L厚さ5μmの陰極電極膜
を形成し得た第2図に示すような構成からなる基本素子
を複数積層し両端面にAqペーストを塗布−乾燥し電極
引出部を形成し、該電極引出部に引出端子を溶着し、外
装構造としてエポキシ樹脂を被覆してなる定格25WV
、DC−0,1μFの積層形電解コンデンサ(A)参 
 考  例 アルミニウム箔表面を粗面化したのち陽極酸化皮膜生成
した陽極箔とアルミニウム箔表面を粗面化した陰極箔間
にスペーサとしてマニラ紙を介在し巻回した素子に、N
−n−プロビルイソノキノリンのTCNQ錯塩を溶融含
浸し、金属ケース外装としてなる定格25WV、DC−
0,1μF(7)電解コンデンサ(B) なお上記(B)における引出端子は陽・陰極箔にステッ
チし引出した構造である。
Example The surface of an aluminum film with a thickness of 1 μm formed by vapor-depositing aluminum metal on one side of a polyester film was anodized by applying a voltage of i oov in a 10% aqueous solution of ammonium adipate. On the anodic oxide film formed in step 1, 2.2' to viridinium (TCNQ) 2 was vacuum-deposited at a temperature of 150°C for 5 minutes to form an organic semiconductor film with a thickness of 5 μm. Screen print Ag paste on top (
Screen mesh 200)L A plurality of basic elements having the configuration shown in FIG. 2, which can form a cathode electrode film with a thickness of 5 μm, are laminated, and Aq paste is applied to both end faces and dried to form an electrode extension part. , a rated 25WV made by welding a lead-out terminal to the electrode lead-out part and covering it with epoxy resin as an exterior structure.
, DC-0,1μF multilayer electrolytic capacitor (A)
Example: A coiled element with manila paper interposed as a spacer between an anode foil on which an anodized film was formed after roughening the surface of the aluminum foil and a cathode foil on which the surface of the aluminum foil was roughened was used.
- Rated 25WV, DC - melt-impregnated with TCNQ complex salt of n-probylisonoquinoline and used as a metal case exterior.
0.1 μF (7) Electrolytic capacitor (B) The lead terminal in (B) above has a structure in which the anode and cathode foils are stitched and drawn out.

しかして上記本発明に係わる実施例(A)と従来の参考
例(B)の温度に対する静電容量変化率およびtanδ
、さらには漏れ電流を調べた結果第4図〜第6図に示す
ようになり、また周波数−インピーダンス特性を調べた
結果第7図に示すようになった。
However, the capacitance change rate and tan δ with respect to temperature of the above-mentioned Example (A) according to the present invention and the conventional reference example (B)
Furthermore, the results of investigating the leakage current were as shown in FIGS. 4 to 6, and the results of investigating the frequency-impedance characteristics were as shown in FIG. 7.

第4図〜第7図から明らかなように、いずれの特性にお
いても実施例(A)は参考例(8)より安定しており、
特に高周波数でのインピーダンス特性がすぐれており、
本発明のすぐれた効果を実証した。
As is clear from FIGS. 4 to 7, Example (A) is more stable than Reference Example (8) in all characteristics.
It has particularly excellent impedance characteristics at high frequencies,
The excellent effects of the present invention were demonstrated.

なお上記実施例では弁作用金属膜形成としてアルミニウ
ム金属を用いるものを例示して説明したが、例えばタン
タル、チタン、ニオブなどの他の弁作用金属を用いたも
のでも同様の効果を得ることができる。 また上記実施
例では、必要とする大きさの基本素子を単独でそれぞれ
形成し、該基本素子を個々積層したものを例示して説明
したが第3図に示すように帯状に長い基本素子(11)
を用い必要数積層し、電極引出部を形成した後幅方向(
矢印方向)に必要大きさにカットするようにすれば作業
上より効果的である。第3図中第2図と同一部分につい
ては同一番号を付し説明を省略した。さらに上記各実施
例では基本素子構成として絶縁物の片面にのみ弁作用金
属膜、有機半導体膜、陰極電極膜を形成するものを例示
して説明したが、絶縁物の両面に形成するようにしても
同様の効果を得られることは言うまでもない。
Although the above embodiments have been described using aluminum metal for forming the valve metal film, similar effects can be obtained by using other valve metals such as tantalum, titanium, and niobium. . Furthermore, in the above embodiment, the basic elements of the required size are individually formed, and the basic elements are laminated individually. However, as shown in FIG. )
After laminating the required number of layers using
It will be more efficient to cut it to the required size in the direction of the arrow). Portions in FIG. 3 that are the same as those in FIG. 2 are given the same numbers and their explanations are omitted. Furthermore, in each of the above embodiments, the basic element configuration is exemplified in which the valve metal film, organic semiconductor film, and cathode electrode film are formed only on one side of the insulator. Needless to say, the same effect can be obtained.

[発明の効果] 本発明によればスペーサを廃止し1.シかも有機半導体
膜として新規なTCNQ錯塩を用いることによって安定
した特性が得られる既存の電解コンデンサ構成の枠を越
えた全く新規な構成からなる実用的価値の高い積層形電
解コンデンサの製造方法を得ることができる。
[Effects of the Invention] According to the present invention, spacers are eliminated and 1. Furthermore, by using a novel TCNQ complex salt as an organic semiconductor film, a method for manufacturing a multilayer electrolytic capacitor of high practical value, which has a completely new configuration that goes beyond the framework of existing electrolytic capacitor configurations and has stable characteristics, is obtained. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例に係り、第1図
は81層形電解コンデンサを示す正断面図、第2図は第
1図を構成する基本素子を示す斜視図、第3図は本発明
の他の実施例に係わる基本素子を示す斜視図、第4図は
温度−静電容量変化率特性曲線図、第5図は温度−ta
nδ特性曲線図、第6図は温度−漏れ電流特性曲線図、
第7図は周波数−インピーダンス特性曲線図である。 (1)・・・・・・・・・・・・絶縁物   (2)・
・・・・・余白部(3)・・・・・・弁作用金属膜  
(4)・・・・・・陽極酸化皮膜(5)・・・・・・有
機半導体膜  (6)・・・・・・陰極電極膜(7H1
1)・・・・・・基本素子  (8)・・・・・・電極
引出部特  許  出  願  人 マルコン電子株式会社 ハイマンパーツ株式会社 第2 図 第6図 n峡軟(H2) 第7図 手  続  補  正  書    く自発)昭和61
年5月19日 圃
1 and 2 relate to one embodiment of the present invention, in which FIG. 1 is a front sectional view showing an 81-layer electrolytic capacitor, FIG. 2 is a perspective view showing basic elements constituting FIG. 1, and FIG. 3 is a perspective view showing a basic element according to another embodiment of the present invention, FIG. 4 is a temperature-capacitance change rate characteristic curve, and FIG. 5 is a temperature-ta
nδ characteristic curve diagram, Figure 6 is a temperature-leakage current characteristic curve diagram,
FIG. 7 is a frequency-impedance characteristic curve diagram. (1)・・・・・・・・・Insulating material (2)・
...Margin area (3) ...Valve action metal membrane
(4)...Anodic oxide film (5)...Organic semiconductor film (6)...Cathode electrode film (7H1
1) Basic element (8) Electrode lead-out part patent application Marcon Electronics Co., Ltd. Highman Parts Co., Ltd. 2 Figure 6 N-gorge soft (H2) Figure 7 Procedural amendment written spontaneously) 1986
Field May 19th

Claims (3)

【特許請求の範囲】[Claims] (1)絶縁物の片面または両面に弁作用金属を真空蒸着
し弁作用金属膜を形成する手段と、該金属膜の表面に陽
極酸化皮膜を生成する手段と、該酸化皮膜上にTCNQ
錯塩を真空蒸着し有機半導体膜を形成する手段と、該有
機半導体膜上に金属ペーストをスクリーン印刷し陰極電
極膜を形成し基本素子を得る手段と、該基本素子を複数
積層し両端面に電極引出部を形成する手段とを具備した
ことを特徴とする積層形電解コンデンサの製造方法。
(1) Means for vacuum-depositing a valve metal on one or both sides of an insulator to form a valve metal film, means for forming an anodized film on the surface of the metal film, and TCNQ on the oxide film.
A means for forming an organic semiconductor film by vacuum evaporating a complex salt, a means for screen printing a metal paste on the organic semiconductor film to form a cathode electrode film to obtain a basic element, and a means for laminating a plurality of the basic elements and forming electrodes on both end faces. 1. A method for manufacturing a multilayer electrolytic capacitor, comprising means for forming a lead-out portion.
(2)絶縁物がプラスチックフィルム、プラスチックシ
ート、セラミックシートからなることを特徴とする特許
請求の範囲第(1)項記載の積層形電解コンデンサの製
造方法。
(2) The method for manufacturing a multilayer electrolytic capacitor according to claim (1), wherein the insulator is made of a plastic film, a plastic sheet, or a ceramic sheet.
(3)TCNQ錯塩が2,2′−ビビリディニウム(T
CNQ)_2、4−ハイドロオキシ−N−ベンジルアニ
リニウム(TCNQ)_2、4−アミノ−2,3,5,
6−テトラメチルアニリニウム(TCNQ)_2、ピリ
デイニウム(TCNQ)_2、4−シアノ−Nメチル−
ピリデニウム(TCNQ)_2、N−Eエチルキノリニ
ウム(TCNQ)_2、N−(2−フェニチル)キノリ
ニウム(TCNQ)_2からなることを特徴とする特許
請求の範囲第(1)項または特許請求の範囲第(2)項
記載の積層形電解コンデンサの製造方法。
(3) TCNQ complex salt is 2,2'-biviridinium (T
CNQ)_2,4-hydroxy-N-benzylanilinium (TCNQ)_2,4-amino-2,3,5,
6-tetramethylanilinium (TCNQ)_2, pyridinium (TCNQ)_2, 4-cyano-N-methyl-
Pyridenium (TCNQ)_2, NE ethylquinolinium (TCNQ)_2, N-(2-phenythyl)quinolinium (TCNQ)_2 A method for manufacturing a multilayer electrolytic capacitor according to scope (2).
JP11287985A 1985-05-24 1985-05-24 Manufacture of laminated electrolytic capacitor Pending JPS61270808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11287985A JPS61270808A (en) 1985-05-24 1985-05-24 Manufacture of laminated electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11287985A JPS61270808A (en) 1985-05-24 1985-05-24 Manufacture of laminated electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS61270808A true JPS61270808A (en) 1986-12-01

Family

ID=14597813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11287985A Pending JPS61270808A (en) 1985-05-24 1985-05-24 Manufacture of laminated electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS61270808A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036951A (en) * 1973-07-05 1975-04-07
JPS5386460A (en) * 1977-11-18 1978-07-29 Matsushita Electric Ind Co Ltd Method of making thin film solid electrolytic capacitor
JPS55158620A (en) * 1979-05-29 1980-12-10 Matsushita Electric Ind Co Ltd Metallic oxide capacitor
JPS59135719A (en) * 1983-01-24 1984-08-04 マルコン電子株式会社 Method of producing laminated solid electrolytic condenser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036951A (en) * 1973-07-05 1975-04-07
JPS5386460A (en) * 1977-11-18 1978-07-29 Matsushita Electric Ind Co Ltd Method of making thin film solid electrolytic capacitor
JPS55158620A (en) * 1979-05-29 1980-12-10 Matsushita Electric Ind Co Ltd Metallic oxide capacitor
JPS59135719A (en) * 1983-01-24 1984-08-04 マルコン電子株式会社 Method of producing laminated solid electrolytic condenser

Similar Documents

Publication Publication Date Title
US3457478A (en) Wound film capacitors
JPS61270808A (en) Manufacture of laminated electrolytic capacitor
JPS63107A (en) Electrolytic capacitor
JPS61278126A (en) Manufacture of laminated electrolytic capacitor
JPS61278125A (en) Manufacture of laminated electrolytic capacitor
JPS61270807A (en) Manufacture of laminated electrolytic capacitor
JPH0436100Y2 (en)
JPS61245515A (en) Electrolytic capacitor
JP2832651B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JPS61251112A (en) Electrolytic capacitor
JPS61270809A (en) Manufacture of laminated electrolytic capacitor
JPS6294913A (en) Manufacture of toroidal electrolytic capacitor
JPS61270810A (en) Manufacture of laminated electrolytic capacitor
JPS6294911A (en) Manufacture of toroidal electrolytic capacitor
JPS6294910A (en) Manufacture of toroidal electrolytic capacitor
JPS6358815A (en) Manufacture of laminated type paperless electrolytic capacitor
JPS6294912A (en) Manufacture of toroidal electrolytic capacitor
JPS62216212A (en) Electrolytic capacitor
JPS6294909A (en) Manufacture of toroidal electrolytic capacitor
JP2876843B2 (en) Capacitor and method of manufacturing the same
JPS6294914A (en) Manufacture of toroidal electrolytic capacitor
JP2811915B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0451466Y2 (en)
JPS62216214A (en) Manufacture of electrolytic capacitor
JPH0440856B2 (en)