JPS6370412A - Manufacture of laminated paper-less electrolytic capacitor - Google Patents

Manufacture of laminated paper-less electrolytic capacitor

Info

Publication number
JPS6370412A
JPS6370412A JP21507586A JP21507586A JPS6370412A JP S6370412 A JPS6370412 A JP S6370412A JP 21507586 A JP21507586 A JP 21507586A JP 21507586 A JP21507586 A JP 21507586A JP S6370412 A JPS6370412 A JP S6370412A
Authority
JP
Japan
Prior art keywords
film
electrolytic capacitor
multilayer
laminated
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21507586A
Other languages
Japanese (ja)
Inventor
金子 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP21507586A priority Critical patent/JPS6370412A/en
Publication of JPS6370412A publication Critical patent/JPS6370412A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は積腑形ベーパーレス電解コンデンサの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method of manufacturing a vaporless electrolytic capacitor.

〈従来の技術) 近年、電解コンデンサにおける技術の進歩はめざましい
ものがあり、従来−膜化しているアルミニウム箔からな
る一対の陽・陰極箔それぞれに同じくアルミニウムから
なる一対の引出端子を接続し、前記一対の陽・陰極箔相
互間に例えばクラフト紙またはマニラ紙などからなるス
ペーサを介在させ巻回して形成したコンデンサ素子に駆
動用電解液を含浸し、しかる後ケースに収納して該ケー
ス開口部を封口体にて密封してなる構造の中でスペーサ
を廃止し、かつ駆動用電解液をTCNQ錯体からなる有
機半導体に変えることによって、諸特性の改善はもとよ
り、小形化ならびに製造作業の容易さ指向が一段と進展
する状況にある。
<Conventional technology> In recent years, there have been remarkable advances in technology in electrolytic capacitors. A capacitor element formed by winding a spacer made of kraft paper or Manila paper between a pair of anode and cathode foils is impregnated with a driving electrolyte, and then stored in a case and the opening of the case is closed. By eliminating the spacer in the structure sealed with a sealing body and changing the driving electrolyte to an organic semiconductor made of TCNQ complex, we not only improved various characteristics but also aimed at miniaturization and ease of manufacturing work. is in a situation where further progress is being made.

しかして出願人は、以上の゛ような指向に応える目的で
先に特願昭60−78649号をはじめとして種々の特
許出願をした。ずなわち出願人が出願した先願技術とし
ての電解コンデンサの基本構造は積層構造を有するもの
で第4図に示すようにプラスチックフィルム11の一面
にアルミニウムなどの弁作用金属膜12を形成し、該金
属膜12の表面に陽極酸化皮膜13を形成し、しかる後
置酸化皮膜13上に各種TCNQ錯体を真空蒸着し有様
半導体膜14を形成した複膜層15を極性をそろえて必
要数8i層し、両端面に形成した電極引出部16に外部
端子17を取着し、樹脂被覆を施して外装(図示せず)
を形成したものである。
Therefore, the applicant has previously filed various patent applications, including Japanese Patent Application No. 78649/1983, for the purpose of responding to the above-mentioned orientation. The basic structure of the electrolytic capacitor as the prior art filed by the applicant has a laminated structure, and as shown in FIG. 4, a valve metal film 12 such as aluminum is formed on one surface of a plastic film 11. An anodic oxide film 13 is formed on the surface of the metal film 12, and various TCNQ complexes are vacuum-deposited on the post-oxidation film 13 to form a semiconductor film 14, and then a plurality of multi-film layers 15 are formed in a required number of 8i with the same polarity. The external terminals 17 are attached to the electrode lead-out portions 16 formed on both end faces, and then a resin coating is applied to the exterior (not shown).
was formed.

しかして、上記構成になる電解コンデンサの製造方法は
作業性を考慮し、当然に単一の複膜層を積層する手段は
とらず比較的大きなプラスチックフィルムに複数の8膜
を形成した複膜履体を必要数積層して積層体とし該積層
体を切断し単一積層体とする手段をとっている。したが
って積層した複数の複膜履体を一体固着化する手段が必
要であり、そのための手段としては複膜履体の一方面に
エポキシ樹脂を印刷塗布して複膜履体を重ね合せ、加圧
状態で加温しエポキシ樹脂を硬化させるようにしている
。第4図中18は有機半導体膜14上に形成した陰極電
極膜、19は複r9層15間の接着媒体として用いたエ
ポキシ樹脂である。
However, the manufacturing method of the electrolytic capacitor having the above structure takes workability into consideration, and naturally does not use the method of laminating a single multilayer film, but instead uses a multilayer film fabrication method in which a plurality of eight films are formed on a relatively large plastic film. A method is employed in which a required number of bodies are stacked to form a laminate, and the laminate is cut into a single laminate. Therefore, there is a need for a means to integrally fix multiple laminated double-layered footwear, and the means for that purpose is to print and apply epoxy resin on one side of the double-layered footwear, overlap the double-layered footwear, and apply pressure. The epoxy resin is heated in this state to harden it. In FIG. 4, 18 is a cathode electrode film formed on the organic semiconductor film 14, and 19 is an epoxy resin used as an adhesive medium between the multiple R9 layers 15.

しかしながら上記のような手段では液体状態のエポキシ
樹脂をプラスチックフィルム面に当接し重ね合せるもの
であるためすべり易く加圧が均等化せず製品化した状態
でtanδバラツキが大きく、エポキシ樹脂硬化のため
長時間加温する結果漏れ電流特性を損ねる問題を有する
However, with the above method, the epoxy resin in a liquid state is brought into contact with the plastic film surface and overlapped, so it is easy to slip and the pressure is not equalized, resulting in large tan δ variations in the product state, and it takes a long time to cure the epoxy resin. There is a problem in that the leakage current characteristics are impaired as a result of heating for a long time.

また積層数を数十層必要とするものでは、重ね合せる際
すべり易いため積層ずれが大きくなり易く、切断された
状態で電極引出部形成端部に異極部が露出し、致命的な
短絡不良を引起す危険性を有し、作業性容易にして能率
的にこの種積層形ベーパーレス電解コンデンサを得る方
法としては一考を要していた。
In addition, in products that require several tens of layers, they tend to slip when stacked, resulting in large misalignment of the layers, and when cut, a different pole part is exposed at the end where the electrode lead part is formed, resulting in a fatal short circuit. However, it has been necessary to consider a method for obtaining this type of laminated vapor-less electrolytic capacitor in an efficient and easy-to-work manner.

(発明が解決しようとする問題点) 以上述べたような電解コンデンサ構造とづることによっ
て、従来−膜化している一対の陽・陰極箔のスペーサ紙
を交互に積層巻回したコンデンサ素子に駆動用電解液を
含浸してなる電解コンデンサと比較し、小形化をはじめ
特性改善上有効であるが、作業性容易にして、信頼性に
富む緒特性を得る上で複膜層形成ならびに複膜層の積層
化に難点があり、実用化上解決すべき問題を抱えていた
(Problems to be Solved by the Invention) By using the electrolytic capacitor structure as described above, it is possible to use a driving capacitor element in which a pair of anode and cathode foil spacer papers, which are conventionally formed into films, are alternately laminated and wound. Compared to electrolytic capacitors impregnated with an electrolytic solution, it is effective in reducing the size and improving characteristics, but in order to make work easier and obtain reliable characteristics, it is necessary to form multiple layers and There were difficulties in laminating the layers, and there were problems that needed to be resolved in terms of practical use.

本発明は上記の点に鑑みてなされたもので、複膜層を構
成する母体構成を改良することによって作業性容易にし
て、諸特性阻害要因を除去できる積層形ベーパーレス電
解コンデンサの製造方法を提供することを目的とするも
のである。
The present invention has been made in view of the above points, and provides a method for manufacturing a multilayer vapor-less electrolytic capacitor that can facilitate workability and eliminate factors that inhibit various characteristics by improving the matrix structure that constitutes the multilayer film. The purpose is to provide

[発明の構成] 〈問題点を解決するための手段) 本発明の積層形ベーパーレス電解コンデンサの製造方法
はアイオノマ樹脂体の一面に複数の弁作用金属膜を形成
し、該金属膜を陽4riI酸化し陽極酸化皮膜を形成し
、該酸化皮膜上に0機半導体膜を形成し、該半導体膜上
に陰極電極膜を形成して得た複膜履体を複数積層し加熱
圧着し積層体を形成し、しかる後置積層体を切断し得た
8i層素子体両端面に電極引出部を形成することを特徴
とするものである。
[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing a laminated vaporless electrolytic capacitor of the present invention includes forming a plurality of valve-acting metal films on one surface of an ionomer resin body, and forming the metal films with positive 4riI. oxidize to form an anodic oxide film, form a zero semiconductor film on the oxide film, form a cathode electrode film on the semiconductor film, and laminate a plurality of multi-film footwear obtained by stacking and heat-pressing to form a laminate. This is characterized in that electrode lead-out portions are formed on both end faces of the 8i-layer element body that has been formed and the subsequent laminated body has been cut.

(作用) 上記した積層形ペーパーレス電解コンデンサの製造方法
によれば複膜履体を構成する弁作用金属膜を形成する母
体が熱融着性を有するアイオノマ樹脂体であるため本発
明の前提となった先願発明のように積層化のための特別
なエポキシ樹脂の印刷塗布は必要とせず、短時間加熱で
アイオノマ樹脂体を介して、複膜履体の積層一体化が可
能であり、積層体が長時間加熱下にさらされることはな
い。また先願発明のように液体状のエポキシ樹脂を介し
た積層化手段と違い、積層面となるアイオノマ樹脂体は
固体状であり、接触対面となる面が陰極電極膜であるた
めさほどづへり易くなく槓苦ズレも少なく比較的均等な
加圧下でV4層一体化が可能となる。
(Function) According to the manufacturing method of the multilayer paperless electrolytic capacitor described above, the base body forming the valve action metal membrane constituting the double membrane shoe body is an ionomer resin body having heat-fusible properties, which is a premise of the present invention. It is not necessary to print and apply a special epoxy resin for lamination as in the previous invention, and it is possible to integrate the lamination of multi-layer footwear through the ionomer resin body by heating for a short time. are not exposed to heat for long periods of time. Also, unlike the lamination method using liquid epoxy resin as in the prior invention, the ionomer resin body that becomes the laminated surface is solid, and the surface that becomes the contact surface is the cathode electrode film, so it is not easy to separate. It is possible to integrate the V4 layer under relatively uniform pressure with no distortion or displacement.

(実滴例) 以下本発明の一実施例につき詳細に説明づる。(Actual drop example) An embodiment of the present invention will be described in detail below.

すなわち第2図に示すように適宜な大きさのアイオノマ
樹脂体1の一面に高純度アルミニ1クム金属を蒸着また
はラミネートし複数の弁作用金属膜2を形成した後、該
金属膜2を化成し陽極酸化皮膜3を形成し、しかる後置
酸化皮膜3面上に例えば 2.2′−ビピリジニウム(TCNQ)  、4一ハイ
ドロオキシンーN−ペンジルアニリニウム(TCNQ)
2.4−アミノ−2,3,5゜6−チトラメチルアニリ
ニウム(TCNQ)2、ごリジニウム(TCNQ)  
、4−シアノ〜Nメチル−ピリジニウム(TCNQ) 
 、N−工チルキノリニウム(TCNQ)2 、N−(
2−フェネチル)キノリニウム(TCNQ)2などから
なるTCNQ錯体を真空蒸着し有機半導体膜4を形成す
る。つぎに該有機半導体膜4面上に銀または銅などの金
属をスクリーン印刷、蒸着またはスパッタリングなどの
手段にて陰極電極膜5を形成し複膜肉体6を得る。しか
して第3図に示すように該複膜体6を前記弁作用金属膜
1部を重ね合せて必要数積層し、上下から加熱温度12
0〜180℃1時間10〜60秒間加熱圧着し、アイオ
ノマ樹脂体1の熱融着によって一体化した積層体7を得
る。しかして該積層体7を点線に沿って切断し第1図に
示すように陽極露出部または陰極露出部となる積層素子
体8の両端面にアルミニウムまたはハンダなどの金属を
メタリコンするかまたは導電性塗料を塗布−乾燥するか
してN極引出部9を形成し、該電極引出部9に外部端子
10を取着し、ケースに収納するか、樹脂被覆などを施
し外装(図示せず)を形成し完成品を得るものである。
That is, as shown in FIG. 2, high-purity aluminum 1 cum metal is vapor-deposited or laminated on one surface of an ionomer resin body 1 of an appropriate size to form a plurality of valve metal films 2, and then the metal films 2 are chemically formed. An anodic oxide film 3 is formed, and on the surface of the post-oxidized film 3, for example, 2,2'-bipyridinium (TCNQ), 4-hydroxine-N-penzylanilinium (TCNQ) is formed.
2.4-Amino-2,3,5゜6-thitramethylanilinium (TCNQ) 2, lysinium (TCNQ)
, 4-cyano-N-methyl-pyridinium (TCNQ)
, N-ethylquinolinium (TCNQ)2, N-(
A TCNQ complex made of 2-phenethyl)quinolinium (TCNQ) 2 or the like is vacuum deposited to form an organic semiconductor film 4. Next, a cathode electrode film 5 is formed on the surface of the organic semiconductor film 4 using a metal such as silver or copper by means such as screen printing, vapor deposition, or sputtering to obtain a composite film body 6. As shown in FIG. 3, the composite membrane body 6 is laminated in a required number of layers by overlapping one part of the valve metal membrane, and heated at a temperature of 12 degrees from above and below.
Heat and pressure bonding is carried out at 0 to 180[deg.] C. for 1 hour and 10 to 60 seconds to obtain a laminate 7 in which the ionomer resin body 1 is integrated by thermal fusion. Then, the laminated body 7 is cut along the dotted line and as shown in FIG. Apply and dry the paint to form the N-pole lead-out part 9, attach the external terminal 10 to the electrode lead-out part 9, and store it in a case or cover it with resin or the like to cover it (not shown). It is used to form a finished product.

以上のように構成してなる積層形ペーパーレス電解コン
デンサの製造方法によれば、?!膜膜層体音構成する弁
作用金R膜2形成母体がアイオノマ樹脂体1であるため
複膜肉体6の積層化する際、特別に接着媒体を必要とせ
ず、工数低減による作業改善メリットはもとより短時間
加熱でアイオノマ樹脂体1が接着媒体としての役目をし
、長時間加熱下にさらされることがなく漏れ電流特性劣
化要因は解消され安定した漏れ電流特性が得られる。ま
た複膜肉体6の積層一体化のための接着媒体が該複膜肉
体6の母体であるアイオノマ樹脂1であるため積層ズレ
も少なく、かつ積層面全体にわたって加圧が比較的均等
になり、すぐれたtanδ特性を得ることができると同
時に短絡不良発生の危険性も解消できるなど初期の目的
を達成できる。
According to the manufacturing method of the multilayer paperless electrolytic capacitor configured as described above, what is the process? ! Since the base material for forming the valve action metal R membrane 2 that constitutes the membrane membrane layer body sound is the ionomer resin body 1, no special adhesive medium is required when laminating the composite membrane body 6, which has the advantage of improving work by reducing the number of man-hours. By heating for a short time, the ionomer resin body 1 acts as an adhesive medium, and without being exposed to heating for a long time, the cause of leakage current characteristic deterioration is eliminated and stable leakage current characteristics are obtained. In addition, since the adhesive medium for laminating and integrating the composite membrane body 6 is the ionomer resin 1, which is the base material of the composite membrane body 6, there is little lamination deviation, and the pressure is relatively uniform over the entire laminated surface, resulting in excellent The initial objectives can be achieved, such as being able to obtain tan δ characteristics and at the same time eliminating the risk of short-circuit failures.

つぎに本発明の方法によって得た実施例Aと先願に係る
参考例日との比較の一例について述べる。
Next, an example of comparison between Example A obtained by the method of the present invention and the reference date of the earlier application will be described.

実施例Δ アイオノマシートの一面に厚さ10μmのアルミニウム
箔をラミネートしたアルミニウムラミネートシートを用
い、有機半導体として2.2′−ビピリジニウム(TC
NQ) 2錯体を真空蒸着、陰極電極膜AQペーストを
スクリーン印刷して形成した複g!層体を複数積層して
、130℃30秒間加熱圧着し、しかる後切断によって
得た積層素子体の両端面にアルミニウム金属からなるメ
タリコン電極を形成し、外装としてエポキシ樹脂を被覆
してなる定格25WV0.22μFの積層形ペーパーレ
ス電解コンデンサ。
Example Δ An aluminum laminate sheet with a 10 μm thick aluminum foil laminated on one side of the ionomer sheet was used, and 2,2'-bipyridinium (TC) was used as an organic semiconductor.
NQ) 2 complex formed by vacuum evaporation and screen printing of the cathode electrode film AQ paste! A rated 25WV0 product made by laminating a plurality of layers, heat-pressing them at 130°C for 30 seconds, and then cutting, forming metallicon electrodes made of aluminum metal on both end faces of the laminated element body, and covering it with epoxy resin as an exterior. .22μF multilayer paperless electrolytic capacitor.

参考例B ポリエステルフィルムの一面に厚さ10μmのアルミニ
ウム箔をラミネートしたラミネートフィルムを用い、有
機半導体、陰Vi!電極膜を上記実施例と同一手段で形
成した複膜肉体を液体エポキシ樹脂を介して複数積層し
150℃45分間加熱圧着し、しかる後切断によって青
だ積層素子体の両端面にアルミニウム金属からなるメタ
リコンmVMを形成し、外装としてエポキシ樹脂を被覆
してなる定格25WV0.22μFの積層形ペーパーレ
ス電解コンデンサ。
Reference Example B Using a laminate film in which aluminum foil with a thickness of 10 μm was laminated on one side of a polyester film, organic semiconductor, negative Vi! A plurality of multi-layer electrode films formed by the same method as in the above embodiments were laminated with liquid epoxy resin, heated and pressed at 150°C for 45 minutes, and then cut to form a blue-colored laminated element body on both end faces made of aluminum metal. A laminated paperless electrolytic capacitor with a rating of 25WV and 0.22μF, formed of Metallicon mVM and coated with epoxy resin as the exterior.

しかして上記実施例Aと参考例Bにおける漏れ電流分布
およびtanδの分布を調べた結果第5図および第6図
に示すようになった。試料はA、Bとも300個である
The leakage current distribution and tan δ distribution in Example A and Reference Example B were investigated, and the results were as shown in FIGS. 5 and 6. There are 300 samples for both A and B.

第5図および第6図り目ろ明らかなように実施例Aは参
考例Bと比較し、漏れ電流およびtanδ特性ども安定
しT a3す、本発明のりぐれた効果を実証した。なお
、以上実施例では弁作用金amとしてアルミニウム金属
を用いるものを例示して説明したが、例えばタンタル、
チタン、ニオブなどを用いることができることは勿論で
ある。また複膜肉体形状ならびに積層体形状は本願の要
旨からして第2図ならびに第3図に限定されたものでな
いことは言うまでもない。
As is clear from FIGS. 5 and 6, in comparison with Reference Example B, leakage current and tan δ characteristics were stabilized in Example A, demonstrating the excellent effect of the present invention. In the above embodiments, aluminum metal is used as the valve metal am. However, for example, tantalum, tantalum,
Of course, titanium, niobium, etc. can be used. Further, it goes without saying that the shape of the composite membrane body and the shape of the laminate are not limited to those shown in FIGS. 2 and 3 in view of the gist of the present application.

[発明の効果コ 以上述べたように本発明の構成によれば作業性容易にし
て漏れ電流特性およびtanδ特性の安定した効果が得
られる実用的価値の高い積層形ペーパーレス電解コンデ
ンサの製造方法を得ることができる。
[Effects of the Invention] As described above, according to the structure of the present invention, it is possible to obtain a method for manufacturing a multilayer paperless electrolytic capacitor that is easy to work with, provides stable leakage current characteristics and tanδ characteristics, and has high practical value. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の一実施例に係り第1図は積層
形ペーパーレス電解コンデンサを示す拡大正断面図、第
2図は一部分を拡大した複gI層体を示す斜視図、第3
図は積層体を示す斜視図、第4図は参考例に係る積層形
ペーパーレス電解コンデンサを示ず正断面図、第5図は
漏れ電流特性分布図、第6図はtanδ特性分布図であ
る。 1・・・・・・アイオノマ樹脂体 2・・・・・・弁作
用金罵膜3・・・・・・陽極酸化皮膜   4・・・・
・・有機半導体膜5・・・・・・陰極電極膜    6
・・・・・・複膜肉体7・・・・・・積層体     
 8・・・・・・積層素子体9・・・・・・電極引出部 特  許  出  願  人 マルコン電子株式会社 コンデンサを示す拡大正断面図 第  1  図 一部分を拡大した複表層体を示り′斜?!図第  2 
 図 第  3  図 第4図
1 to 3 relate to one embodiment of the present invention; FIG. 1 is an enlarged front sectional view showing a laminated paperless electrolytic capacitor, FIG. 2 is a partially enlarged perspective view showing a multi-gI layered body, and FIG. 3
4 is a front sectional view (not showing a multilayer paperless electrolytic capacitor) according to a reference example, FIG. 5 is a leakage current characteristic distribution diagram, and FIG. 6 is a tan δ characteristic distribution diagram. 1... Ionomer resin body 2... Valve metal coating 3... Anodic oxide film 4...
... Organic semiconductor film 5 ... Cathode electrode film 6
...Double membrane body 7...Laminated body
8... Laminated element body 9... Electrode lead-out portion patent application Marukon Electronics Co., Ltd. Enlarged front sectional view showing a capacitor. Oblique? ! Figure 2
Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims]  アイオノマ樹脂体の一面に複数の弁作用金属膜を形成
する手段と、該金属膜表面に陽極酸化皮膜を生成する手
段と、該酸化皮膜上にTCNQ錯体を真空蒸着し有機半
導体膜を形成する手段と、該半導体膜上に陰極電極膜を
形成し複膜層体を得る手段と、該複膜層体を複数積層し
積層体を形成する手段と、該積層体を切断し積層素子体
を得る手段と、該積層素子体両端面に電極引出部を形成
する手段とを具備することを特徴とする積層形ペーパー
レス電解コンデンサの製造方法。
Means for forming a plurality of valve metal films on one surface of the ionomer resin body, means for generating an anodized film on the surface of the metal film, and means for forming an organic semiconductor film by vacuum evaporating a TCNQ complex on the oxide film. a means for forming a cathode electrode film on the semiconductor film to obtain a multilayer body; a means for laminating a plurality of the multilayer bodies to form a laminate; and a means for cutting the laminate to obtain a laminate element body. 1. A method for manufacturing a multilayer paperless electrolytic capacitor, comprising: a means for forming an electrode lead-out portion on both end surfaces of the multilayer element body.
JP21507586A 1986-09-11 1986-09-11 Manufacture of laminated paper-less electrolytic capacitor Pending JPS6370412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21507586A JPS6370412A (en) 1986-09-11 1986-09-11 Manufacture of laminated paper-less electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21507586A JPS6370412A (en) 1986-09-11 1986-09-11 Manufacture of laminated paper-less electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS6370412A true JPS6370412A (en) 1988-03-30

Family

ID=16666337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21507586A Pending JPS6370412A (en) 1986-09-11 1986-09-11 Manufacture of laminated paper-less electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6370412A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439243A (en) * 1993-03-15 1995-08-08 Nissan Motor Co., Ltd. Vehicle suspension
JP2008507847A (en) * 2004-07-23 2008-03-13 サンデュー・テクノロジーズ・エルエルシー Capacitor with high energy storage density and low ESR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5439243A (en) * 1993-03-15 1995-08-08 Nissan Motor Co., Ltd. Vehicle suspension
JP2008507847A (en) * 2004-07-23 2008-03-13 サンデュー・テクノロジーズ・エルエルシー Capacitor with high energy storage density and low ESR

Similar Documents

Publication Publication Date Title
KR100356194B1 (en) Solid electrolytic capacitor and method for maunfacturing the same
JPS6370412A (en) Manufacture of laminated paper-less electrolytic capacitor
JPS63104320A (en) Manufacture of laminated paper-less electrolytic capacitor
JPH0758670B2 (en) Method for manufacturing laminated paperless electrolytic capacitor
JPH0936003A (en) Laminated solid condenser and manufacture thereof
JP3148596B2 (en) Wound metallized film capacitors
JP4595262B2 (en) Solid electrolytic capacitor
JPS58153322A (en) Condenser
JPH0537468Y2 (en)
JPH0620032B2 (en) Electrolytic capacitor
JPH038313A (en) Manufacture of solid electrolytic capacitor
JPS63104319A (en) Manufacture of laminated paper-less electrolytic capacitor
JPS6263413A (en) Manufacturing laminated ceramic capacitor
JPS63104318A (en) Manufacture of laminated paper-less electrolytic capacitor
JP2531404Y2 (en) Thin electric double layer capacitor
JPH0451466Y2 (en)
JPH02121315A (en) Capacitor
JPS61270807A (en) Manufacture of laminated electrolytic capacitor
JPH06176978A (en) Solid electrolytic capacitor
JPS63263713A (en) Laminated solid electrolytic capacitor
JPH0547612A (en) Production of solid electrolytic capacitor
JPS62224015A (en) Manufacture of laminated electrolytic capacitor
JPS6294912A (en) Manufacture of toroidal electrolytic capacitor
JPH03280517A (en) Laminated electric double layer capacitor
JPS61270809A (en) Manufacture of laminated electrolytic capacitor