JP2950575B2 - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JP2950575B2
JP2950575B2 JP10078490A JP10078490A JP2950575B2 JP 2950575 B2 JP2950575 B2 JP 2950575B2 JP 10078490 A JP10078490 A JP 10078490A JP 10078490 A JP10078490 A JP 10078490A JP 2950575 B2 JP2950575 B2 JP 2950575B2
Authority
JP
Japan
Prior art keywords
separator
capacitor element
capacitor
anode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10078490A
Other languages
Japanese (ja)
Other versions
JPH03297120A (en
Inventor
進 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP10078490A priority Critical patent/JP2950575B2/en
Publication of JPH03297120A publication Critical patent/JPH03297120A/en
Application granted granted Critical
Publication of JP2950575B2 publication Critical patent/JP2950575B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

この発明は、電極間に電解質をセパレータによって保
持してなる電解コンデンサに関する。
The present invention relates to an electrolytic capacitor having an electrolyte held between electrodes by a separator.

【従来の技術】[Prior art]

電解コンデンサは、アルミニウム、タンタル、ニオブ
などの金属表面に絶縁性の酸化皮膜が形成されるいわゆ
る弁金属を少なくとも陽極電極に用い、この陽極金属を
陽極酸化処理等の操作によって、所望の厚さの絶縁性の
酸化皮膜を形成し、この皮膜を誘電体層として用いる。 陽極電極の形状は種々のものがあるが、主なものは長
尺の箔状物を同様に長尺のセパレータ、陰極と共に巻回
した素子構造のものがある。また箔状の電極とセパレー
タとを重ね合わせた積層型のコンデンサ素子もある。こ
れらのコンデンサ素子には、液体あるいは固体状の電解
質をセパレータで保持させ、この電解質が誘電体酸化皮
膜層に直接接触して真の陰極としての機能を果たす。 またこの発明の対象範囲外であるが、素子にセパレー
タを用いずに、ブロック状の多孔質弁金属体を陽極に用
いたものなどが知られている。 液体の電解質は、エチレングリコール、γ−ブチロラ
クトンなど各種の有機溶媒や水などに有機酸、無機酸あ
るいはこれらの塩類を溶解させたものを用いている。ま
た固体電解質としては、二酸化マンガン、二酸化鉛など
の半導体無機化合物や、テトラシアノキノジメタン、ポ
リアセチレン、ポリピロールなどの導電性有機化合物な
どを用いている。 セパレータは、前述したように電解質を電極間に保持
させるとともに、陽極、陰極間の短絡を防止する機能を
有している。セパレータの材料は、液体電解質の場合、
紙が用いられることが多く、その原料にはクラフトと呼
ばれる比較的長繊維のパルプを用いたものや、マニラ麻
繊維を用いたものなどが多用されている。また固体電解
質で、熱変成工程が必要な二酸化マンガンを用いた固体
電解質の場合には、紙以外のガラス繊維布の薄手のもの
が用いられることがある。
Electrolytic capacitors use a so-called valve metal in which an insulating oxide film is formed on the surface of a metal such as aluminum, tantalum, or niobium at least as an anode electrode. The anode metal has a desired thickness by an operation such as anodizing treatment. An insulating oxide film is formed, and this film is used as a dielectric layer. There are various shapes of the anode electrode, and the main one has an element structure in which a long foil is wound together with a long separator and a cathode. There is also a laminated capacitor element in which a foil electrode and a separator are overlapped. In these capacitor elements, a liquid or solid electrolyte is held by a separator, and this electrolyte directly contacts the dielectric oxide film layer to function as a true cathode. Further, although outside the scope of the present invention, an element using a block-shaped porous valve metal body as an anode without using a separator in an element is known. As the liquid electrolyte, those obtained by dissolving an organic acid, an inorganic acid, or a salt thereof in various organic solvents such as ethylene glycol and γ-butyrolactone or water are used. As the solid electrolyte, a semiconductor inorganic compound such as manganese dioxide and lead dioxide, and a conductive organic compound such as tetracyanoquinodimethane, polyacetylene, and polypyrrole are used. As described above, the separator has a function of holding the electrolyte between the electrodes and preventing a short circuit between the anode and the cathode. If the material of the separator is a liquid electrolyte,
Paper is often used, and as its raw material, a material using relatively long fiber pulp called kraft, a material using manila hemp fiber, and the like are frequently used. In the case of a solid electrolyte using manganese dioxide which requires a thermal denaturation step, a thin glass fiber cloth other than paper may be used.

【発明が解決しようとする課題】[Problems to be solved by the invention]

セパレータに要求される機能は、陽極、陰極電極間に
電解質を必要かつ十分な量を保持するとともに、両電極
間に介在することから、損失特性などが悪化しないよう
に十分な電導度が維持することが求められる。しかしな
がら電導度の向上を図るために、セパレータの厚さや密
度を必要以上に下げると、電極間の短絡などの事故が発
生することになる。またセパレータを一定以上に薄くす
るのは困難で、紙の場合で20μm程度、ガラス繊維の場
合数十μmが実用上の限度であり、これ以上薄くすると
強度不足などにより、素子形成時にセパレータの切断が
起きるなどの不都合が生じる。 さらに液体電解質を用いた電解コンデンサの場合、製
造時あるいは使用温度範囲が著しく高くなることはない
が、固体電解質特に二酸化マンガンを用いた場合など
は、コンデンサ素子に浸漬した硝酸マンガンを二酸化マ
ンガンに変成させる時に250℃以上の温度で熱変成させ
る工程を繰り返すことから、セパレータも耐熱性を持っ
たものが要求される場合もある。 この発明は、上述した問題点を解決することを目的と
したもので、新規なセパレータを採用することにより、
特性の優れた電解コンデンサを得ようとするものであ
る。
The function required for the separator is to maintain a necessary and sufficient amount of the electrolyte between the anode and the cathode, and since the electrolyte is interposed between the electrodes, sufficient conductivity is maintained so that the loss characteristics and the like are not deteriorated. Is required. However, if the thickness and density of the separator are reduced more than necessary in order to improve the electrical conductivity, an accident such as a short circuit between the electrodes may occur. In addition, it is difficult to make the separator thinner than a certain level, and the practical limit is about 20 μm for paper and several tens of μm for glass fiber. Inconvenience such as occurrence of Furthermore, in the case of electrolytic capacitors using liquid electrolyte, the temperature range during manufacture or in the operating temperature range does not increase significantly. Since the process of thermal denaturation at a temperature of 250 ° C. or more is repeated at the time of the formation, a separator having heat resistance may be required in some cases. The present invention has been made to solve the above-described problems, and by adopting a novel separator,
The purpose is to obtain an electrolytic capacitor having excellent characteristics.

【課題を解決するための手段】[Means for Solving the Problems]

この発明の電解コンデンサは、表面に誘電体酸化皮膜
層が形成された陽極電極と、陰極電極との間にセパレー
タを介在させ巻回あるいは積層させて形成し、前記セパ
レータにポリアミドイミド繊維を含んだものを用いたこ
とを特徴としている。 ポリアミドイミド樹脂は、 の基本骨格を有する構造で、熱安定性が極めて高いとと
もに、引張強度、弾性係数等の機械的特性にも優れてい
るもので、従来から樹脂加工品として、各種の用途に用
いられている。 この発明で用いるセパレータは、ポリアミドイミド繊
維を抄いてシート状にしたものか、あるいは既存のパル
プやマニラ麻繊維に混抄して用いる。 ポリアミドイミド繊維は、繊維素の径が10μm以下の
ものが実用化されており、このように特に細いものを用
いることで、厚さが20μm以下の薄いセパレータが得ら
れる。
The electrolytic capacitor of the present invention is formed by winding or laminating an anode electrode having a dielectric oxide film layer formed on the surface thereof, a separator between the anode electrode and the cathode electrode, and including the polyamideimide fiber in the separator. It is characterized by using a thing. Polyamideimide resin is Having a very high thermal stability and excellent mechanical properties such as tensile strength and elastic modulus, and has been conventionally used as a resin processed product for various uses. The separator used in the present invention may be a sheet made of polyamide imide fiber or a mixture of existing pulp and manila hemp fiber. Polyamideimide fibers having a fiber diameter of 10 μm or less have been put to practical use. By using such particularly thin fibers, a thin separator having a thickness of 20 μm or less can be obtained.

【作用】[Action]

ポリアミドイミド繊維は上記したように、極めて高い
引張強度と、耐熱性、耐薬品性を持つので、この繊維を
その全てに、あるいは混抄して用いたセパレータは、高
い引張り強度とともに、耐熱性、耐薬品性を有する。 このため、巻回素子の製造時にセパレータに掛かる張
力を上げ、コンデンサ素子を強固に巻き上げることがで
きる。また同じ引張強度を得るために従来より薄いセパ
レータを用いることができるので単位体積あたりの静電
容量値を増加させ、損失を低減させる。 さらに耐熱性、耐薬品性に優れるので、二酸化マンガ
ン電解質形成時のように、高温処理や発生するガスによ
る影響を受けることがない。
As described above, the polyamideimide fiber has extremely high tensile strength, heat resistance, and chemical resistance. Therefore, a separator using all or a mixture of these fibers has high tensile strength, high heat resistance, and high heat resistance. Has chemical properties. For this reason, the tension applied to the separator during the manufacture of the wound element can be increased, and the capacitor element can be firmly wound. Further, since a separator thinner than the conventional one can be used to obtain the same tensile strength, the capacitance value per unit volume is increased and the loss is reduced. Furthermore, since it is excellent in heat resistance and chemical resistance, it is not affected by high-temperature treatment or generated gas as in the case of forming a manganese dioxide electrolyte.

【実施例】【Example】

以下実施例に基づいてこの発明を更に詳しく説明す
る。 第1図は、この発明の電解コンデンサの素子構造をあ
らわしたものである。図は巻回構造のコンデンサ素子1
の一部を分解した正面図であり、帯状に裁断されたアル
ミニウム、タンタルなどの弁金属箔を陽極2として用
い、陽極2よりも僅かに幅広のセパレータ3と、前記陽
極とほぼ同幅に裁断された金属箔からなる陰極4とを図
示のように重ね合わせて、その一端から巻回し円筒状の
コンデンサ素子1を形成するものである。なおこの場
合、セパレータ3は2枚用い、巻回の裏面側でも陽極2
と陰極4とが接触しないようになっている。また陽極2
および陰極4にはそれぞれ外部と電気的接続を得るため
の引出しリード5,6が各々接続され、巻回一方の巻回端
面部から導出されている。 このコンデンサ素子1に、液体あるいは固体の電解質
を所定の工程によりセパレータ3に浸透させ維持させ
る。 電解質の浸透処理の終わったコンデンサ素子1は、必
要に応じて金属ケース内に収納あるいは樹脂で外面を密
閉して外装処理をおこなえばよい。 この発明の実施例として、まず液体電解質を用いた電
解コンデンサを作成してその特性を調べた。 (本発明例1) この発明例で用いた電解コンデンサは、巻回型のコン
デンサ素子を用いたもので、定格電圧63V定格静電容量1
000μFのものである。コンデンサ素子は、陽極に厚さ9
0μmの高純度アルミニウム箔を用い、このアルミニウ
ム箔の表面積拡大のため、電気化学的エッチング処理を
施した後、表面に陽極酸化処理によって90Vを印加し
て、酸化アルミニウムの誘電体層を形成した。この陽極
箔を幅24mm、長さ450mmの帯状に切断し陽極引出しリー
ドを加締付けによって接続した。 陰極箔には、厚さ50μmのアルミニウム箔を用い、や
はり帯状に切断した。これら電極箔に、電極引出しのた
めのリードを接続し、両電極箔間に厚さ40μmのポリア
ミドイミド繊維からなる帯状のセパレータを介在させ、
2kgの巻回張力で巻回しコンデンサ素子を得た。 次に、このコンデンサ素子にアジピン酸アンモニウム
を主溶質とした電解液を含浸し、筒状のアンモニウムケ
ースに収納し、開口部を弾性ゴムで密閉して電解コンデ
ンサとした。 (比較例1) 陽極箔、陰極箔は本発明例1と同じものを用いた。セ
パレータには、マニラ麻混抄の厚さ40密閉の電解紙を用
いこれらを重ね合わせて1kgの巻回張力で巻回してコン
デンサ素子を形成した。 このコンデンサ素子に本発明例1と同じ電解液を含浸
し、同様の方法で外装を施し電解コンデンサとした。 これらの電解コンデンサの特性を測定したところ以下
の表1に示す結果が得られた。 なお損失は120Hzにおける値、漏れ電流は定格電圧陰
極後1分の値である。 次に、電解質に固体電解質を用いた実施例について説
明する。 (本発明例2) コンデンサ素子の形成は、陽極側電極、セパレータは
本発明例1と同じ材料を用いた。また巻回張力について
も本発明例1と同じ値とした。このコンデンサ素子を硝
酸マンガン水溶液中に浸漬し、その後加熱炉中で、250
℃、10分間加熱し硝酸マンガンを二酸化マンガンに変成
させた。この工程を3度繰り返した。 (比較例2) 陽極側電極は本発明例1と同じものを用い、セパレー
タは、ガラス繊維からなる厚さ100μmのものを使用
し、1kgの巻回張力で巻回してコンデンサ素子とした。 このコンデンサ素子を本発明例2と同じの方法で二酸
化マンガンからなる固体電解質層を形成した。 このようにして作成した固体電解質を用いた電解コン
デンサの初期の電気特性を測定したところ、表2に示す
結果が得られた。 これらの結果からわかるように、まず液体電解質を用
いた電解コンデンサの場合、この発明のセパレータを用
いた電解コンデンサは、高い巻回張力で巻くことができ
る。また繊維径が細いことによって、繊維間の空隙が均
一になってセパレータの透気度が向上する。そして透気
度の向上と電極間距離の接近によって、同様に損失の小
さなコンデンサが得られる。 また本発明例2では、セパレータが薄くでき、この結
果コンデンサ素子の直径が小さくなっている。逆にコン
デンサ素子の直径を従来のものと同じにすれば、電極の
巻き込み量を増やすことができ、その分静電容量が増大
する。
Hereinafter, the present invention will be described in more detail with reference to examples. FIG. 1 shows the element structure of the electrolytic capacitor of the present invention. The figure shows a capacitor element 1 with a wound structure
FIG. 2 is a partially exploded front view showing a separator 3 slightly wider than the anode 2 using a valve metal foil made of aluminum, tantalum, or the like cut into a belt shape, and the same width as the anode. The cathode 4 made of metal foil is overlapped as shown in the figure and wound from one end to form a cylindrical capacitor element 1. In this case, two separators 3 were used, and the anode 2 was also used on the back side of the winding.
And the cathode 4 do not come into contact with each other. Anode 2
Lead wires 5 and 6 for obtaining electrical connection with the outside are connected to the cathode 4 and the cathode 4, respectively, and are led out from one of the winding end faces. In this capacitor element 1, a liquid or solid electrolyte is permeated into the separator 3 by a predetermined process to be maintained. The capacitor element 1 having been subjected to the electrolyte infiltration treatment may be housed in a metal case or sealed with a resin to perform an exterior treatment, if necessary. As an example of the present invention, first, an electrolytic capacitor using a liquid electrolyte was prepared and its characteristics were examined. (Example 1 of the present invention) The electrolytic capacitor used in this example of the present invention uses a wound type capacitor element, and has a rated voltage of 63 V and a rated capacitance of 1
000 μF. The capacitor element has a thickness of 9
Using a high-purity aluminum foil having a thickness of 0 μm, an electrochemical etching treatment was performed to increase the surface area of the aluminum foil, and then a voltage of 90 V was applied to the surface by anodic oxidation to form a dielectric layer of aluminum oxide. The anode foil was cut into a strip having a width of 24 mm and a length of 450 mm, and an anode lead was connected by crimping. An aluminum foil having a thickness of 50 μm was used as the cathode foil, and was also cut into a band shape. To these electrode foils, leads for connecting the electrodes are connected, and a band-shaped separator made of polyamideimide fiber having a thickness of 40 μm is interposed between the two electrode foils.
It was wound with a winding tension of 2 kg to obtain a capacitor element. Next, the capacitor element was impregnated with an electrolytic solution containing ammonium adipate as a main solute, stored in a cylindrical ammonium case, and the opening was sealed with elastic rubber to obtain an electrolytic capacitor. (Comparative Example 1) The same anode foil and cathode foil as those of Example 1 of the present invention were used. As the separator, electrolytic paper of Manila hemp blended paper having a thickness of 40 sealed was used, and these were overlapped and wound with a winding tension of 1 kg to form a capacitor element. This capacitor element was impregnated with the same electrolytic solution as in Example 1 of the present invention, and was packaged in the same manner to obtain an electrolytic capacitor. When the characteristics of these electrolytic capacitors were measured, the results shown in Table 1 below were obtained. The loss is a value at 120 Hz, and the leakage current is a value of one minute after the rated voltage cathode. Next, an example using a solid electrolyte as an electrolyte will be described. (Example 2 of the present invention) For the formation of the capacitor element, the same material as in Example 1 of the present invention was used for the anode side electrode and the separator. Also, the winding tension was set to the same value as that of Example 1 of the present invention. This capacitor element is immersed in an aqueous solution of manganese nitrate, and then
C. for 10 minutes to convert manganese nitrate to manganese dioxide. This step was repeated three times. (Comparative Example 2) The same anode-side electrode as that of Example 1 of the present invention was used, and a separator having a thickness of 100 µm made of glass fiber was used and wound with a winding tension of 1 kg to obtain a capacitor element. In this capacitor element, a solid electrolyte layer made of manganese dioxide was formed in the same manner as in Inventive Example 2. When the initial electrical characteristics of the electrolytic capacitor using the solid electrolyte thus prepared were measured, the results shown in Table 2 were obtained. As can be seen from these results, first, in the case of the electrolytic capacitor using the liquid electrolyte, the electrolytic capacitor using the separator of the present invention can be wound with high winding tension. Further, since the fiber diameter is small, the gap between the fibers becomes uniform, and the air permeability of the separator is improved. By improving the air permeability and reducing the distance between the electrodes, a capacitor having a small loss can be obtained. Further, in Example 2 of the present invention, the separator can be made thin, and as a result, the diameter of the capacitor element becomes small. Conversely, if the diameter of the capacitor element is made the same as the conventional one, the amount of winding of the electrode can be increased, and the capacitance increases accordingly.

【発明の効果】【The invention's effect】

以上述べたように、この発明のポリアミドイミド繊維
を含むセパレータを用いた電解コンデンサは、ポリアミ
ドイミド繊維の機械的強度が高いため、高い張力でコン
デンサ素子を形成できるので、損失の小さい小型の電解
コンデンサが得られる。 また、耐熱性に優れかつガラス繊維布に比べて薄く形
成できるので、安定した特性を維持するとともに、コン
デンサの小型化を図ることができる。
As described above, the electrolytic capacitor using the separator containing the polyamide-imide fiber of the present invention can form a capacitor element with a high tension because the mechanical strength of the polyamide-imide fiber is high. Is obtained. Further, since it is excellent in heat resistance and can be formed thinner than glass fiber cloth, stable characteristics can be maintained and the size of the capacitor can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の電解コンデンサの素子構造を示す一
部を分解した正面図。 1…コンデンサ素子、2…陽極、3…セパレータ、4…
陰極、5,6…引出しリード。
FIG. 1 is a partially exploded front view showing the element structure of the electrolytic capacitor of the present invention. 1 ... capacitor element, 2 ... anode, 3 ... separator, 4 ...
Cathode, 5,6 ... Leader.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】表面に誘電体酸化皮膜層が形成された陽極
電極と、陰極電極との間にポリアミドイミド繊維からな
るセパレータを介在させ巻回あるいは積層させてコンデ
ンサ素子を形成し、前記コンデンサ素子のセパレータ部
に電解質を保持させてなる電解コンデンサ。
1. A capacitor element formed by winding or laminating a separator made of polyamideimide fiber between an anode electrode having a dielectric oxide film layer formed on its surface and a cathode electrode, thereby forming a capacitor element. An electrolytic capacitor in which an electrolyte is held in a separator part.
【請求項2】表面に誘電体酸化皮膜層が形成された陽極
電極と、陰極電極との間にポリアミドイミド繊維を混抄
したセパレータを介在させ巻回あるいは積層させてコン
デンサ素子を形成し、前記コンデンサ素子のセパレータ
部に電解質を保持させてなる電解コンデンサ。
2. A capacitor element is formed by winding or laminating a separator containing polyamide-imide fibers between an anode electrode having a dielectric oxide film layer formed on its surface and a cathode electrode, thereby forming a capacitor element. An electrolytic capacitor in which an electrolyte is held in the separator of the element.
JP10078490A 1990-04-17 1990-04-17 Electrolytic capacitor Expired - Lifetime JP2950575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10078490A JP2950575B2 (en) 1990-04-17 1990-04-17 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10078490A JP2950575B2 (en) 1990-04-17 1990-04-17 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH03297120A JPH03297120A (en) 1991-12-27
JP2950575B2 true JP2950575B2 (en) 1999-09-20

Family

ID=14283088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10078490A Expired - Lifetime JP2950575B2 (en) 1990-04-17 1990-04-17 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2950575B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132708A1 (en) * 2006-05-15 2007-11-22 Panasonic Corporation Aluminum electrolytic capacitor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5151084B2 (en) * 2005-07-29 2013-02-27 東洋紡株式会社 Separator for electronic parts
CN101228303B (en) * 2005-07-29 2011-12-28 东洋纺织株式会社 Polyamides imide fiber and non-woven fabrics composed of the same as well as manufacturing method thereof and separator for electronic component
JP5159598B2 (en) * 2008-12-26 2013-03-06 三洋電機株式会社 Electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132708A1 (en) * 2006-05-15 2007-11-22 Panasonic Corporation Aluminum electrolytic capacitor
US7990681B2 (en) 2006-05-15 2011-08-02 Panasonic Corporation Aluminum electrolytic capacitor
CN101443865B (en) * 2006-05-15 2011-11-30 松下电器产业株式会社 Aluminum electrolytic capacitor

Also Published As

Publication number Publication date
JPH03297120A (en) 1991-12-27

Similar Documents

Publication Publication Date Title
JP4587996B2 (en) Electrolytic capacitor
KR900008434B1 (en) Roll tape solid electrolytic capacitor and process of the preparation thereof
JP2008211063A (en) Solid electrolytic capacitor and its manufacturing method
JP4654637B2 (en) Manufacturing method of aluminum electrolytic capacitor
JP2950575B2 (en) Electrolytic capacitor
JP3033971B2 (en) Electrolytic capacitor
JP2007180404A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2010074089A (en) Electrolytic capacitor, and method of manufacturing the same
JP2009064958A (en) Aluminum electrolytic capacitor
JP3285045B2 (en) Method for manufacturing solid electrolytic capacitor
JPH01278713A (en) Electrolytic capacitor
JP7495848B2 (en) Electrolytic capacitor
JPH06168851A (en) Solid-state electrolytic capacitor and manufacture thereof
JP3198749B2 (en) Method for manufacturing solid electrolytic capacitor
JP3264077B2 (en) Electrolytic capacitor
JPH0342674Y2 (en)
JP2006210837A (en) Solid electrolytic capacitor and method for manufacturing the same
JP2623331B2 (en) Electrolytic capacitor
JP2531589B2 (en) Solid electrolytic capacitor
JP2943289B2 (en) Aluminum electrolytic capacitor
JPH0451466Y2 (en)
JP2833774B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2021158209A (en) Winding capacitor
JP2832731B2 (en) Electrolytic capacitor
JPH0451045B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080709

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100709