JP4894282B2 - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP4894282B2
JP4894282B2 JP2006033373A JP2006033373A JP4894282B2 JP 4894282 B2 JP4894282 B2 JP 4894282B2 JP 2006033373 A JP2006033373 A JP 2006033373A JP 2006033373 A JP2006033373 A JP 2006033373A JP 4894282 B2 JP4894282 B2 JP 4894282B2
Authority
JP
Japan
Prior art keywords
polarizable electrode
activated carbon
electric double
electrode layer
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006033373A
Other languages
Japanese (ja)
Other versions
JP2007088410A (en
Inventor
千穂 山田
恵理 広瀬
芳典 ▲高▼向
秀樹 島本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2006033373A priority Critical patent/JP4894282B2/en
Priority to EP06782415A priority patent/EP1918951A1/en
Priority to US11/994,068 priority patent/US8351182B2/en
Priority to PCT/JP2006/315573 priority patent/WO2007023664A1/en
Priority to CN200680030427XA priority patent/CN101243528B/en
Priority to KR1020087001441A priority patent/KR100947969B1/en
Publication of JP2007088410A publication Critical patent/JP2007088410A/en
Application granted granted Critical
Publication of JP4894282B2 publication Critical patent/JP4894282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

An electric double layer capacitor includes a first collector, a first polarizable electrode layer provided on the first collector, a second collector, a second polarizable electrode layer provided on the second collector and facing the first polarizable electrode layer, a separator having an insulating property and provided between the first polarizable electrode layer and the second polarizable electrode layer, and a driving electrolyte impregnated in the first polarizable electrode layer and the second polarizable electrode layer. The polarizable electrode layers mainly contain activated carbon made from phenol resin, have a surface roughness not larger than 0.6µm, and have an electrode density ranging from 0.5 g/cm 3 to 0.7 g/cm 3 This electric double layer capacitor has characteristics deteriorating little even at low temperatures, thus having a reliability for a long time.

Description

本発明は各種電子機器に使用される電気二重層キャパシタに関するものである。   The present invention relates to an electric double layer capacitor used in various electronic devices.

従来のこの種の電気二重層キャパシタは、陽極側の分極性電極と陰極側の分極性電極とをその間にセパレータを介在させて対向させることによりキャパシタ素子を構成し、かつ、このキャパシタ素子に駆動用電解液を含浸させることにより構成されているものである。   A conventional electric double layer capacitor of this type is configured to have a capacitor element by facing a polarizable electrode on the anode side and a polarizable electrode on the cathode side with a separator interposed therebetween, and is driven by this capacitor element. It is comprised by impregnating the electrolyte solution for use.

そして、上記分極性電極としては、一般に活性炭電極層を設けたものが使用されており、この活性炭の表面には、カルボキシル基、フェノール性水酸基、カルボニル基、キノン基等の官能基が存在し、これらの表面官能基が電気二重層キャパシタの特性に大きな影響を及ぼすことが知られている。特に、酸性表面官能基量(カルボキシル基、カルボニル基、フェノール性水酸基、ラクトン基)が多い活性炭電極層を有する電気二重層キャパシタは、電気二重層容量に寄与する容量サイトが増加することにより、キャパシタの擬似容量が増大することが知られている。   And as said polarizable electrode, what provided the activated carbon electrode layer is generally used, and functional groups, such as a carboxyl group, a phenolic hydroxyl group, a carbonyl group, and a quinone group, exist on the surface of this activated carbon, It is known that these surface functional groups have a great influence on the characteristics of the electric double layer capacitor. In particular, an electric double layer capacitor having an activated carbon electrode layer with a large amount of acidic surface functional groups (carboxyl group, carbonyl group, phenolic hydroxyl group, lactone group) is increased by increasing the capacity site contributing to the electric double layer capacity. It is known that the pseudo capacity increases.

なお、このような活性炭電極の酸性表面官能基量に着目したものとして、特許文献1で提案されているような技術があり、この技術においては、カルボキシル基、キノン基、水酸基、ラクトン基の群から選ばれる少なくとも1種の表面官能基の総量を活性炭1g当たり0.2ミリ当量〜1.00ミリ当量に規定することにより、高い静電容量が得られるというものであり、この場合、駆動用電解液としては、炭酸プロピレン等の非プロトン性極性溶媒に第四級アンモニウム塩を使用したものである。   In addition, there exists a technique which is proposed by patent document 1 as what paid attention to the amount of acidic surface functional groups of such an activated carbon electrode, In this technique, the group of a carboxyl group, a quinone group, a hydroxyl group, and a lactone group is mentioned. By specifying the total amount of at least one kind of surface functional group selected from 0.2 to 1.00 milliequivalent per 1 g of activated carbon, a high capacitance can be obtained. As the electrolytic solution, a quaternary ammonium salt is used in an aprotic polar solvent such as propylene carbonate.

また、特許文献2や特許文献3において、駆動用電解液として、炭酸プロピレン等の非プロトン性極性溶媒にアミジン塩を溶解させたものを使用することにより、第四級アンモニウム塩を使用した場合よりも容量が増大することが提案されているが、これらにおいてはいずれの場合も低温特性には着目しておらず、常温特性での結果のみが記載されているにすぎないものであった。   Moreover, in patent document 2 and patent document 3, by using what melt | dissolved amidine salt in aprotic polar solvents, such as a propylene carbonate, as a drive electrolyte, compared with the case where a quaternary ammonium salt is used. However, in these cases, attention has not been paid to the low-temperature characteristics, and only the results at the room temperature characteristics are described.

特開2000−169129号公報JP 2000-169129 A 特開平11−54376号公報JP 11-54376 A 特開平11−54379号公報Japanese Patent Laid-Open No. 11-54379

しかしながら上記従来の電気二重層キャパシタでは、駆動用電解液として炭酸プロピレン等の非プロトン性極性溶媒にアミジン塩を溶解させたものを使用し、分極性電極層に酸性表面官能基量の多い活性炭を用いた場合に、電気二重層キャパシタの擬似容量を増大することはできるものの、充放電信頼性試験時に分極性電極層の表面で駆動用電解液が酸性表面官能基と電気化学反応を起こして生成される劣化物等が多くなり、この劣化物が活性炭の容量サイトを塞ぐことによって容量の劣化、抵抗の増加等の特性劣化が大きくなり、特に低温特性に関してはこの傾向が顕著に現れるという課題があった。   However, in the above-mentioned conventional electric double layer capacitor, a driving electrolyte is prepared by dissolving an amidine salt in an aprotic polar solvent such as propylene carbonate, and activated carbon having a large amount of acidic surface functional groups is used for the polarizable electrode layer. When used, the pseudo capacitance of the electric double layer capacitor can be increased, but during the charge / discharge reliability test, the driving electrolyte generates an electrochemical reaction with the acidic surface functional group on the surface of the polarizable electrode layer. Deteriorated substances, etc. are increased, and the deteriorated substances block the activated carbon capacity site, resulting in a large deterioration in characteristics such as capacity deterioration and resistance increase. there were.

本発明はこのような従来の課題を解決し、特性劣化が少なく、低温特性と長期信頼性に優れた電気二重層キャパシタを提供することを目的とするものである。   An object of the present invention is to solve such a conventional problem, and to provide an electric double layer capacitor with little deterioration in characteristics and excellent in low temperature characteristics and long-term reliability.

上記課題を解決するために本発明は、金属箔からなる集電体上に分極性電極層を形成した正負一対の電極をその間にセパレータを介在させて巻回、または積層することにより形成されたキャパシタ素子と、このキャパシタ素子に含浸された駆動用電解液とを少なくとも備えた電気二重層キャパシタにおいて、上記分極性電極層がフェノール樹脂からなる活性炭と、導電性材料、バインダーを含み、前記分極性電極層に対して前記導電性材料を8質量%以下、前記バインダーを2〜8質量%添加し、前記活性炭の平均粒径が2.5〜3.5μmであり、分極性電極層の表面粗さRaが0.2〜0.6μm、かつ、電極密度が0.5〜0.7g/cm3である構成にしたものである。 In order to solve the above problems, the present invention was formed by winding or laminating a pair of positive and negative electrodes, each having a polarizable electrode layer formed on a current collector made of a metal foil, with a separator interposed therebetween. An electric double layer capacitor comprising at least a capacitor element and a driving electrolyte impregnated in the capacitor element, wherein the polarizable electrode layer includes activated carbon made of a phenol resin , a conductive material, and a binder, and the polarizability 8% by weight or less of the conductive material and 2-8% by weight of the binder are added to the electrode layer , the activated carbon has an average particle diameter of 2.5 to 3.5 μm, and the surface roughness of the polarizable electrode layer The thickness Ra is 0.2 to 0.6 μm, and the electrode density is 0.5 to 0.7 g / cm 3 .

さらに、分極性電極層を形成するフェノール樹脂からなる活性炭の酸性表面官能基量が、活性炭1g当たり0.31〜0.37ミリ当量であり、かつ、駆動用電解液が炭酸プロピレンの非プロトン性極性溶媒にアミジン塩を溶解させたものである構成にしたものである。   Furthermore, the amount of acidic surface functional groups of activated carbon made of a phenol resin forming the polarizable electrode layer is 0.31 to 0.37 milliequivalent per 1 g of activated carbon, and the driving electrolyte is aprotic of propylene carbonate. The amidine salt is dissolved in a polar solvent.

以上のように本発明による電気二重層キャパシタは、分極性電極層の表面粗さと電極密度を最適化した活性炭を用いることにより、容量を低下させることなく分極性電極の表面での電気化学反応を抑制することができるため、容量が大きく、特性劣化が少なく、低温特性と長期信頼性に優れた電気二重層キャパシタを実現することができるという効果が得られるものである。   As described above, the electric double layer capacitor according to the present invention uses the activated carbon optimized for the surface roughness and the electrode density of the polarizable electrode layer to perform the electrochemical reaction on the surface of the polarizable electrode without reducing the capacity. Therefore, the electric double layer capacitor having a large capacity, little characteristic deterioration, excellent low-temperature characteristics and long-term reliability can be realized.

また、酸性表面官能基量を最適化した活性炭を用いることにより、炭酸プロピレンの非プロトン性極性溶媒にアミジン塩を溶解させた駆動用電解液の最適な電位窓にシフトすることができるため、耐圧向上を図ることができるようになるという効果が得られるものである。   In addition, by using activated carbon with an optimized amount of acidic surface functional groups, it is possible to shift to the optimal potential window of a driving electrolyte solution in which an amidine salt is dissolved in an aprotic polar solvent of propylene carbonate. The effect that improvement can be aimed at is obtained.

(実施の形態1)
以下、実施の形態1を用いて、本発明の特に請求項1に記載の発明について説明する。
(Embodiment 1)
Hereinafter, the first aspect of the present invention will be described with reference to the first embodiment.

図1は本発明の実施の形態1による電気二重層キャパシタの構成を示した一部切り欠き斜視図、図2は同電気二重層キャパシタに使用される分極性電極体を示した断面図であり、図1と図2において、1はキャパシタ素子を示し、このキャパシタ素子1は陽極リード線2を接続した陽極側の分極性電極体3と、陰極リード線4を接続した陰極側の分極性電極体5とを、その間に短絡防止用のセパレータ6を介在させて巻回することにより構成されているものである。   FIG. 1 is a partially cutaway perspective view showing the configuration of an electric double layer capacitor according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view showing a polarizable electrode body used in the electric double layer capacitor. 1 and 2, reference numeral 1 denotes a capacitor element. The capacitor element 1 includes an anode-side polarizable electrode body 3 to which an anode lead wire 2 is connected and a cathode-side polarizable electrode to which a cathode lead wire 4 is connected. The body 5 is formed by winding a separator 6 for preventing a short circuit therebetween.

また、上記陽極側の分極性電極体3は、電解液中で粗面化したアルミニウム箔からなる集電体3aの表面に酸性表面官能基を有する活性炭を含む分極性電極層3bが塗布されることによって形成されたものであり、説明は省略するが、陰極側の分極性電極体5も同様に形成されているものである。   Also, the polarizable electrode body 3 on the anode side is coated with a polarizable electrode layer 3b containing activated carbon having an acidic surface functional group on the surface of a current collector 3a made of an aluminum foil roughened in an electrolytic solution. Although the description is omitted, the polarizable electrode body 5 on the cathode side is also formed in the same manner.

7は上記陽極リード線2と陰極リード線4が挿通する孔を設けてキャパシタ素子1の上端部に嵌め込まれたゴム製の封口部材、8は上記キャパシタ素子1に図示しない駆動用電解液を含浸させた状態で収納するアルミニウムからなる有底円筒状の金属ケースであり、この金属ケース8の開口部を絞り加工ならびにカーリング加工することにより、上記封口部材7を圧縮して金属ケース8を封止するように構成されたものである。   7 is a rubber sealing member provided with a hole through which the anode lead wire 2 and the cathode lead wire 4 are inserted, and 8 is impregnated with a driving electrolyte (not shown) in the capacitor element 1. The bottomed cylindrical metal case is made of aluminum and is stored in a compressed state. By drawing and curling the opening of the metal case 8, the sealing member 7 is compressed to seal the metal case 8. It is comprised so that it may do.

ここで、上記陽極側の分極性電極体3を構成する分極性電極層3bをプレス加工することによって分極性電極層3bの表面粗さを小さくすると共に電極密度を高くし、かつ、このプレス加工条件を変化させることにより、分極性電極層3bの表面粗さならびに電極密度が異なる複数のサンプルを作製した。なお、陰極側の分極性電極体5も同様にサンプルを作製して評価したが、ここでは陽極側の分極性電極体3のみについて説明する。   Here, by pressing the polarizable electrode layer 3b constituting the polarizable electrode body 3 on the anode side, the surface roughness of the polarizable electrode layer 3b is reduced and the electrode density is increased. A plurality of samples having different surface roughness and electrode density of the polarizable electrode layer 3b were produced by changing the conditions. The cathode-side polarizable electrode body 5 was similarly prepared and evaluated, but only the anode-side polarizable electrode body 3 will be described here.

そして、このように作製された分極性電極体3の分極性電極層3bの表面粗さRa(μm)と電極密度(g/cm3)、ならびに低温(−30℃)における初期抵抗値を測定し、これらの関係を評価した結果を図3(a)に示し、また、上記サンプルに60℃雰囲気で2.5Vを1000h印加した後、低温(−30℃)における抵抗値を測定し、上記初期抵抗値に対する変化率を評価した結果を図3(b)に示す。 Then, the surface roughness Ra (μm) and the electrode density (g / cm 3 ) of the polarizable electrode layer 3b of the polarizable electrode body 3 thus manufactured and the initial resistance value at a low temperature (−30 ° C.) are measured. The results of evaluating these relationships are shown in FIG. 3 (a). Further, after applying 2.5V to the sample in a 60 ° C. atmosphere for 1000 hours, the resistance value at a low temperature (−30 ° C.) was measured, The result of evaluating the rate of change with respect to the initial resistance value is shown in FIG.

なお、上記表面粗さの測定には、KEYENCE社製の形状測定顕微鏡、VK8500を用いて行ったものである。   In addition, the measurement of the said surface roughness was performed using the shape measurement microscope and VK8500 by a KEYENCE company.

図3(a)ならびに図3(b)から明らかなように、表面粗さRaが0.6μm以下のものは低温(−30℃)における抵抗値が150mΩ未満と低く、同初期抵抗値に対する変化率も小さいことが分かる。   As is clear from FIGS. 3A and 3B, when the surface roughness Ra is 0.6 μm or less, the resistance value at a low temperature (−30 ° C.) is as low as less than 150 mΩ, and the change with respect to the initial resistance value is as follows. It can be seen that the rate is also small.

なお、このような結果から、表面粗さRaを限りなくゼロに近づけると共に電極密度を上げるほど低温(−30℃)における抵抗値は減少するものと推測されるが、実際には分極性電極体3を構成する集電体3aの強度的な問題や実験に用いたプレス装置等の関係から、表面粗さRaが約0.2μmを下回るものについては確認することができなかった。   From these results, it is presumed that the resistance value at a low temperature (−30 ° C.) decreases as the surface roughness Ra approaches zero as much as possible and the electrode density is increased. In view of the strength problem of the current collector 3a constituting 3 and the press apparatus used in the experiment, it was not possible to confirm that the surface roughness Ra was less than about 0.2 μm.

また、上記低温(−30℃)における抵抗値が低く、かつ、初期抵抗値に対する変化率も小さくて優れていると判断される分極性電極層3bの表面粗さRaが0.6μm以下のものの電極密度は、図3(a)、(b)に示すように、概ね0.5〜0.7g/cm3であることが分かる。 In addition, the surface roughness Ra of the polarizable electrode layer 3b, which is judged to be excellent because the resistance value at the low temperature (−30 ° C.) is low and the rate of change with respect to the initial resistance value is small, is 0.6 μm or less. As shown in FIGS. 3A and 3B, the electrode density is found to be approximately 0.5 to 0.7 g / cm 3 .

このように、本実施の形態による電気二重層キャパシタは、集電体上に形成されて分極性電極体を構成する分極性電極層の表面粗さRaを0.6μm以下、かつ、電極密度を0.5〜0.7g/cm3にすることにより、低温(−30℃)における抵抗値を低減し、かつ、その変化率も小さく抑え、低温特性と長期信頼性に優れた電気二重層キャパシタを提供することができるようになるものである。 As described above, the electric double layer capacitor according to the present embodiment has a surface roughness Ra of 0.6 μm or less and an electrode density of the polarizable electrode layer that is formed on the current collector and constitutes the polarizable electrode body. An electric double layer capacitor having a low temperature characteristic and a long-term reliability by reducing the resistance value at a low temperature (−30 ° C.) and keeping the rate of change small by setting 0.5 to 0.7 g / cm 3. It will be able to provide.

(実施の形態2)
以下、実施の形態2を用いて、本発明の特に請求項2に記載の発明について説明する。
(Embodiment 2)
The second aspect of the present invention will be described below with reference to the second embodiment.

本実施の形態は、上記実施の形態1で説明した電気二重層キャパシタの分極性電極層を形成するフェノール樹脂からなる活性炭の酸性表面官能基量を変化させると共に、駆動用電解液との組み合わせについて説明するものであり、これ以外の構成は実施の形態1と同様であるために同一部分には同一の符号を付与してその詳細な説明は省略し、異なる部分についてのみ以下に説明する。   The present embodiment changes the acidic surface functional group amount of activated carbon made of phenol resin that forms the polarizable electrode layer of the electric double layer capacitor described in the first embodiment, and is combined with the driving electrolyte. Since the configuration other than that is the same as that of the first embodiment, the same reference numerals are given to the same portions and the detailed description thereof is omitted, and only different portions will be described below.

陽極側の分極性電極体3ならびに陰極側の分極性電極体5に用いられる活性炭の酸性表面官能基(カルボキシル基、カルボニル基、フェノール性水酸基、ラクトン基)量を、熱処理温度を800℃以上にすることにより減少させて変化させると共に、これらと駆動用電解液との組み合わせにより(表1)に示すように、本実施の形態による実施例1〜3と、比較例としての従来例1〜7の巻回形の電気二重層キャパシタ(定格電圧2.0V−静電容量68F、サイズ;φ18mm×L50mm)を作製した。なお、上記酸性表面官能基量の測定は、逆適定法を用いて測定したものである。   The amount of acidic surface functional groups (carboxyl group, carbonyl group, phenolic hydroxyl group, lactone group) of activated carbon used for the anode side polarizable electrode body 3 and the cathode side polarizable electrode body 5 is set to a heat treatment temperature of 800 ° C. or higher. As shown in (Table 1) by combining these with the driving electrolyte solution, as shown in Table 1, Examples 1 to 3 according to this embodiment and Conventional Examples 1 to 7 as comparative examples are used. A wound type electric double layer capacitor (rated voltage 2.0 V—capacitance 68 F, size: φ18 mm × L50 mm) was produced. In addition, the said acidic surface functional group amount is measured using a reverse titration method.

Figure 0004894282
Figure 0004894282

そして、これらの電気二重層キャパシタに60℃にて2.0Vの電圧を12時間連続して印加するエージングを行った後、1.5A、2.0Vの定電流定電圧充電を行い、充電後の1.0A放電における容量(放電容量)と内部抵抗を測定した。また、これらの電気二重層キャパシタについて、60℃にて2.3Vの電圧を連続して印加し、その1000時間後のキャパシタの容量と内部抵抗を上記と同様の測定方法により測定した。これらの常温特性の結果を(表2)に、低温特性の結果を(表3)に夫々示す。   And after performing the aging which applies the voltage of 2.0V to these electric double layer capacitors for 12 hours continuously at 60 degreeC, the constant current constant voltage charge of 1.5A and 2.0V was performed, and after charge The capacity (discharge capacity) and internal resistance at 1.0 A discharge were measured. Moreover, about these electric double layer capacitors, the voltage of 2.3V was applied continuously at 60 degreeC, and the capacity | capacitance and internal resistance of the capacitor 1000 hours after that were measured with the measuring method similar to the above. The results of the room temperature characteristics are shown in (Table 2), and the results of the low temperature characteristics are shown in (Table 3).

Figure 0004894282
Figure 0004894282

Figure 0004894282
Figure 0004894282

(表2)、(表3)から明らかなように、従来例1〜5の第四級アンモニウム塩により構成された電気二重層キャパシタの特性は、従来例6、7及び実施例1〜3のアミジン塩により構成された電気二重層キャパシタの特性よりも劣っていることが分かる。   As is clear from (Table 2) and (Table 3), the characteristics of the electric double layer capacitors composed of the quaternary ammonium salts of Conventional Examples 1 to 5 are the same as those of Conventional Examples 6 and 7 and Examples 1 to 3. It turns out that it is inferior to the characteristic of the electric double layer capacitor comprised by the amidine salt.

また、従来例7により構成された電気二重層キャパシタは、(表2)の常温特性の結果より初期の容量は高く、擬似容量が出ているが、信頼性試験1000時間後の容量は実施例1、2により構成された電気二重層キャパシタの信頼性試験1000時間後の容量より低く、また内部抵抗も高い。さらに、(表3)の低温試験の結果より、初期特性及び信頼性試験1000時間後の特性が実施例1、2により構成された電気二重層キャパシタの同特性よりも劣っていることが分かる。   In addition, the electric double layer capacitor constructed according to Conventional Example 7 has a higher initial capacity and a pseudo capacity than the result of the room temperature characteristics of (Table 2), but the capacity after 1000 hours of the reliability test is an example. The electric double layer capacitor constituted by 1 and 2 is lower than the capacity after 1000 hours of reliability test and also has high internal resistance. Furthermore, it can be seen from the results of the low temperature test of (Table 3) that the initial characteristics and the characteristics after 1000 hours of the reliability test are inferior to the same characteristics of the electric double layer capacitors configured according to Examples 1 and 2.

また、従来例6により構成された電気二重層キャパシタは、(表2)、(表3)から、酸性表面官能基量が少なすぎるために、常温及び低温における初期容量の低下が大きいことが分かる。   In addition, it can be seen from Tables 2 and 3 that the electric double layer capacitor constructed according to Conventional Example 6 has a large decrease in the initial capacity at room temperature and low temperature because the amount of the acidic surface functional group is too small. .

また、実施例1、2により構成された電気二重層キャパシタは、(表2)の常温特性の結果より、実施例3及び従来例7により構成された電気二重層キャパシタの初期特性と略同等の最大限の容量を持ち、信頼性試験1000時間後の特性も良好である。また、(表3)の低温特性の結果より、実施例1、2により構成された電気二重層キャパシタの初期容量は最も高く、信頼性試験1000時間後の特性も良好である。   Moreover, the electric double layer capacitor comprised by Example 1, 2 is substantially equivalent to the initial characteristic of the electric double layer capacitor comprised by Example 3 and the prior art example 7 from the result of the normal temperature characteristic of (Table 2). It has the maximum capacity and good characteristics after 1000 hours of reliability test. From the results of the low temperature characteristics shown in (Table 3), the initial capacity of the electric double layer capacitors constructed according to Examples 1 and 2 is the highest, and the characteristics after 1000 hours of the reliability test are also good.

以上の結果から、実施例3及び従来例7により構成された電気二重層キャパシタは、初期の容量は高いものの、その反面、内部抵抗が大きく、かつ初期からの容量、抵抗の変化率が大きいために長期の信頼性に欠ける。逆に、従来例6により構成された電気二重層キャパシタは、初期からの容量、抵抗の変化率が小さいために長期の信頼性に優れているが、その反面、初期の容量低下が大きすぎる。これらに対し、実施例1、2により構成された電気二重層キャパシタによれば、実施例3及び従来例6、7により構成された電気二重層キャパシタにおけるような短所がなく、最大限の容量を保ちつつ、長期の信頼性の向上を同時に達成することができることが分かる。   From the above results, although the electric double layer capacitor constructed according to Example 3 and Conventional Example 7 has a high initial capacity, on the other hand, the internal resistance is large, and the change rate of the capacity and resistance from the initial stage is large. It lacks long-term reliability. On the contrary, the electric double layer capacitor constituted by the prior art example 6 has excellent long-term reliability because of the small change rate of the capacity and resistance from the initial stage, but on the other hand, the initial capacity drop is too large. On the other hand, according to the electric double layer capacitor configured according to Examples 1 and 2, there is no disadvantage as in the electric double layer capacitor configured according to Example 3 and Conventional Examples 6 and 7, and the maximum capacity is obtained. It can be seen that long-term reliability improvements can be achieved simultaneously.

従って、駆動用電解液を炭酸プロピレン等の非プロトン性極性溶媒にアミジン塩を溶解させたものを使用した電気二重層キャパシタにおいて、分極性電極体の構成材料である活性炭の原料がフェノール樹脂である活性炭の酸性表面官能基量は、活性炭1g当たり0.31〜0.37ミリ当量の範囲が好ましいものであるということが言える。   Therefore, in an electric double layer capacitor using a driving electrolyte solution in which an amidine salt is dissolved in an aprotic polar solvent such as propylene carbonate, a raw material of activated carbon which is a constituent material of a polarizable electrode body is a phenol resin. It can be said that the acidic surface functional group amount of the activated carbon is preferably in the range of 0.31 to 0.37 milliequivalent per 1 g of activated carbon.

このような構成にすることにより、分極性電極の表面での駆動用電解液と酸性表面官能基との電気化学反応を抑制することができ、かつ、炭酸プロピレンの非プロトン性極性溶媒にアミジン塩を溶解させた駆動用電解液の最適な電位窓にシフトすることにより耐圧向上を図ることができるため、電気化学反応が起きることによるガス発生、抵抗増加や容量変化もなくなり、これにより、特性劣化が少なく、低温特性と長期信頼性に優れた電気二重層キャパシタを提供することができるようになるものである。   By adopting such a configuration, the electrochemical reaction between the driving electrolyte and the acidic surface functional group on the surface of the polarizable electrode can be suppressed, and an amidine salt can be added to the aprotic polar solvent of propylene carbonate. Since the breakdown voltage can be improved by shifting to the optimal potential window of the driving electrolyte in which the electrolyte is dissolved, gas generation, resistance increase, and capacitance change due to the occurrence of electrochemical reactions are eliminated, which leads to deterioration of characteristics. Therefore, it is possible to provide an electric double layer capacitor having a low temperature characteristic and excellent long-term reliability.

(実施の形態3)
以下、実施の形態3を用いて、本発明の特に請求項3に記載の発明について説明する。
(Embodiment 3)
The third embodiment of the present invention will be described below in particular.

本実施の形態は、上記実施の形態2で説明した電気二重層キャパシタの分極性電極層を形成するフェノール樹脂からなる活性炭の構成を更に限定したものであり、これ以外の構成は実施の形態2と同様であるために同一部分には同一の符号を付与してその詳細な説明は省略し、異なる部分についてのみ以下に説明する。   In the present embodiment, the configuration of the activated carbon made of phenol resin that forms the polarizable electrode layer of the electric double layer capacitor described in the second embodiment is further limited, and other configurations are the same as those in the second embodiment. Therefore, the same parts are denoted by the same reference numerals, and detailed description thereof is omitted. Only different parts will be described below.

本実施の形態は、活性炭の原料であるフェノール樹脂活性炭の体積当たりの容量密度を最大限に保つことができるようにしたものであり、活性炭の比表面積を増加させると、これに比例して活性炭当たりの容量を大きくすることはできるものの、同時に細孔容積も大きくなり、すかすかの活性炭になって体積当たりの容量は減少してしまう。電気二重層容量の発現は、その細孔分布に大きく依存する。   In the present embodiment, the capacity density per volume of the phenol resin activated carbon that is a raw material of the activated carbon can be kept to the maximum. When the specific surface area of the activated carbon is increased, the activated carbon is proportionally increased. Although the per unit volume can be increased, the pore volume also increases at the same time, resulting in a slight activated carbon, and the per unit volume decreases. The expression of the electric double layer capacity greatly depends on the pore distribution.

従って、無駄にする細孔を抑えて効率良く容量を発現することができる細孔容積の設計を行って1.1cm3/g以下とし、かつ、比表面積は2000m2/g以上とすることにより、活性炭の原料であるフェノール樹脂活性炭の体積当たりの容量密度を最大限に保つことができるようになるものである。 Therefore, by designing the pore volume capable of efficiently expressing the capacity by suppressing the pores that are wasted, the volume is set to 1.1 cm 3 / g or less, and the specific surface area is set to 2000 m 2 / g or more. The capacity density per volume of the phenol resin activated carbon that is the raw material of the activated carbon can be kept to the maximum.

このように、充放電信頼性試験時に分極性電極の表面で駆動用電解液が酸性表面官能基と電気化学反応を起こして生成される劣化物質が活性炭の容量サイトを塞ぐことによって発生する容量減少、抵抗増加等の特性劣化の影響を最小限に抑えることができるようになるものである。   In this way, the capacity reduction caused by the degradation material generated by the electrochemical reaction of the driving electrolyte solution with the acidic surface functional group on the surface of the polarizable electrode during the charge / discharge reliability test blocks the capacity site of the activated carbon. Thus, the influence of characteristic deterioration such as an increase in resistance can be minimized.

(実施の形態4)
以下、実施の形態4を用いて、本発明の特に請求項4に記載の発明について説明する。
(Embodiment 4)
The fourth embodiment of the present invention will be described below with reference to the fourth embodiment.

本実施の形態は、上記実施の形態2で説明した電気二重層キャパシタの分極性電極層を形成するフェノール樹脂からなる活性炭の構成を更に限定したものであり、これ以外の構成は実施の形態2と同様であるために同一部分には同一の符号を付与してその詳細な説明は省略し、異なる部分についてのみ以下に説明する。   In the present embodiment, the configuration of the activated carbon made of phenol resin that forms the polarizable electrode layer of the electric double layer capacitor described in the second embodiment is further limited, and other configurations are the same as those in the second embodiment. Therefore, the same parts are denoted by the same reference numerals, and detailed description thereof is omitted. Only different parts will be described below.

本実施の形態は、活性炭の原料であるフェノール樹脂活性炭の体積当たりの容量密度を最大限に保ち、かつ、電気二重層キャパシタの抵抗を低減することができるようにしたものであり、活性炭の平均粒径を大きくすると、分極性電極層内において活性炭細孔内を拡散する電解液イオンの拡散寄与が大きくなって抵抗が増大し、この拡散抵抗増大によって充放電時に容量を引き出すことができなくなる。また、活性炭の平均粒径を小さくしすぎると、分極性電極層内において活性炭粒子どうしの接触抵抗寄与および活性炭粒子と集電体との界面抵抗の寄与が大きくなって抵抗が増大し、この接触抵抗および界面抵抗の増大により、充放電時に容量を引き出すことができなくなる。   In the present embodiment, the capacity density per volume of the phenol resin activated carbon that is a raw material of the activated carbon is kept to the maximum, and the resistance of the electric double layer capacitor can be reduced. When the particle size is increased, the diffusion contribution of the electrolyte ions diffusing in the activated carbon pores in the polarizable electrode layer is increased and the resistance is increased, and this increase in diffusion resistance makes it impossible to draw capacity during charging and discharging. If the average particle size of the activated carbon is too small, the contribution of the contact resistance between the activated carbon particles and the interface resistance between the activated carbon particles and the current collector increases in the polarizable electrode layer, and the resistance increases. Due to the increase in resistance and interface resistance, it becomes impossible to draw capacity during charging and discharging.

ここで、活性炭の平均粒径による体積容量密度と抵抗の関係を測定し、この結果を(表4)、ならびに図4〜図7に示す。図4は25℃での活性炭平均粒径と体積容量密度の関係を、図5は25℃での活性炭平均粒径と抵抗の関係を、図6は−30℃での活性炭平均粒径と体積容量密度の関係を、図7は−30℃での活性炭平均粒径と抵抗の関係を示したものである。   Here, the relationship between the volume capacity density and the resistance according to the average particle diameter of the activated carbon was measured, and the results are shown in (Table 4) and FIGS. 4 shows the relationship between the activated carbon average particle size and volumetric capacity density at 25 ° C., FIG. 5 shows the relationship between the activated carbon average particle size and resistance at 25 ° C., and FIG. 6 shows the activated carbon average particle size and volume at −30 ° C. FIG. 7 shows the relationship between the capacity density and the relationship between the activated carbon average particle diameter at −30 ° C. and the resistance.

Figure 0004894282
Figure 0004894282

(表4)ならびに図4〜図7から明らかなように、活性炭の平均粒径を2.5〜3.5μmの範囲にすることにより、活性炭の原料であるフェノール樹脂活性炭の体積当たりの容量密度を最大限に保ち、かつ、電気二重層キャパシタの抵抗を低減することができるようになり、特に、低温での抵抗低減が顕著になるものである。   As can be seen from Table 4 and FIGS. 4 to 7, by setting the average particle size of the activated carbon in the range of 2.5 to 3.5 μm, the capacity density per volume of the phenol resin activated carbon that is the raw material of the activated carbon. And the resistance of the electric double layer capacitor can be reduced. In particular, the resistance reduction at a low temperature becomes remarkable.

従って、駆動用電解液として炭酸プロピレン等の非プロトン性極性溶媒にアミジン塩を溶解させたものを用いる場合には、分極性電極体の構成材料であるフェノール樹脂活性炭の平均粒径は2.5〜3.5μmの範囲が適しているということができる。   Therefore, when an electrolyte solution for driving in which an amidine salt is dissolved in an aprotic polar solvent such as propylene carbonate is used, the average particle diameter of the phenol resin activated carbon that is a constituent material of the polarizable electrode body is 2.5. It can be said that a range of ˜3.5 μm is suitable.

また、図8は上記活性炭の平均粒径に対する硬度(degree)と−30℃での抵抗の関係を示したものであり、上記フェノール樹脂活性炭の平均粒径が適しているとされる2.5〜3.5μmの範囲における硬度は、概ね81〜83degreeであるということが分かる。   FIG. 8 shows the relationship between the hardness (degree) of the average particle diameter of the activated carbon and the resistance at −30 ° C., and the average particle diameter of the phenol resin activated carbon is considered to be 2.5. It can be seen that the hardness in the range of ˜3.5 μm is approximately 81 to 83 degrees.

(実施の形態5)
以下、実施の形態5を用いて、本発明の特に請求項5に記載の発明について説明する。
(Embodiment 5)
Hereinafter, the invention according to claim 5 of the present invention will be described with reference to the fifth embodiment.

本実施の形態は、上記実施の形態2で説明した電気二重層キャパシタの分極性電極層の構成が一部異なるようにしたものであり、これ以外の構成は実施の形態2と同様であるために同一部分には同一の符号を付与してその詳細な説明は省略し、異なる部分についてのみ以下に説明する。   In the present embodiment, the configuration of the polarizable electrode layer of the electric double layer capacitor described in the second embodiment is partially different, and other configurations are the same as those in the second embodiment. The same parts are denoted by the same reference numerals and detailed description thereof is omitted, and only different parts will be described below.

本実施の形態は、陽極側の分極性電極体3の活性炭層、陰極側の分極性電極体5の活性炭層に含まれる導電性材料の量を、分極性電極体の活性炭層を構成する全材料の8%以下、さらに、バインダー量を同2〜8%にしたものであり、これによって接触抵抗を小さくすることができ、かつ、低温特性を大幅に改善することができるようになるものである。なお、上記バインダー量は4〜6%の範囲がより好ましいものである。   In this embodiment, the amount of the conductive material contained in the activated carbon layer of the polarizable electrode body 3 on the anode side and the activated carbon layer of the polarizable electrode body 5 on the cathode side is the same as that of the activated carbon layer of the polarizable electrode body. 8% or less of the material, and further, the binder amount is 2 to 8%. This makes it possible to reduce the contact resistance and greatly improve the low temperature characteristics. is there. The binder amount is more preferably in the range of 4 to 6%.

このように、分極性電極体の活性炭層を最適設計することにより、容量の劣化、抵抗の増大を抑制することができるようになるものである。   Thus, by optimizing the activated carbon layer of the polarizable electrode body, it is possible to suppress deterioration of capacity and increase in resistance.

本発明による電気二重層キャパシタは、大容量で、かつガス発生や、抵抗増加、容量変化の特性劣化が少なく、長期信頼性に優れるという効果を有し、長寿命、かつパワー密度と低温特性の向上が要望されるハイブリッド自動車用の電気二重層キャパシタ等として有用である。   The electric double layer capacitor according to the present invention has a large capacity, has an effect of being excellent in long-term reliability, and has a long life, power density and low temperature characteristics. It is useful as an electric double layer capacitor for a hybrid vehicle that requires improvement.

本発明の実施の形態1による電気二重層キャパシタの構成を示した一部切り欠き斜視図1 is a partially cutaway perspective view showing a configuration of an electric double layer capacitor according to Embodiment 1 of the present invention. 同電気二重層キャパシタに使用される分極性電極体の構成を示した断面図Sectional drawing which showed the structure of the polarizable electrode body used for the same electric double layer capacitor (a)同分極性電極体を構成する分極性電極層の表面粗さによる電極密度と−30℃での初期抵抗値の関係を示した特性図、(b)同初期抵抗値に対する抵抗の変化率を示した特性図(A) Characteristic diagram showing the relationship between the electrode density depending on the surface roughness of the polarizable electrode layer constituting the polarizable electrode body and the initial resistance value at −30 ° C., (b) Change in resistance with respect to the initial resistance value Characteristic chart showing rate 同25℃での活性炭平均粒径と体積容量密度の関係を示した特性図Characteristic chart showing the relationship between activated carbon average particle size and volume capacity density at 25 ° C 同25℃での活性炭平均粒径と抵抗の関係を示した特性図Characteristics chart showing the relationship between activated carbon average particle size and resistance at 25 ℃ 同−30℃での活性炭平均粒径と体積容量密度の関係を示した特性図Characteristic diagram showing the relationship between activated carbon average particle size and volume capacity density at -30 ℃ 同−30℃での活性炭平均粒径と抵抗の関係を示した特性図Characteristic diagram showing the relationship between activated carbon average particle size and resistance at -30 ℃ 同−30℃での活性炭平均粒径による硬度と抵抗の関係を示した特性図Characteristic diagram showing the relationship between hardness and resistance depending on the average particle diameter of activated carbon at -30 ℃

符号の説明Explanation of symbols

1 キャパシタ素子
2 陽極リード線
3 陽極側の分極性電極体
3a 集電体
3b 分極性電極体活性炭層
4 陰極リード線
5 陰極側の分極性電極体
6 セパレータ
7 封口部材
8 金属ケース
DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Anode lead wire 3 Anode-side polarizable electrode body 3a Current collector 3b Polarized electrode body Activated carbon layer 4 Cathode lead wire 5 Cathode-side polarizable electrode body 6 Separator 7 Sealing member 8 Metal case

Claims (3)

金属箔からなる集電体上に分極性電極層を形成した正負一対の電極をその間にセパレータを介在させて巻回、または積層することにより形成されたキャパシタ素子と、このキャパシタ素子に含浸された駆動用電解液とを少なくとも備えた電気二重層キャパシタにおいて、上記分極性電極層がフェノール樹脂からなる活性炭、導電性材料、バインダーを含み、前記分極性電極層に対して前記導電性材料を8質量%以下、前記バインダーを2〜8質量%添加し、前記活性炭の平均粒径が2.5〜3.5μmであり、分極性電極層の表面粗さRaが0.2〜0.6μm、かつ、電極密度が0.5〜0.7g/cm3である電気二重層キャパシタ。 A capacitor element formed by winding or laminating a pair of positive and negative electrodes having a polarizable electrode layer formed on a current collector made of a metal foil with a separator interposed therebetween, and the capacitor element was impregnated An electric double layer capacitor comprising at least a driving electrolyte , wherein the polarizable electrode layer includes activated carbon made of a phenol resin, a conductive material, and a binder, and 8 mass of the conductive material with respect to the polarizable electrode layer. %, The binder is added in an amount of 2 to 8% by mass, the activated carbon has an average particle size of 2.5 to 3.5 μm , the surface roughness Ra of the polarizable electrode layer is 0.2 to 0.6 μm, and An electric double layer capacitor having an electrode density of 0.5 to 0.7 g / cm 3 . 分極性電極層を形成するフェノール樹脂からなる活性炭の酸性表面官能基量が、活性炭1g当たり0.31〜0.37ミリ当量であり、かつ、駆動用電解液が炭酸プロピレンの非プロトン性極性溶媒にアミジン塩を溶解させたものである請求項1に記載の電気二重層キャパシタ。 The amount of acidic surface functional groups of activated carbon made of phenol resin that forms a polarizable electrode layer is 0.31 to 0.37 milliequivalent per 1 g of activated carbon, and the driving electrolyte is an aprotic polar solvent of propylene carbonate The electric double layer capacitor according to claim 1, wherein an amidine salt is dissolved in the electric double layer capacitor. 分極性電極層を形成するフェノール樹脂からなる活性炭が、比表面積2000m2/g以上、細孔容積1.1cm3/g以下である請求項1に記載の電気二重層キャパシタ 2. The electric double layer capacitor according to claim 1, wherein the activated carbon composed of a phenol resin forming the polarizable electrode layer has a specific surface area of 2000 m 2 / g or more and a pore volume of 1.1 cm 3 / g or less .
JP2006033373A 2005-08-26 2006-02-10 Electric double layer capacitor Active JP4894282B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006033373A JP4894282B2 (en) 2005-08-26 2006-02-10 Electric double layer capacitor
EP06782415A EP1918951A1 (en) 2005-08-26 2006-08-07 Electric double layer capacitor
US11/994,068 US8351182B2 (en) 2005-08-26 2006-08-07 Electric double layer capacitor
PCT/JP2006/315573 WO2007023664A1 (en) 2005-08-26 2006-08-07 Electric double layer capacitor
CN200680030427XA CN101243528B (en) 2005-08-26 2006-08-07 Electric double layer capacitor
KR1020087001441A KR100947969B1 (en) 2005-08-26 2006-08-07 Electric double layer capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005245608 2005-08-26
JP2005245608 2005-08-26
JP2006033373A JP4894282B2 (en) 2005-08-26 2006-02-10 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2007088410A JP2007088410A (en) 2007-04-05
JP4894282B2 true JP4894282B2 (en) 2012-03-14

Family

ID=37771415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006033373A Active JP4894282B2 (en) 2005-08-26 2006-02-10 Electric double layer capacitor

Country Status (6)

Country Link
US (1) US8351182B2 (en)
EP (1) EP1918951A1 (en)
JP (1) JP4894282B2 (en)
KR (1) KR100947969B1 (en)
CN (1) CN101243528B (en)
WO (1) WO2007023664A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8278494B2 (en) 2007-06-27 2012-10-02 H R D Corporation Method of making linear alkylbenzenes
KR100881854B1 (en) * 2008-09-10 2009-02-09 주식회사 이디엘씨 Surface mount devices type super capacitor and its manufacturing process
CN103563027B (en) * 2011-03-23 2018-09-21 梅斯皮鲁斯股份有限公司 Polarizing electrode for flowing through the deionization of formula capacitive character
US10312028B2 (en) 2014-06-30 2019-06-04 Avx Corporation Electrochemical energy storage devices and manufacturing methods
JP2017084838A (en) * 2015-10-22 2017-05-18 株式会社キャタラー Carbon material for power storage device, and power storage device
CN115579248A (en) 2016-05-20 2023-01-06 京瓷Avx元器件公司 Super capacitor used at high temperature
JP7061971B2 (en) 2016-05-20 2022-05-02 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション Multicell ultracapacitor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986000750A1 (en) * 1984-07-17 1986-01-30 Matsushita Electric Industrial Co., Ltd. Polarizable electrode and production method thereof
JPH0656827B2 (en) * 1985-11-18 1994-07-27 松下電器産業株式会社 Polarizable electrode and manufacturing method thereof
EP0558445A1 (en) 1992-02-20 1993-09-01 Ciba-Geigy Ag Sulfonylureas as herbicides
US5381303A (en) * 1992-05-20 1995-01-10 Matsushita Electric Industrial Co., Ltd. Electric double layer capacitor and method for manufacture thereof
JP3860303B2 (en) 1997-08-07 2006-12-20 松下電器産業株式会社 Electrolytic solution for electric double layer capacitor and electric double layer capacitor using the same
JP3872182B2 (en) 1997-08-07 2007-01-24 松下電器産業株式会社 Electric double layer capacitor
JPH11121300A (en) * 1997-10-17 1999-04-30 Nec Corp Polarized electrode and manufacturing method therefor
JP3904755B2 (en) * 1998-09-29 2007-04-11 京セラ株式会社 Activated carbon and electric double layer capacitor using the same
US6865068B1 (en) * 1999-04-30 2005-03-08 Asahi Glass Company, Limited Carbonaceous material, its production process and electric double layer capacitor employing it
JP2001284188A (en) * 2000-04-03 2001-10-12 Asahi Glass Co Ltd Manufacturing method of carbon material for electric double-layer capacitor electrode, and manufacturing method of electric double-layer capacitor using the carbon material
JP2003188050A (en) * 2001-12-20 2003-07-04 Nec Tokin Corp Electric double-layer capacitor and manufacturing method thereof
JP2004111719A (en) * 2002-09-19 2004-04-08 Nec Tokin Corp Electric double-layer capacitor and manufacturing method thereof
US7061750B2 (en) * 2002-11-29 2006-06-13 Honda Motor Co., Ltd. Polarizing electrode for electric double layer capacitor and electric double layer capacitor therewith
CN1816886A (en) * 2003-06-30 2006-08-09 日本瑞翁株式会社 Method for producing electrode for electric double layer capacitor
JP2005116855A (en) * 2003-10-09 2005-04-28 Nippon Zeon Co Ltd Method for manufacturing electrode for electric double-layer capacitor
JP6056827B2 (en) * 2014-09-30 2017-01-11 株式会社デンソー Rotating electrical machine control device

Also Published As

Publication number Publication date
EP1918951A1 (en) 2008-05-07
US8351182B2 (en) 2013-01-08
CN101243528A (en) 2008-08-13
CN101243528B (en) 2011-02-02
JP2007088410A (en) 2007-04-05
KR100947969B1 (en) 2010-03-15
KR20080018273A (en) 2008-02-27
WO2007023664A1 (en) 2007-03-01
US20090231781A1 (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP4894282B2 (en) Electric double layer capacitor
US7227737B2 (en) Electrode design
JP6518589B2 (en) Electrolyte for 3-volt ultracapacitors
US10644324B2 (en) Electrode material and energy storage apparatus
CN111433873B (en) Chip type super capacitor
JP6134917B2 (en) Capacitors
US20080151472A1 (en) Electrochemical double layer capacitor
JP2006049760A (en) Wet electrolytic capacitor
JP2006324591A (en) Electric double-layer capacitor, control method thereof, storage system using the same and secondary battery
EP1677321A1 (en) Electric double layer capacitor
JP2023533968A (en) Method and apparatus for providing storage cells for energy storage devices
TWI808500B (en) Cathode body and electrolytic capacitor
JP2009272585A (en) Electrochemical capacitor
JPH11283871A (en) Current collector for electric double layer capacitor and electric double layer capacitor provided with the current collector
JP2006279078A (en) Electric double layer capacitor
JP3519896B2 (en) Polarizing electrode and electric double layer capacitor using the same
JP4839940B2 (en) Electric double layer capacitor
JP2008130999A (en) Electrochemical element and manufacturing method therefor
JP2010003717A (en) Capacitor
WO2023161328A1 (en) Hybrid polymer capacitor
JP2005223155A (en) Electrochemical device and electrode member
JP2009141098A (en) Electric double layer capacitor
JP2005277346A (en) Electric double layer capacitor and manufacturing method therefor
KR20230174091A (en) Composite electrode and electric energy storage system using the same
JP2009076515A (en) Manufacturing method of electric double layer capacitor electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090126

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R151 Written notification of patent or utility model registration

Ref document number: 4894282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3