WO2007132708A1 - Aluminum electrolytic capacitor - Google Patents

Aluminum electrolytic capacitor Download PDF

Info

Publication number
WO2007132708A1
WO2007132708A1 PCT/JP2007/059584 JP2007059584W WO2007132708A1 WO 2007132708 A1 WO2007132708 A1 WO 2007132708A1 JP 2007059584 W JP2007059584 W JP 2007059584W WO 2007132708 A1 WO2007132708 A1 WO 2007132708A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
aluminum electrolytic
electrolytic capacitor
foil
separators
Prior art date
Application number
PCT/JP2007/059584
Other languages
French (fr)
Japanese (ja)
Inventor
Hisao Nagara
Kazunari Imamoto
Shigetaka Furusawa
Hiroyuki Matsuura
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to CN2007800177014A priority Critical patent/CN101443865B/en
Priority to US12/300,058 priority patent/US7990681B2/en
Publication of WO2007132708A1 publication Critical patent/WO2007132708A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/145Liquid electrolytic capacitors

Definitions

  • the present invention relates to an aluminum electrolytic capacitor used in various electronic devices.
  • FIG. 2 shows the configuration of a conventional aluminum electrolytic capacitor.
  • This figure is a partially cutaway perspective view showing an anode foil 11 in which a dielectric oxide film is formed by chemical conversion on the surface of an aluminum foil whose effective surface area is enlarged by etching, and a cathode in which the aluminum foil is etched.
  • Capacitor element 19 is formed by winding foil 12 through separator 13.
  • an anode lead wire 15 and a cathode lead wire 16 are connected to the anode foil 11 and the cathode foil 12, respectively, and impregnated with a driving electrolyte solution (not shown).
  • the capacitor element 19 is inserted into a metal case 18 such as an aluminum case and sealed with a sealing material 17 such as rubber to obtain a conventional aluminum electrolytic capacitor.
  • the separator 13 is made of cellulose fibers such as manila hemp, craft, hemp, and esbalt, and is properly used depending on the performance of the separator such as thickness and density.
  • the performance required for aluminum electrolytic capacitors is high capacity, low ESR (equivalent series resistance), and high reliability.
  • Patent Document 1 and Patent Document 2 are known.
  • a low-density separator is used to improve ESR characteristics as in the case of a conventional aluminum electrolytic capacitor, the tensile strength of the separator is weakened, and the capacitor element is reduced.
  • the separator may weaken due to the occurrence of breakage when it is turned and the stress of the anode lead wire and cathode lead wire connected to the cathode foil and the cathode lead wire part. is doing.
  • Patent Document 1 Japanese Patent Laid-Open No. 08-273984
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-173862
  • the present invention provides an aluminum electrolytic capacitor that is excellent in short-circuit resistance and excellent in high-temperature reliability and has a high capacity and low ESR by solving such a conventional problem.
  • the present invention has a capacitor element in which an anode foil, a first separator, a cathode foil, and a second separator are sequentially stacked, and a driving electrolyte is applied to the capacitor element.
  • An aluminum electrolytic capacitor that is impregnated and stored in a metal case, and then the open end of the metal case is sealed with a sealing material, and the total thickness A of the first and second separators before winding and the thickness after winding
  • the ratio B / A of the total thickness B of the first and second separators is 0.5 to 0.8.
  • the aluminum electrolytic capacitor of the present invention is a ratio of the total thickness A of the first and second separators before winding to the total thickness B of the first and second separators after winding B /
  • A 0.5 to 0.8
  • the rate of change in the total thickness of the separator before and after winding is small. Therefore, the stress due to the separator contact portion between the anode lead wire and cathode lead wire is suppressed, and short-circuit failure during capacitor element scraping and short-circuit failure during long-term voltage application at high temperatures can be reduced. It is an excellent one.
  • an aprotic solvent is used as the main solvent of the driving electrolyte.
  • FIG. 1 is a partially cutaway perspective view of an aluminum electrolytic capacitor of the present invention.
  • FIG. 2 is a partially cutaway perspective view of a conventional aluminum electrolytic capacitor.
  • FIG. 1 is a partially cutaway perspective view of an aluminum electrolytic capacitor according to an embodiment of the present invention.
  • an anode foil 1 is formed by forming a dielectric oxide film with an anodic oxide film on the surface of an aluminum foil whose etching has increased the effective surface area. Further, a cathode lead wire 6 for drawing is connected to the cathode foil 2 obtained by etching the aluminum foil.
  • Capacitor element 9 is configured by winding anode foil 1, first separator 3 a, cathode foil 2, and second separator 3 b in order. After impregnating the capacitor element 9 with a driving electrolyte (not shown), the capacitor element 9 is inserted into an aluminum metal case 8 and the opening of the metal case 8 is sealed with a sealing material 7. Yes.
  • the capacitor element 9 has a ratio B between the total thickness A of the first and second separators 3a and 3b before winding and the total thickness B of the first and second separators 3a and 3b after winding. / A force is wound so as to be 0.5 to 0.8.
  • the ratio BZA is desirably 0.5 to 0.8.
  • cellulose fiber rayon fiber, polyethylene fiber, polypropylene fiber, nylon fiber, or the like
  • rayon fiber rayon fiber
  • polyethylene fiber polyethylene fiber
  • polypropylene fiber nylon fiber
  • non-hollow fibers that do not twist in the shape of the fibers are superior in short-circuit resistance and ESR characteristics, because the fibers are not easily crushed by compression during staking.
  • the density range of the separator should be selected from 0 ⁇ 2 to! ⁇ Og / cm 3 so as not to obstruct the ion pathway of the driving electrolyte as much as possible. Is desirable.
  • the density of the separator is less than 0.2 g / cm 3, the force S is more effective for the ESR characteristics S, and the insulation performance of the separator itself is lowered, so the short-circuit resistance cannot be further improved.
  • the basis weight of the separator is expressed by the product of density and thickness, and the mechanical strength of the separator can be ensured by setting the basis weight in the range of 4 to 20 g / cm 2 . Breaking at the time of picking can be suppressed, and short circuit resistance can also be improved. In addition, since the volume of the scraping element per unit volume of the capacitor can be increased, it is possible to hold a large amount of driving electrolyte, which is great for stabilizing the characteristics at high temperatures as well as increasing the capacity. It has an effect.
  • a jig having a curved shape is used as a staking start position so that excessive stress is not applied to the separator during staking. Furthermore, it is possible to adjust the stress at the time of cutting by controlling the cutting speed and tension by inverter control and load optimization.
  • the shape of the lead terminal it is possible to further improve the short-circuit resistance by using a curved shape that does not have an acute protruding portion on the end surface of the lead terminal.
  • the shape of a lead terminal with an acute end face of 90 degrees like a normal lead terminal, imposes excessive stress on the separator, resulting in poor short-circuit resistance.
  • an acid component having an acid dissociation constant pKa of 5 to 9 is used as the electrolyte of the driving electrolyte.
  • the acid component having a pKa of 5 to 9 include malonic acid, maleic acid, fumaric acid, phthalic acid, isophthalanolic acid, terephthalic acid, dimethylmaleic acid, and aminobenzoic acid. If an acid component with an acid dissociation constant pKa of less than 5 is used as the electrolyte for the driving electrolyte, the lead foil portion of the electrode foil undergoes a corrosion reaction due to acid during high-temperature solder reflow, and reliability decreases.
  • an aprotic solvent for example, ratatones (y petit ratatones, a valerolatatanes, ⁇ valerolatatanes, etc.), carbonates (ethylene carbonate, propylene carbonate, diethylene carbonate, styrene carbonate, dimethylolate carbonate) Etc.), nitrile type (acetonitrile, 3-methoxypropionitryl etc.), furan type (2,5 dimethoxytetrahydrofuran etc.), sulfolane type (sulfolane, 3 methylsulfolan, 2,5_dimethylsulfolane etc.), ether type (Methylal, 1,2-Dimethoxyjetane, 1_Ethoxy_2-Methoxyethane, 1,2-Diethoxyethane, etc.), Amides ( ⁇ Methylphenolamide, ⁇ , ⁇ ⁇ ⁇ ⁇ -dimethylformamide, ⁇ ⁇
  • a tertiary amine compound an imidazolium compound
  • an imi Examples include dazolinium compounds and pyridinium compounds.
  • anode foil 1 (thickness 100 xm) made of aluminum foil formed with a dielectric oxide film (formation voltage 22 V) by anodic oxidation treatment was prepared.
  • Anode foil 1 to which this anode lead wire 5 is connected, a first separator 3a made of cellulose fibers (thickness 40 xm, density 0.4 g / cm 3 ), and an anodized aluminum foil are etched and used for withdrawal.
  • the cathode foil 2 (thickness 40 ⁇ m) to which the cathode lead wire 6 is connected and the second separator 3b (thickness 40 ⁇ m) are sequentially stacked and wound, whereby the capacitor element 9 is Obtained.
  • the ratio of the total thickness A of the first and second separators 3a and 3b before winding to the total thickness B of the first and second separators 3a and 3b after winding is BZA, 0.5. .
  • the lead tension is adjusted so that the ratio B / A is 0.5, and the lead terminal shape is a lead terminal with a curved surface so that there are no sharp protrusions on the end face of the lead terminal. Was used.
  • Table 1 shows a list of driving electrolytes used in the examples and comparative examples.
  • Example 2 Phthalic acid 1,2,3,4-tramethylimita'zolinium (25) Solvent [0037]
  • the driving electrolyte shown in Table 1 (75% by weight of ⁇ -petit-mouth rataton and 25% by weight of 1,2,3,4-tetramethylimidazolium phthalate) 0/0) was used to impregnate the capacitor element 9.
  • the acid dissociation constant pKa of this driving electrolyte is 8.40.
  • the capacitor element 9 is inserted into a bottomed cylindrical aluminum metal case 8, and the opening of the metal case is sealed by a curling process with a sealing material 7 made of resin vulcanized butyl rubber. An aluminum electrolytic capacitor was produced.
  • Example 1 the ratio B / A between the total thickness A of the first and second separators 3a and 3b before winding and the total thickness B of the first and second separators 3a and 3b after winding is 0.
  • An aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the value was changed to 65.
  • Example 1 the ratio B / A between the total thickness A of the first and second separators 3a and 3b before winding and the total thickness B of the first and second separators 3a and 3b after winding is 0.
  • An aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the value was changed to 80.
  • Example 1 the electrolyte for driving shown in Table 1 (75% by weight of ⁇ -petit latatotone, 25% by weight of aminobenzoic acid 1, 2, 3, 4-tetramethylimidazolium, An aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the dissociation constant pKa was 6.79).
  • Example 1 the winding tension is relaxed, and the separator density is 1. Og / cm 3 , the total thickness A of the first and second separators 3a and 3b before winding, and after winding An aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the ratio B / A of the total thickness B of the first and second separators 3a and 3b was 0.85.
  • Example 1 a sharp terminal shape is used for the lead terminal, the total thickness A of the first and second separators 3a and 3b before winding, and the first and second separators 3a and 3b after winding.
  • An aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the ratio B of total B was set to 0.45. [0043] (Comparative Example 3)
  • Example 1 the electrolyte solution for driving shown in Table 1 (75% by weight of y-petit-mouth rataton, 25% by weight of oxalic acid 1,2,3,4-tetramethylimidazolium, acid dissociation constant pKa Were used in the same manner as in Example 1 except that 4.86) was used.
  • Example 1 driving electrolyte shown in Table 1 D (7 _ Petit port Rataton 75 wt%, co Haq acid 1, 2, 3, 4-tetramethyl imidazolinium two ⁇ beam 25 wt%, acid dissociation An aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the constant pKa was 9.2 4).
  • Example 1 the electrolyte solution for driving E shown in Table 1 (75% by weight of ethylene glycol monomethyl ether and 25% by weight of 1,2,3,4-tetramethylimidazolium phthalate) An aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the acid dissociation constant pKa was 8.40).
  • Ethylene glycol monomethyl ether is a protic solvent
  • the aluminum electrolytic capacitor of Comparative Example 2 since the ratio BZA of the total thickness of the separator was larger than 0.8, the initial characteristics and the life characteristics were greatly deteriorated. It can be seen that the aluminum electrolytic capacitor of Comparative Example 2 has a short terminal incidence because the ratio B / A of the total thickness of the separator is less than 0.5 and has an acute terminal shape.
  • the driving electrolytic solution having an acid dissociation constant pKa of less than 5 as in the aluminum electrolytic capacitor of Comparative Example 3 the deterioration of the separator due to the acid is increased, so that the high temperature solder reflow and the short circuit resistance after the life test Becomes worse.
  • the drive electrolyte with an acid dissociation constant pKa greater than 9 as in the aluminum electrolytic capacitor in Comparative Example 4 has a low ESR characteristic because the conductivity of the drive electrolyte is low. Power.
  • the aluminum electrolytic capacitor of Comparative Example 5 includes the total thickness A of the first and second separators 3a and 3b before winding, and the first and second separators 3a and 3b after winding.
  • the ratio B / A of the total thickness B is 0.5 to 0.8, the change rate of the separator thickness before and after winding is small. Therefore, stress due to the separator contact portion of the anode lead wire 5 and the cathode lead wire 6 is suppressed, and an aluminum electrolytic capacitor excellent in short-circuit resistance, ESR characteristics, and high-temperature reliability can be realized.
  • the present invention is an aluminum electrolytic capacitor having excellent short-circuit resistance, high capacity, long life, and low ESR characteristics, and demands for miniaturization and high performance of digital circuits such as AV equipment and personal computers. It can correspond to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

A high-capacity, long-life and low-ESR aluminum electrolytic capacitor having excellent short-circuiting resistance is provided. The aluminum electrolytic capacitor is provided with a capacitor element wherein a first separator, a cathode foil and a second separator are wound by being successively placed one over another. The capacitor element is impregnated with a driving electrolytic solution and is stored in a metal case, then, an open end of the metal case is sealed with a sealing material. A ratio of B/A is set at 0.5-0.8, wherein, A is the total of the thicknesses of the first and the second separators prior to winding, and B is the total of the thicknesses of the first and the second separators after winding.

Description

明 細 書  Specification
アルミ電解コンデンサ  Aluminum electrolytic capacitor
技術分野  Technical field
[0001] 本発明は、各種電子機器に使用されるアルミ電解コンデンサに関するものである。  [0001] The present invention relates to an aluminum electrolytic capacitor used in various electronic devices.
背景技術  Background art
[0002] 従来のアルミ電解コンデンサの構成を図 2に示す。同図は一部切欠斜視図であり、 エッチング処理によって実効表面積を拡大させたアルミニウム箔の表面に、化成処 理により誘電体酸化皮膜を形成した陽極箔 11と、アルミニウム箔をエッチング処理し た陰極箔 12とをセパレータ 13を介して卷回することにより、コンデンサ素子 19が構成 されている。このコンデンサ素子 19は、陽極箔 11および陰極箔 12にそれぞれ陽極リ ード線 15、陰極リード線 16を接続し、駆動用電解液(図示しなレ、)を含浸させる。そ れとともに、このコンデンサ素子 19をアルミニウムケースなどの金属ケース 18内に揷 入して、ゴム等の封ロ材 17で封止することにより、従来のアルミ電解コンデンサを得 ること力 Sできる。  [0002] Fig. 2 shows the configuration of a conventional aluminum electrolytic capacitor. This figure is a partially cutaway perspective view showing an anode foil 11 in which a dielectric oxide film is formed by chemical conversion on the surface of an aluminum foil whose effective surface area is enlarged by etching, and a cathode in which the aluminum foil is etched. Capacitor element 19 is formed by winding foil 12 through separator 13. In this capacitor element 19, an anode lead wire 15 and a cathode lead wire 16 are connected to the anode foil 11 and the cathode foil 12, respectively, and impregnated with a driving electrolyte solution (not shown). At the same time, the capacitor element 19 is inserted into a metal case 18 such as an aluminum case and sealed with a sealing material 17 such as rubber to obtain a conventional aluminum electrolytic capacitor.
[0003] セパレータ 13は、マニラ麻、クラフト、ヘンプ、エスバルト等のセルロース繊維を用 いたものが使用されており、セパレータの厚み、密度等の性能により、使い分けられ ている。  [0003] The separator 13 is made of cellulose fibers such as manila hemp, craft, hemp, and esbalt, and is properly used depending on the performance of the separator such as thickness and density.
[0004] アルミ電解コンデンサに求められる性能として、高容量、低 ESR (等価直列抵抗)、 高信頼性がある。  [0004] The performance required for aluminum electrolytic capacitors is high capacity, low ESR (equivalent series resistance), and high reliability.
[0005] 近年、 AV機器やパソコン等のデジタル回路の小形化、高性能化が進むにつれて 、アルミ電解コンデンサの高容量化、低 ESR化、高信頼化が重要になってきており、 高容量化や ESR特性を改善するために、セパレータに用いられる材料、厚さ等や、 駆動用電解液の高電導度化が検討されている。  [0005] In recent years, with the progress of miniaturization and higher performance of digital circuits such as AV equipment and personal computers, higher capacity, lower ESR, and higher reliability of aluminum electrolytic capacitors have become important. In order to improve the ESR characteristics, the materials used for the separator, the thickness, etc., and the higher conductivity of the driving electrolyte are being studied.
[0006] なお、関連する先行技術文献情報としては、例えば、特許文献 1、特許文献 2が知 られている。  [0006] As related prior art document information, for example, Patent Document 1 and Patent Document 2 are known.
[0007] し力しながら、従来のアルミ電解コンデンサのように、 ESR特性を改善するために低 密度セパレータを用いると、セパレータの引張り強度が弱くなり、コンデンサ素子を卷 回する時に破断ゃ卷きズレの発生や、陽極箔ゃ陰極箔に接続している陽極リード線 と陰極リード線部分のストレスによりセパレータが弱くなり、ショート不良ゃ耐電圧性が 劣るという課題を有している。 [0007] However, if a low-density separator is used to improve ESR characteristics as in the case of a conventional aluminum electrolytic capacitor, the tensile strength of the separator is weakened, and the capacitor element is reduced. The separator may weaken due to the occurrence of breakage when it is turned and the stress of the anode lead wire and cathode lead wire connected to the cathode foil and the cathode lead wire part. is doing.
[0008] さらにセパレータの強度を向上するため低密度のままで厚みを増加させた場合、 E SR特性の悪化に加えて、コンデンサ素子の単位体積あたりの電極箔の体積が小さく なり、結果として電極箔の面積が小さくなるため、高容量化が困難であった。  [0008] Further, when the thickness is increased at a low density in order to improve the strength of the separator, in addition to the deterioration of the ESR characteristics, the volume of the electrode foil per unit volume of the capacitor element is reduced, and as a result, the electrode Since the area of the foil is small, it is difficult to increase the capacity.
特許文献 1 :特開平 08— 273984号公報  Patent Document 1: Japanese Patent Laid-Open No. 08-273984
特許文献 2:特開 2000— 173862号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-173862
発明の開示  Disclosure of the invention
[0009] 本発明はこのような従来の課題を解決することにより、耐ショート性に優れ、かつ高 温信頼性に優れた高容量、低 ESRであるアルミ電解コンデンサを提供するものであ る。  [0009] The present invention provides an aluminum electrolytic capacitor that is excellent in short-circuit resistance and excellent in high-temperature reliability and has a high capacity and low ESR by solving such a conventional problem.
[0010] そのために本発明は、陽極箔と、第一のセパレータと、陰極箔と、第二のセパレー タを順次重ねて卷回したコンデンサ素子を有し、このコンデンサ素子に駆動用電解 液を含浸させると共に金属ケースに収納した後、金属ケースの開放端を封口材で封 止したアルミ電解コンデンサであって、卷回前の第一、第二のセパレータの厚み合計 Aと、卷回後の第一、第二のセパレータの厚み合計 Bの比率 B/Aを 0. 5〜0. 8とし たものである。  [0010] For this purpose, the present invention has a capacitor element in which an anode foil, a first separator, a cathode foil, and a second separator are sequentially stacked, and a driving electrolyte is applied to the capacitor element. An aluminum electrolytic capacitor that is impregnated and stored in a metal case, and then the open end of the metal case is sealed with a sealing material, and the total thickness A of the first and second separators before winding and the thickness after winding The ratio B / A of the total thickness B of the first and second separators is 0.5 to 0.8.
[0011] このように本発明のアルミ電解コンデンサは、卷回前の第一、第二のセパレータの 厚み合計 Aと、卷回後の第一、第二のセパレータの厚み合計 Bの比率 B/Aを、 0. 5 〜0. 8にしたことにより、卷回前と卷回後のセパレータの厚み合計の変化率が少ない 。従って、陽極リード線と陰極リード線のセパレータ接触部分によるストレスが抑制さ れ、コンデンサ素子の卷取り時のショート不良や、高温での長期電圧印加時における ショート不良を低減でき、耐ショ一ト性に優れたものである。  As described above, the aluminum electrolytic capacitor of the present invention is a ratio of the total thickness A of the first and second separators before winding to the total thickness B of the first and second separators after winding B / By setting A to 0.5 to 0.8, the rate of change in the total thickness of the separator before and after winding is small. Therefore, the stress due to the separator contact portion between the anode lead wire and cathode lead wire is suppressed, and short-circuit failure during capacitor element scraping and short-circuit failure during long-term voltage application at high temperatures can be reduced. It is an excellent one.
[0012] また、特に、駆動用電解液の電解質として、酸解離定数 pKaが 5〜9の酸成分を用 レ、ることにより、特に、高温環境下において酸成分によるセパレータの劣化が抑制さ れる。従って、面実装時の高温半田リフローおよび高温電圧印加時におけるショート 、リード線の腐食、漏れ電流の増加を抑制して、信頼性の向上を実現することができ る。 [0012] In particular, by using an acid component having an acid dissociation constant pKa of 5 to 9 as the electrolyte of the driving electrolyte, deterioration of the separator due to the acid component is suppressed particularly in a high temperature environment. . Therefore, high-temperature solder reflow during surface mounting, short-circuiting during high-temperature voltage application, lead wire corrosion, and increase in leakage current can be suppressed to improve reliability. The
[0013] また、特に、駆動用電解液の主溶媒として、非プロトン性溶媒を用いる。これにより、 アルミ電解コンデンサの内部に含有する駆動用電解液ゃセパレータに吸着した水分 による圧力上昇を抑制できるので、高温での特性安定化が改善され、高温信頼性に 優れた効果を奏するものである。  [0013] In particular, an aprotic solvent is used as the main solvent of the driving electrolyte. As a result, the pressure rise due to moisture adsorbed on the driving electrolyte solution separator contained in the aluminum electrolytic capacitor can be suppressed, so that the stabilization of characteristics at high temperature is improved and the high temperature reliability is excellent. is there.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]図 1は本発明のアルミ電解コンデンサの一部切欠斜視図である。  FIG. 1 is a partially cutaway perspective view of an aluminum electrolytic capacitor of the present invention.
[図 2]図 2は従来のアルミ電解コンデンサの一部切欠斜視図である。  FIG. 2 is a partially cutaway perspective view of a conventional aluminum electrolytic capacitor.
符号の説明  Explanation of symbols
[0015] 1 , 11 陽極箔 [0015] 1, 11 Anode foil
2, 12 陰極箔  2, 12 Cathode foil
3a, 3b, 13 セパレータ  3a, 3b, 13 separator
5, 15 陽極リード線  5, 15 Anode lead wire
6, 16 陰極リード線  6, 16 Cathode lead wire
7, 17 封ロ材  7, 17 Sealing material
8, 18 金属ケース  8, 18 metal case
9, 19 コンデンサ素子  9, 19 Capacitor element
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明のアルミ電解コンデンサについて、一実施の形態および図面を用い て説明する。 Hereinafter, an aluminum electrolytic capacitor of the present invention will be described with reference to an embodiment and drawings.
[0017] 図 1は、本発明の一実施の形態のアルミ電解コンデンサの一部切欠斜視図である。  FIG. 1 is a partially cutaway perspective view of an aluminum electrolytic capacitor according to an embodiment of the present invention.
図 1において、アルミニウム箔をエッチング処理により実効表面積を拡大した表面に、 陽極酸化皮膜により誘電体酸化皮膜を形成して陽極箔 1を作成した後に、引出し用 の陽極リード線 5を接続する。また、アルミニウム箔をエッチング処理した陰極箔 2に、 引出し用の陰極リード線 6を接続する。この陽極箔 1と、第一のセパレータ 3aと、陰極 箔 2と、第二のセパレータ 3bとを順次重ねて卷回することにより、コンデンサ素子 9を 構成する。このコンデンサ素子 9に駆動用電解液(図示しない)を含浸させて後、アル ミニゥムの金属ケース 8内に挿入して、金属ケース 8の開口部を封ロ材 7で封止して いる。 In FIG. 1, an anode foil 1 is formed by forming a dielectric oxide film with an anodic oxide film on the surface of an aluminum foil whose etching has increased the effective surface area. Further, a cathode lead wire 6 for drawing is connected to the cathode foil 2 obtained by etching the aluminum foil. Capacitor element 9 is configured by winding anode foil 1, first separator 3 a, cathode foil 2, and second separator 3 b in order. After impregnating the capacitor element 9 with a driving electrolyte (not shown), the capacitor element 9 is inserted into an aluminum metal case 8 and the opening of the metal case 8 is sealed with a sealing material 7. Yes.
[0018] 上記コンデンサ素子 9は、卷回前の第一、第二のセパレータ 3a、 3bの厚み合計 Aと 、卷回後の第一、第二のセパレータ 3a, 3bの厚み合計 Bの比率 B/A力 0. 5〜0. 8になるように卷回したものである。  [0018] The capacitor element 9 has a ratio B between the total thickness A of the first and second separators 3a and 3b before winding and the total thickness B of the first and second separators 3a and 3b after winding. / A force is wound so as to be 0.5 to 0.8.
[0019] なお、比率 B/Aが 0. 5未満の場合は、卷回時、リード線部分にストレスが力、かりシ ョート不良が発生する可能性が高くなる。  [0019] When the ratio B / A is less than 0.5, stress is applied to the lead wire portion at the time of winding, and there is a high possibility that a short circuit will occur.
[0020] また、比率 BZAが 0. 8を超えると、 ESR特性が悪くなる。  [0020] When the ratio BZA exceeds 0.8, the ESR characteristics deteriorate.
[0021] したがって、上記比率 BZAは 0. 5〜0. 8であることが望ましい。  [0021] Therefore, the ratio BZA is desirably 0.5 to 0.8.
[0022] 上記比率 B/Aが 0. 5〜0. 8となるようにするために、以下に説明するように、セパ レータの種類、密度、坪量と卷取り工法、リード端子の形状等の最適化を図っている 。なお、この際、第一、第二のセパレータ 3a、 3bを区別する必要はなレ、。なお以後、 この第一、第二のセパレータ 3a、 3bを総称して単に「セパレータ」と呼ぶ。  [0022] In order to make the ratio B / A 0.5 to 0.8, as described below, the type of separator, density, basis weight and scraping method, lead terminal shape, etc. We are trying to optimize. At this time, it is not necessary to distinguish between the first and second separators 3a and 3b. Hereinafter, the first and second separators 3a and 3b are collectively referred to simply as “separators”.
[0023] セパレータの材質としてはセルロース繊維、レーヨン繊維、ポリエチレン繊維、ポリ プロピレン繊維、ナイロン繊維等を用いることができる。特に化学繊維や再生繊維を 用いた場合、繊維の形状に撚れがなぐ中空状でないものは卷取り時の圧縮により 繊維がつぶれにくいため、耐ショート性および ESR特性が優れる。  [0023] As the material of the separator, cellulose fiber, rayon fiber, polyethylene fiber, polypropylene fiber, nylon fiber, or the like can be used. In particular, when chemical fibers or regenerated fibers are used, non-hollow fibers that do not twist in the shape of the fibers are superior in short-circuit resistance and ESR characteristics, because the fibers are not easily crushed by compression during staking.
[0024] また、上記セパレータにおいて、駆動用電解液のイオン経路をできるだけ阻害する ことがないようにするため、セパレータの密度の範囲は 0· 2〜: ! · Og/cm3の範囲を 選ぶことが望ましい。セパレータの密度が 0. 2g/cm3未満の場合、 ESR特性に対し てはより効果がある力 S、セパレータ自体の絶縁性能が低下するため耐ショート性をよ り向上させることができない。 [0024] In the separator, the density range of the separator should be selected from 0 · 2 to! · Og / cm 3 so as not to obstruct the ion pathway of the driving electrolyte as much as possible. Is desirable. When the density of the separator is less than 0.2 g / cm 3, the force S is more effective for the ESR characteristics S, and the insulation performance of the separator itself is lowered, so the short-circuit resistance cannot be further improved.
[0025] また、セパレータの密度が 1. Og/cm3を超えると、耐ショート性はより向上するが、 ESR特性のさらなる向上を図ることができない。 [0025] When the density of the separator exceeds 1. Og / cm 3 , the short-circuit resistance is further improved, but the ESR characteristics cannot be further improved.
[0026] さらには、セパレータの坪量は密度と厚みの積で表されるものであり、その坪量を 4 〜20g/cm2の範囲にすることによりセパレータの機械的強度を確保できるため卷取 り時の破断を抑制することができ、耐ショート性も向上することができる。また、コンデ ンサ単位体積あたりの卷取り素子体積を大きくすることができるため、多くの駆動用 電解液を保持することができ、大容量化とあわせて、高温での特性安定化に大きな 効果を有するものである。 [0026] Furthermore, the basis weight of the separator is expressed by the product of density and thickness, and the mechanical strength of the separator can be ensured by setting the basis weight in the range of 4 to 20 g / cm 2 . Breaking at the time of picking can be suppressed, and short circuit resistance can also be improved. In addition, since the volume of the scraping element per unit volume of the capacitor can be increased, it is possible to hold a large amount of driving electrolyte, which is great for stabilizing the characteristics at high temperatures as well as increasing the capacity. It has an effect.
[0027] 卷取り工法としては、卷取り時にセパレータに過度のストレスが加わらないように、卷 取り開始位置の治具は曲面形状のものを用いる。さらに、インバーター制御や荷重の 最適化により卷取り速度、テンションを制御することで、卷取り時のストレスを調整する こと力 Sできる。  [0027] As the staking method, a jig having a curved shape is used as a staking start position so that excessive stress is not applied to the separator during staking. Furthermore, it is possible to adjust the stress at the time of cutting by controlling the cutting speed and tension by inverter control and load optimization.
[0028] また、リード端子の形状については、リード端子の端面に鋭角な突出部分がないよ うな曲面形状を用いることで、さらなる耐ショート性の向上を図ることが可能となる。通 常のリード端子のように 90度の鋭角な端面のリード端子の形状では、セパレータに過 度のストレスがかかるため、耐ショート性が劣ることとなる。  [0028] Further, with respect to the shape of the lead terminal, it is possible to further improve the short-circuit resistance by using a curved shape that does not have an acute protruding portion on the end surface of the lead terminal. The shape of a lead terminal with an acute end face of 90 degrees, like a normal lead terminal, imposes excessive stress on the separator, resulting in poor short-circuit resistance.
[0029] 駆動用電解液の電解質としては、酸解離定数 pKaが 5〜9の酸成分のものを用いる 。 pKaが 5〜9の酸成分として、マロン酸、マレイン酸、フマル酸、フタル酸、イソフタノレ 酸、テレフタル酸、ジメチルマレイン酸、ァミノ安息香酸などが挙げられる。なお、駆動 用電解液の電解質として、酸解離定数 pKaが 5未満の酸成分を用いた場合、高温半 田リフロー時に電極箔ゃリード線部分が酸により腐食反応が進み信頼性が低下する  [0029] As the electrolyte of the driving electrolyte, an acid component having an acid dissociation constant pKa of 5 to 9 is used. Examples of the acid component having a pKa of 5 to 9 include malonic acid, maleic acid, fumaric acid, phthalic acid, isophthalanolic acid, terephthalic acid, dimethylmaleic acid, and aminobenzoic acid. If an acid component with an acid dissociation constant pKa of less than 5 is used as the electrolyte for the driving electrolyte, the lead foil portion of the electrode foil undergoes a corrosion reaction due to acid during high-temperature solder reflow, and reliability decreases.
[0030] また、駆動用電解液の電解質として、酸解離定数 pKaが 9を超える酸成分を用いた 場合、イオン化の定数が少ないため電気伝導度が低くなる。 [0030] Further, when an acid component having an acid dissociation constant pKa of more than 9 is used as the electrolyte of the driving electrolyte, the electric conductivity is low because the ionization constant is small.
[0031] 電解液の溶媒としては非プロトン性溶媒、例えば、ラタトン類 ( y プチ口ラタトン、 a バレロラタトン、 γ バレロラタトン等)、カーボネート系(エチレンカーボネート、 プロピレンカーボネート、ジエチレンカーボネート、スチレンカーボネート、ジメチノレ力 ーボネート等)、二トリル系(ァセトニトリル、 3—メトキシプロピオ二トリル等)、フラン系( 2, 5 ジメトキシテトラヒドロフラン等)、スルホラン系(スルホラン、 3 メチルスルホラ ン、 2, 5 _ジメチルスルホラン等)、エーテル系(メチラール、 1 , 2—ジメトキジェタン、 1 _エトキシ _ 2—メトキシェタン、 1 , 2—ジエトキシェタン等)、アミド系(Ν メチルホ ノレムアミド、 Ν, Ν—ジメチルホルムアミド、 Ν メチルァセトアミド、 Ν メチルピロジリ ノン等)が挙げられる。これらの溶媒を主溶媒として用いることで、低 ESR化と高温で の特性安定化を図ることができる。  [0031] As the solvent of the electrolytic solution, an aprotic solvent, for example, ratatones (y petit ratatones, a valerolatatanes, γ valerolatatanes, etc.), carbonates (ethylene carbonate, propylene carbonate, diethylene carbonate, styrene carbonate, dimethylolate carbonate) Etc.), nitrile type (acetonitrile, 3-methoxypropionitryl etc.), furan type (2,5 dimethoxytetrahydrofuran etc.), sulfolane type (sulfolane, 3 methylsulfolan, 2,5_dimethylsulfolane etc.), ether type (Methylal, 1,2-Dimethoxyjetane, 1_Ethoxy_2-Methoxyethane, 1,2-Diethoxyethane, etc.), Amides (Ν Methylphenolamide, Ν, ジ メ チ ル -dimethylformamide, メ チ ル Methylacetamide, メ チ ル Methylpyrodirinone, etc.) But It is below. By using these solvents as the main solvent, low ESR and high temperature stability can be achieved.
[0032] また、上記電解質の塩基成分として、三級アミン化合物、イミダゾリゥム化合物、イミ ダゾリニゥム化合物、ピリジニゥム化合物などが挙げられる。これらの塩基成分を用い ることで、高電導度化と高温での特性の安定化を図ることができる。 [0032] Further, as the base component of the electrolyte, a tertiary amine compound, an imidazolium compound, an imi Examples include dazolinium compounds and pyridinium compounds. By using these base components, it is possible to increase the electrical conductivity and stabilize the characteristics at high temperatures.
[0033] 以下、本実施の形態について、実施例を用いて詳細に説明する。  Hereinafter, the present embodiment will be described in detail using examples.
[0034] (実施例 1)  [Example 1]
まず、エッチング処理によりアルミニウム箔の表面を粗面化した後に、陽極酸化処 理により誘電体酸化皮膜 (化成電圧 22V)を形成したアルミニウム箔からなる陽極箔 1 (厚さ 100 x m)を作成した。この引出し用の陽極リード線 5を接続した陽極箔 1と、 セルロース繊維からなる第一のセパレータ 3a (厚さ 40 x m、密度 0. 4g/cm3)と、ァ ノレミニゥム箔をエッチング処理し引出し用の陰極リード線 6を接続した陰極箔 2 (厚さ 4 0 μ m)と、第二のセパレータ 3b (厚さ 40 μ m)とを順次重ね合わせて卷回することに より、コンデンサ素子 9を得た。この時の卷回前の第一、第二のセパレータ 3a、 3bの 厚み合計 Aと、卷回後の第一、第二のセパレータ 3a、 3bの厚み合計 Bの比率 BZA 、 0. 5とした。卷取りテンションについては、上記比率 B/Aが 0. 5となるように調整 し、リード端子の形状については、リード端子の端面に鋭角な突出部分がないように 、曲面形状をもったリード端子を用いた。 First, the surface of the aluminum foil was roughened by etching treatment, and then anode foil 1 (thickness 100 xm) made of aluminum foil formed with a dielectric oxide film (formation voltage 22 V) by anodic oxidation treatment was prepared. Anode foil 1 to which this anode lead wire 5 is connected, a first separator 3a made of cellulose fibers (thickness 40 xm, density 0.4 g / cm 3 ), and an anodized aluminum foil are etched and used for withdrawal. The cathode foil 2 (thickness 40 μm) to which the cathode lead wire 6 is connected and the second separator 3b (thickness 40 μm) are sequentially stacked and wound, whereby the capacitor element 9 is Obtained. The ratio of the total thickness A of the first and second separators 3a and 3b before winding to the total thickness B of the first and second separators 3a and 3b after winding is BZA, 0.5. . The lead tension is adjusted so that the ratio B / A is 0.5, and the lead terminal shape is a lead terminal with a curved surface so that there are no sharp protrusions on the end face of the lead terminal. Was used.
[0035] 実施例および比較例にて用いる駆動用電解液の一覧を表 1に示す。  Table 1 shows a list of driving electrolytes used in the examples and comparative examples.
[0036] [表 1] 駆動用電解液組成 酸解離定数  [0036] [Table 1] Composition of electrolyte for driving Acid dissociation constant
溶媒種 Solvent type
(重量%) (p a) (Wt%) (pa)
γ-プチロラクトン(75) 非プロトン性 γ-Ptylolactone (75) aprotic
A 8.40 A 8.40
フタル酸 1 ,2,3,4-テトラメチルイミダゾリニゥム(25) 溶媒  Phthalic acid 1,2,3,4-tetramethylimidazolium (25) Solvent
γ-プチ口ラ外ン(75)  γ-petit mouth outside (75)
非プロトン性 Aprotic
B ァミノ安息香酸 1 ,2,3,4- 6.79 B aminobenzoic acid 1,2,3,4- 6.79
溶媒 亍トラメチルイミダ' /リニゥム(25)  Solvent 亍 Tramethylimida '/ Rinium (25)
γ-ブチロラ外ン(75) 非プロトン性 γ-Butirola Extrane (75) Aprotic
C 4.86 C 4.86
蓚酸 1 ,2,3,4-亍トラメチルイミタ ''ノ'リニゥム (25) 溶媒  Succinic acid 1,2,3,4- 亍 tramethylimita'no'linium (25) Solvent
γ-ブチロラ外ン (75) 非プロトン性 γ-Butylora (75) Aprotic
D 9.24 D 9.24
コバク酸 1 ,2,3,4-亍トラメチルイミダゾリニゥム(25) 溶媒  Succinic acid 1,2,3,4- 亍 tramethylimidazolinium (25) Solvent
エチレンゲリコールモノメチルェ—テル(75) プロトン性 Ethylene gericol monomethyl ether (75) Protic
E 8.40 E 8.40
フタル酸 1,2,3,4-亍トラメチルイミタ'ゾリニゥム (25) 溶媒 [0037] 本実施例 1においては、表 1に示す駆動用電解液 Α( γ—プチ口ラタトンを 75重量 %、フタル酸 1, 2, 3, 4—テトラメチルイミダゾリ二ゥムを 25重量0 /0)を用いて、コンデ ンサ素子 9に含浸させた。この駆動用電解液 Αの酸解離定数 pKaは 8. 40である。次 に、コンデンサ素子 9を有底筒状のアルミニウムの金属ケース 8に揷入後、この金属 ケースの開口部を、樹脂加硫ブチルゴムからなる封止材 7でカーリング処理にて封止 することにより、アルミ電解コンデンサを作製した。 Phthalic acid 1,2,3,4-tramethylimita'zolinium (25) Solvent [0037] In Example 1, the driving electrolyte shown in Table 1 (75% by weight of γ-petit-mouth rataton and 25% by weight of 1,2,3,4-tetramethylimidazolium phthalate) 0/0) was used to impregnate the capacitor element 9. The acid dissociation constant pKa of this driving electrolyte is 8.40. Next, the capacitor element 9 is inserted into a bottomed cylindrical aluminum metal case 8, and the opening of the metal case is sealed by a curling process with a sealing material 7 made of resin vulcanized butyl rubber. An aluminum electrolytic capacitor was produced.
[0038] (実施例 2)  [0038] (Example 2)
実施例 1において、卷回前の第一、第二のセパレータ 3a、 3bの厚み合計 Aと、卷 回後の第一、第二のセパレータ 3a、 3bの厚み合計 Bの比率 B/Aが 0. 65にした以 外は、実施例 1と同様にしてアルミ電解コンデンサを作製した。  In Example 1, the ratio B / A between the total thickness A of the first and second separators 3a and 3b before winding and the total thickness B of the first and second separators 3a and 3b after winding is 0. An aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the value was changed to 65.
[0039] (実施例 3)  [0039] (Example 3)
実施例 1において、卷回前の第一、第二のセパレータ 3a、 3bの厚み合計 Aと、卷 回後の第一、第二のセパレータ 3a、 3bの厚み合計 Bの比率 B/Aが 0. 80にした以 外は、実施例 1と同様にしてアルミ電解コンデンサを作製した。  In Example 1, the ratio B / A between the total thickness A of the first and second separators 3a and 3b before winding and the total thickness B of the first and second separators 3a and 3b after winding is 0. An aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the value was changed to 80.
[0040] (実施例 4)  [0040] (Example 4)
実施例 1において、表 1に示す駆動用電解液 Β ( γ—プチ口ラタトンを 75重量%、ァ ミノ安息香酸 1, 2, 3, 4—テトラメチルイミダゾリ二ゥムを 25重量%、酸解離定数 pKa は 6. 79)を用いた以外は、実施例 1と同様にしてアルミ電解コンデンサを作製した。  In Example 1, the electrolyte for driving shown in Table 1 (75% by weight of γ-petit latatotone, 25% by weight of aminobenzoic acid 1, 2, 3, 4-tetramethylimidazolium, An aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the dissociation constant pKa was 6.79).
[0041] (比較例 1)  [0041] (Comparative Example 1)
実施例 1において、卷取りテンションを緩和し、セパレータ密度は 1. Og/cm3を用 レ、、卷回前の第一、第二のセパレータ 3a、 3bの厚み合計 Aと、卷回後の第一、第二 のセパレータ 3a、 3bの厚み合計 Bの比率 B/Aが 0. 85にした以外は、実施例 1と同 様にしてアルミ電解コンデンサを作製した。 In Example 1, the winding tension is relaxed, and the separator density is 1. Og / cm 3 , the total thickness A of the first and second separators 3a and 3b before winding, and after winding An aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the ratio B / A of the total thickness B of the first and second separators 3a and 3b was 0.85.
[0042] (比較例 2)  [0042] (Comparative Example 2)
実施例 1において、リード端子に鋭角な端子形状を用いて、卷回前の第一、第二の セパレータ 3a、 3bの厚み合計 Aと、卷回後の第一、第二のセパレータ 3a、 3bの厚み 合計 Bの比率 BZAが 0. 45にした以外は、実施例 1と同様にしてアルミ電解コンデン サを作製した。 [0043] (比較例 3) In Example 1, a sharp terminal shape is used for the lead terminal, the total thickness A of the first and second separators 3a and 3b before winding, and the first and second separators 3a and 3b after winding. An aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the ratio B of total B was set to 0.45. [0043] (Comparative Example 3)
実施例 1において、表 1に示す駆動用電解液 C ( y—プチ口ラタトンを 75重量%、 蓚酸 1 , 2, 3, 4—テトラメチルイミダゾリ二ゥムを 25重量%、酸解離定数 pKaは 4. 86 )を用いた以外は、実施例 1と同様にしてアルミ電解コンデンサを作製した。  In Example 1, the electrolyte solution for driving shown in Table 1 (75% by weight of y-petit-mouth rataton, 25% by weight of oxalic acid 1,2,3,4-tetramethylimidazolium, acid dissociation constant pKa Were used in the same manner as in Example 1 except that 4.86) was used.
[0044] (比較例 4) [0044] (Comparative Example 4)
実施例 1において、表 1に示す駆動用電解液 D ( 7 _プチ口ラタトンを 75重量%、コ ハク酸 1 , 2, 3, 4—テトラメチルイミダゾリ二ゥムを 25重量%、酸解離定数 pKaは 9. 2 4)を用いた以外は、実施例 1と同様にしてアルミ電解コンデンサを作製した。 In Example 1, driving electrolyte shown in Table 1 D (7 _ Petit port Rataton 75 wt%, co Haq acid 1, 2, 3, 4-tetramethyl imidazolinium two © beam 25 wt%, acid dissociation An aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the constant pKa was 9.2 4).
[0045] (比較例 5) [0045] (Comparative Example 5)
実施例 1におレ、て、表 1に示す駆動用電解液 E (エチレングリコールモノメチルエー テルを 75重量%、フタル酸 1, 2, 3, 4—テトラメチルイミダゾリ二ゥムを 25重量%、酸 解離定数 pKaは 8. 40)を用いた以外は、実施例 1と同様にしてアルミ電解コンデン サを作製した。なお、エチレングリコールモノメチルエーテルはプロトン性溶媒である  In Example 1, the electrolyte solution for driving E shown in Table 1 (75% by weight of ethylene glycol monomethyl ether and 25% by weight of 1,2,3,4-tetramethylimidazolium phthalate) An aluminum electrolytic capacitor was produced in the same manner as in Example 1 except that the acid dissociation constant pKa was 8.40). Ethylene glycol monomethyl ether is a protic solvent
[0046] 以上の実施例:!〜 4と比較例:!〜 5のアルミ電解コンデンサを各 20個作製し、その 初期特性と寿命試験(105°C、 16V負荷、 2000時間)及び高温半田リフロー試験を 行った。その結果を表 2に示す。なお、アルミ電解コンデンサのサイズは直径 10mm 、長さ 10mmとし、定格電圧は 16Vで各コンデンサ素子を同一空隙率にするようなコ ンデンサ設計とした。試験温度は 105°C中で、リップル負荷試験を行った。 [0046] The above Examples:! ~ 4 and Comparative Example:! ~ 5 Aluminum Electrolytic Capacitors, 20 each, were fabricated, their initial characteristics and life test (105 ° C, 16V load, 2000 hours) and high temperature solder reflow A test was conducted. The results are shown in Table 2. The size of the aluminum electrolytic capacitor was 10 mm in diameter and 10 mm in length, the rated voltage was 16 V, and the capacitor design was such that each capacitor element had the same porosity. A ripple load test was conducted at a test temperature of 105 ° C.
[0047] [表 2] [0047] [Table 2]
105-C16V負荷 セ nレ一タ 初期特性 高 S半田リ 7ロ 後 105-C16V load sensor center characteristics Initial characteristics High S Solder 7 After
電解液の 2000時間後 厚み  Thickness after 2000 hours of electrolyte
酸解離定数 溶媒種 容量 容量  Acid dissociation constant Solvent type Capacity Volume
比率  Ratio
pKa 容量 ESR ■>a-h ESR シ 3 -ト ESR ショート (B/A) 変化率 変化率  pKa Capacity ESR ■> a-h ESR 3 -G ESR short (B / A) Change rate Change rate
tmQ) 発生個数 (mQ) 発生個数 (mQ) 発生 β数  tmQ) Number of occurrences (mQ) Number of occurrences (mQ) Number of occurrences β
(%) (%)  (%) (%)
実施例 非プロトン性  Examples aprotic
0.5 8.40 471 45 0 -3 46  0.5 8.40 471 45 0 -3 46
1 0 -13 50 0  1 0 -13 50 0
溶媒  Solvent
実施例 非プロトン性  Examples Aprotic
0.65 8,40 512 44 0 -3 45 0 -13 51 0 0.65 8,40 512 44 0 -3 45 0 -13 51 0
2 溶媒 2 Solvent
実施例 非プ 0トン性  Example
0.8 8,40 532 44 0 -3 45 0 -12 50 0 3 涪媒  0.8 8,40 532 44 0 -3 45 0 -12 50 0 3
実施例 非フ 'Pトン性  Example Non-P
0.5 6.79 470 50 0 -4 51 0 -13 55 0 4 溶媒  0.5 6.79 470 50 0 -4 51 0 -13 55 0 4 Solvent
比较例 非ズロトン性  Comparative example Non-zlotonicity
0.85 8.40 541 68 0 -5 69 0 -20 73 0 1 溶媒  0.85 8.40 541 68 0 -5 69 0 -20 73 0 1 Solvent
比較例 非フ'口トン性  Comparative example
0.45 8,40 459 42 3 -5 44 5 -22 55 7 2 溶媒  0.45 8,40 459 42 3 -5 44 5 -22 55 7 2 Solvent
比較例 非フ" Πトン性  Comparative example
0.5 4,86 471 40 0 -9 52 2 -31 66 5 3 溶媒  0.5 4,86 471 40 0 -9 52 2 -31 66 5 3 Solvent
比較例 非フ'口トン性  Comparative example
470 84 0 -4 89 0 -15 99 0 4 0.5 9.24  470 84 0 -4 89 0 -15 99 0 4 0.5 9.24
溶媒  Solvent
比 ¾例 プロトン性  Ratio ¾ Example Protic
0.5 8.40 471 44 0 -10 76 0 -41 132 0 5 溶媒  0.5 8.40 471 44 0 -10 76 0 -41 132 0 5 Solvent
π=20 β  π = 20 β
[0048] 表 2から明らかなように、本実施例 1〜4のアルミ電解コンデンサは、卷回前のセパ レータの厚み合計 Αと卷回後のセパレータの厚み合計 Βの比率 Β/Αが 0. 5〜0. 8 のものを用いることにより、初期特性、高温半田リフロー後の特性、寿命試験後の特 性(高温劣化特性)が比較例 1〜5に比べて優れていることがわかる。  [0048] As is apparent from Table 2, in the aluminum electrolytic capacitors of Examples 1 to 4, the ratio of the total thickness セ of the separator before winding to the total thickness of the separator after winding Β / Α is 0. It can be seen that by using the materials of 5 to 0.8, the initial characteristics, the characteristics after high-temperature solder reflow, and the characteristics after the life test (high temperature degradation characteristics) are superior to those of Comparative Examples 1 to 5.
[0049] 比較例 1のアルミ電解コンデンサは、セパレータの厚み合計の比率 BZAが 0. 8よ り大きいため、初期特性及び寿命特性が大きく悪化した。比較例 2のアルミ電解コン デンサは、セパレータの厚み合計の比率 B/Aが 0. 5未満でかつ鋭角の端子形状 のものであるため、ショート発生率が悪くなつていることがわかる。  [0049] In the aluminum electrolytic capacitor of Comparative Example 1, since the ratio BZA of the total thickness of the separator was larger than 0.8, the initial characteristics and the life characteristics were greatly deteriorated. It can be seen that the aluminum electrolytic capacitor of Comparative Example 2 has a short terminal incidence because the ratio B / A of the total thickness of the separator is less than 0.5 and has an acute terminal shape.
[0050] また、比較例 3のアルミ電解コンデンサのように酸解離定数 pKaが 5未満の駆動用 電解液では、酸によるセパレータの劣化が大きくなるため、高温半田リフローや寿命 試験後の耐ショート性が悪くなる。一方、比較例 4のアルミ電解コンデンサのように、 酸解離定数 pKaが 9より大きい駆動用電解液では、駆動用電解液の電導度が低くな るため、 ESR特性が悪くなつていることがわ力る。  [0050] In addition, in the driving electrolytic solution having an acid dissociation constant pKa of less than 5 as in the aluminum electrolytic capacitor of Comparative Example 3, the deterioration of the separator due to the acid is increased, so that the high temperature solder reflow and the short circuit resistance after the life test Becomes worse. On the other hand, the drive electrolyte with an acid dissociation constant pKa greater than 9 as in the aluminum electrolytic capacitor in Comparative Example 4 has a low ESR characteristic because the conductivity of the drive electrolyte is low. Power.
[0051] さらに、比較例 5のアルミ電解コンデンサでは、プロトン性溶媒を駆動用電解液に用 いたため、熱安定性が悪くなるため、高温半田リフローや寿命試験においてコンデン サ特性が悪くなつていることがわかる。 [0052] このように、本発明のアルミ電解コンデンサは、卷回前の第一、第二のセパレータ 3 a、 3bの厚み合計 Aと、卷回後の第一、第二のセパレータ 3a、 3bの厚み合計 Bの比 率 B/Aが 0. 5〜0. 8とすることにより、卷回前と卷回後のセパレータ厚みの変化率 が少ない。そのために、陽極リード線 5と陰極リード線 6のセパレータ接触部分による ストレスが抑制され、耐ショート性、 ESR特性および高温信頼性に優れたアルミ電解 コンデンサを実現することができる。 [0051] Further, in the aluminum electrolytic capacitor of Comparative Example 5, since the protic solvent is used as the driving electrolyte, the thermal stability is deteriorated, and thus the capacitor characteristics are deteriorated in the high-temperature solder reflow and the life test. I understand that. [0052] As described above, the aluminum electrolytic capacitor of the present invention includes the total thickness A of the first and second separators 3a and 3b before winding, and the first and second separators 3a and 3b after winding. When the ratio B / A of the total thickness B is 0.5 to 0.8, the change rate of the separator thickness before and after winding is small. Therefore, stress due to the separator contact portion of the anode lead wire 5 and the cathode lead wire 6 is suppressed, and an aluminum electrolytic capacitor excellent in short-circuit resistance, ESR characteristics, and high-temperature reliability can be realized.
産業上の利用可能性  Industrial applicability
[0053] 本発明は、耐ショート性にすぐれた高容量、長寿命、低 ESR特性に優れたアルミ電 解コンデンサであり、 AV機器やパソコン等のデジタル回路等の小型化、高性能化の 要求に対応することができる。 [0053] The present invention is an aluminum electrolytic capacitor having excellent short-circuit resistance, high capacity, long life, and low ESR characteristics, and demands for miniaturization and high performance of digital circuits such as AV equipment and personal computers. It can correspond to.

Claims

請求の範囲 The scope of the claims
[1] 陽極箔と、第一のセパレータと、陰極箔と、第二のセパレータを順次重ねて卷回した コンデンサ素子を有し、  [1] A capacitor element in which an anode foil, a first separator, a cathode foil, and a second separator are sequentially stacked and wound,
前記コンデンサ素子に駆動用電解液を含浸させると共に金属ケースに収納した後、 金属ケースの開放端を封口材で封止し、  After impregnating the capacitor element with the driving electrolyte and storing in the metal case, the open end of the metal case is sealed with a sealing material,
卷回前の前記第一、第二のセパレータの厚み合計 Aと、卷回後の前記第一、第二の セパレータの厚み合計 Bの比率 B/Aを、 0· 5〜0· 8としたことを特徴とするアルミ電 解コンデンサ。  The ratio B / A between the total thickness A of the first and second separators before winding and the total thickness B of the first and second separators after winding was set to 0.5 · 0 · 8. This is an aluminum electrolytic capacitor.
[2] 前記駆動用電解液の電解質として、酸解離定数 pKaが 5〜9の酸成分を用いたこと を特徴とする、請求項 1に記載のアルミ電解コンデンサ。  [2] The aluminum electrolytic capacitor according to claim 1, wherein an acid component having an acid dissociation constant pKa of 5 to 9 is used as the electrolyte of the driving electrolyte.
[3] 前記駆動用電解液の主溶媒として、非プロトン性溶媒を用いたことを特徴とする、請 求項 2に記載のアルミ電解コンデンサ。 [3] The aluminum electrolytic capacitor according to claim 2, wherein an aprotic solvent is used as a main solvent of the driving electrolyte.
[4] 前記第一のセパレータまたは前記第二のセパレータの少なくとも一方の密度が 0. 2[4] The density of at least one of the first separator and the second separator is 0.2.
〜1. Og/cm3の範囲内である、請求項 1に記載のアルミ電解コンデンサ。 The aluminum electrolytic capacitor according to claim 1, which is in a range of ˜1. Og / cm 3 .
[5] 前記第一のセパレータまたは前記第二のセパレータの少なくとも一方の坪量力 ¾〜2[5] Basis force of at least one of the first separator and the second separator ¾ to 2
Og/cm2の範囲内である、請求項 1に記載のアルミ電解コンデンサ。 The aluminum electrolytic capacitor according to claim 1, which is in a range of Og / cm 2 .
[6] 前記陽極箔に接続された陽極電極と、前記陰極箔に接続された陰極電極とをさらに 有し、前記陽極電極の前記陽極箔および前記第一または第二のセパレータとの接 触面は曲面形状であり、 [6] A contact surface between the anode foil and the first or second separator of the anode electrode, further comprising an anode electrode connected to the anode foil and a cathode electrode connected to the cathode foil Is a curved shape,
前記陰極電極の前記陰極箔および前記第一または第二のセパレータとの接触面も 曲面形状である、請求項 1に記載のアルミ電解コンデンサ。  2. The aluminum electrolytic capacitor according to claim 1, wherein a contact surface of the cathode electrode with the cathode foil and the first or second separator is also a curved surface.
PCT/JP2007/059584 2006-05-15 2007-05-09 Aluminum electrolytic capacitor WO2007132708A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2007800177014A CN101443865B (en) 2006-05-15 2007-05-09 Aluminum electrolytic capacitor
US12/300,058 US7990681B2 (en) 2006-05-15 2007-05-09 Aluminum electrolytic capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006134889A JP2007305899A (en) 2006-05-15 2006-05-15 Aluminum electrolytic capacitor
JP2006-134889 2006-05-15

Publications (1)

Publication Number Publication Date
WO2007132708A1 true WO2007132708A1 (en) 2007-11-22

Family

ID=38693804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059584 WO2007132708A1 (en) 2006-05-15 2007-05-09 Aluminum electrolytic capacitor

Country Status (5)

Country Link
US (1) US7990681B2 (en)
JP (1) JP2007305899A (en)
CN (1) CN101443865B (en)
TW (1) TWI402875B (en)
WO (1) WO2007132708A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100279566A1 (en) * 2009-05-01 2010-11-04 3M Innovative Properties Company Passive electrical article

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101714467B (en) * 2009-11-18 2011-12-28 凯迈嘉华(洛阳)新能源有限公司 Electrochemical super capacitor and manufacturing method thereof
US9001497B2 (en) * 2010-03-16 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Electrode foil and capacitor using same
WO2013069146A1 (en) * 2011-11-11 2013-05-16 ニッポン高度紙工業株式会社 Separator for electrolytic capacitor, and electrolytic capacitor
JP2018117093A (en) * 2017-01-20 2018-07-26 ニッポン高度紙工業株式会社 Aluminum electrolytic capacitor separator and aluminum electrolytic capacitor
TWI661599B (en) * 2017-12-04 2019-06-01 鈺邦科技股份有限公司 Lithium battery and negative electrode foil thereof
CN109916972A (en) * 2017-12-12 2019-06-21 东莞东阳光科研发有限公司 A kind of reaction kettle and the test method using its evaluation anode foils and Working electrolyte matching
EP4216247A1 (en) 2022-01-24 2023-07-26 TDK Electronics AG Metallized substrate electrode and electrolytic capacitor comprising the electrode

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186877A (en) * 1997-09-10 1999-03-30 Fuji Elelctrochem Co Ltd Winding method for spiral electrode body
JP2950575B2 (en) * 1990-04-17 1999-09-20 日本ケミコン株式会社 Electrolytic capacitor
JP2002231587A (en) * 2001-02-06 2002-08-16 Nec Tokin Ceramics Corp Electric double-layered capacitor
JP2003249421A (en) * 2001-06-01 2003-09-05 Matsushita Electric Ind Co Ltd Polymer electrolytic complex for electrolytic-capacitor driving, electrolytic capacitor using the same, and manufacturing method of the same
JP2003264126A (en) * 2002-03-11 2003-09-19 Sanyo Electric Co Ltd Coil type solid-state electrolytic capacitor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273984A (en) 1995-03-30 1996-10-18 Nippon Koudoshi Kogyo Kk Electrolytic capacitor
JP4554012B2 (en) * 1998-10-13 2010-09-29 パナソニック株式会社 Aluminum electrolytic capacitor
JP3418560B2 (en) 1998-12-01 2003-06-23 ルビコン株式会社 Separator for electrolytic capacitor and electrolytic capacitor using the same
US6504705B2 (en) * 2000-10-12 2003-01-07 Matsushita Electric Industrial Co., Ltd. Electrolytic capacitor, circuit board containing electrolytic capacitor, and method for producing the same
MY133582A (en) * 2001-12-18 2007-11-30 Matsushita Electric Ind Co Ltd Aluminum electrolytic capacitor and method for producing the same
JP2003257793A (en) * 2002-03-06 2003-09-12 Honda Motor Co Ltd Method for preparing electrolyte in electric double layer capacitor, electrolyte, and electric double layer capacitor
JP2005223122A (en) * 2004-02-05 2005-08-18 Matsushita Electric Ind Co Ltd Chip-type aluminum electrolytic capacitor and its manufacturing method
JP4379156B2 (en) * 2004-03-03 2009-12-09 パナソニック株式会社 Aluminum electrolytic capacitor
JP4832053B2 (en) * 2005-11-01 2011-12-07 三洋電機株式会社 Manufacturing method of solid electrolytic capacitor
US7729103B2 (en) * 2007-03-20 2010-06-01 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method of producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2950575B2 (en) * 1990-04-17 1999-09-20 日本ケミコン株式会社 Electrolytic capacitor
JPH1186877A (en) * 1997-09-10 1999-03-30 Fuji Elelctrochem Co Ltd Winding method for spiral electrode body
JP2002231587A (en) * 2001-02-06 2002-08-16 Nec Tokin Ceramics Corp Electric double-layered capacitor
JP2003249421A (en) * 2001-06-01 2003-09-05 Matsushita Electric Ind Co Ltd Polymer electrolytic complex for electrolytic-capacitor driving, electrolytic capacitor using the same, and manufacturing method of the same
JP2003264126A (en) * 2002-03-11 2003-09-19 Sanyo Electric Co Ltd Coil type solid-state electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100279566A1 (en) * 2009-05-01 2010-11-04 3M Innovative Properties Company Passive electrical article
US10399295B2 (en) 2009-05-01 2019-09-03 3M Innovative Properties Company Passive electrical article

Also Published As

Publication number Publication date
TWI402875B (en) 2013-07-21
CN101443865B (en) 2011-11-30
JP2007305899A (en) 2007-11-22
CN101443865A (en) 2009-05-27
US20090207557A1 (en) 2009-08-20
TW200809886A (en) 2008-02-16
US7990681B2 (en) 2011-08-02

Similar Documents

Publication Publication Date Title
WO2007132708A1 (en) Aluminum electrolytic capacitor
JP4592792B2 (en) Electrolytic capacitor
JP4894282B2 (en) Electric double layer capacitor
JP2008288296A (en) Solid electrolytic capacitor
JP4654637B2 (en) Manufacturing method of aluminum electrolytic capacitor
JP2005223197A (en) Electrolytic capacitor
WO2013125613A1 (en) Electrolytic capacitor
JP2007235105A (en) Electrolytic capacitor
JP2950575B2 (en) Electrolytic capacitor
JP2009026853A (en) Electric double-layer capacitor
JP2006165001A (en) Aluminum electrolytic capacitor
JP2010098131A (en) Electrolytic capacitor and method for manufacturing the same
JP5289016B2 (en) Manufacturing method of solid electrolytic capacitor
JP4780893B2 (en) Solid electrolytic capacitor
JP2009064958A (en) Aluminum electrolytic capacitor
CN116721874B (en) Glue-free fixed aluminum electrolytic capacitor and manufacturing method thereof
CN115136269A (en) Electrolytic capacitor and method for manufacturing the same
JP2001284181A (en) Solid electrolytic capacitor
JP4307820B2 (en) Aluminum electrolytic capacitor
JP2008117950A (en) Aluminum electrolytic capacitor
JP2003309041A (en) Solid electrolytic capacitor
JP7495848B2 (en) Electrolytic capacitor
JP2012009525A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001284190A (en) Solid electrolytic capacitor
JP4560875B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743019

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12300058

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780017701.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07743019

Country of ref document: EP

Kind code of ref document: A1