JP3872182B2 - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP3872182B2
JP3872182B2 JP21278797A JP21278797A JP3872182B2 JP 3872182 B2 JP3872182 B2 JP 3872182B2 JP 21278797 A JP21278797 A JP 21278797A JP 21278797 A JP21278797 A JP 21278797A JP 3872182 B2 JP3872182 B2 JP 3872182B2
Authority
JP
Japan
Prior art keywords
electrolyte
double layer
layer capacitor
electric double
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21278797A
Other languages
Japanese (ja)
Other versions
JPH1154376A (en
Inventor
芳典 ▲高▼向
一郎 青木
秀樹 島本
幸哉 小林
智治 中野
和司 塩野
英雄 清家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Sanyo Chemical Industries Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Sanyo Chemical Industries Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Sanyo Chemical Industries Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP21278797A priority Critical patent/JP3872182B2/en
Publication of JPH1154376A publication Critical patent/JPH1154376A/en
Application granted granted Critical
Publication of JP3872182B2 publication Critical patent/JP3872182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は各種電子機器に利用される電気二重層コンデンサに関するものである。
【0002】
【従来の技術】
一般にこの種の電気二重層コンデンサは、一対の分極性電極をその間にセパレータを介在させて対向させることによりコンデンサ素子を構成し、そしてこのコンデンサ素子に電解液を含浸させることにより構成している。そして前記分極性電極はアルミニウム箔や銅箔に電極スラリーを所定厚みに塗布したものであって、電極スラリーは活性炭、グラファイトもしくはポリアセン系有機半導体とカーボンブラック、アセチレンブラックもしくはケッチェンブラックを混合したものにバインダーとしてPTFEやCMCなどを加え、純水やアルコールで湿潤させたものである。
【0003】
電解液の溶媒としては、プロピレンカーボネート、γ−ブチロラクトン、エチレンカーボネート、スルホラン、アセトニトリル、ジメチルカーボネート、ジエチルカーボネートまたはメチルエチルカーボネートのいずれか1種もしくは2種以上の混合物が用いられている。また、電解質カチオンとしては、第四級アンモニウムもしくは第四級ホスホニウムが使用され、一方、電解質アニオンとしては、BF4 -,PF6 -,ClO4 -,CF3SO3 -またはN(CF3SO2)2 -が用いられている。
【0004】
また、電解液の溶媒にスルホランまたはその誘導体を用いると耐電圧の高い電気二重層コンデンサが得られることが知られている(特開昭62−237715号公報参照)。そしてまた電解質にN,N,N′−置換アミジン基を有する化合物の第四級塩を用いることにより封口体の封口性能を低下させる水酸化物イオンの生成を抑制できることが知られている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記した従来の電気二重層コンデンサでは、非水系電解液の電解質として第四級アンモニウム塩もしくは第四級ホスホニウム塩が使用されているため、この非水系の電解液を用いて電気二重層コンデンサを作製した場合、60℃での耐圧はほぼ2.3V〜2.5Vであり、この場合、これ以上の電圧を印加すると容量、内部抵抗や外観寸法の変化が大きくなるという問題点を有していた。
【0006】
また、特開昭62−237715号公報に記載された電解液の溶媒であるスルホランはプロピレンカーボネートなどの従来の電解液に用いられる溶媒に比べて電解質の溶解度が低いため、電解液の電気伝導度が低く、そのため、電気二重層コンデンサの内部抵抗が上昇する。さらにスルホランはプロピレンカーボネートなどの従来の電解液に用いられる溶媒に比べて融点が高いことから、スルホラン溶媒の電解液を用いた電気二重層コンデンサは低温での特性に問題点を有していた。
【0007】
また、N,N,N′−置換アミジン基を有する化合物の第四級塩を電気二重層コンデンサ用電解液の電解質として使用した場合、電解質カチオン成分自体が分極性電極の表面で電気化学反応を起こすものもあり、これにより、電気二重層コンデンサの内部抵抗変化や容量変化が大きくなる等の問題点を有していた。
【0008】
本発明は上記従来の問題点を解決するもので、非水系電解液の電気伝導度、耐電圧および耐熱性を向上させることができるとともに、陰極側分極性電極の表面もしくは陰極側分極性電極に接続された引き出しリードの表面で発生する強アルカリ成分を消失させることができ、これにより、内部抵抗が低く、かつ耐電圧ならびに耐熱性が高く、しかも封口体の封口性能が低下することもない電気二重層コンデンサを提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明の電気二重層コンデンサは、分極性電極と、この分極性電極に含浸される非水系電解液とを有し、前記非水系電解液が極性非プロトン溶媒と、電解質として第四級オニウム塩と(化6)または(化7)で示される電解質カチオン成分およびBF 4 - の電解質アニオンを有する塩の混合系電解質で構成したもので、この構成によれば、非水系電解液の電気伝導度、耐電圧および耐熱性を向上させることができるとともに、陰極側分極性電極の表面もしくは陰極側分極性電極に接続された引き出しリードの表面で発生する強アルカリ成分を消失させることができ、これにより、内部抵抗が低く、かつ耐電圧ならびに耐熱性が高く、しかも封口体の封口性能が低下することもない電気二重層コンデンサを得ることができるものである。
【0010】
【化6】

Figure 0003872182
【0011】
【化7】
Figure 0003872182
【0012】
【発明の実施の形態】
本発明の請求項1に記載の発明は、分極性電極と、この分極性電極に含浸される非水系電解液とを有し、前記非水系電解液が極性非プロトン溶媒と、電解質として第四級オニウム塩と(化6)または(化7)で示される電解質カチオン成分およびBF 4 - の電解質アニオンを有する塩の混合系電解質で構成したもので、この構成によれば、電解質カチオン成分(化6)または(化7)が第四級オニウム塩に比べ、極性溶媒中での移動度が大きいと考えられることから当量電気伝導度が高く、また電解質カチオン成分(化6)または(化7)を用いた電解液は第四級オニウム塩を用いた電解液より電気化学的に安定な電位領域(電位窓)が広いため、高い耐電圧を示すとともに、電解質を混合することにより電解質の溶解性が向上するもので、これにより、内部抵抗が低く高耐電圧で低温での安定性が高い電気二重層コンデンサが得られるものである。
【0013】
また、混合系電解質の電解質カチオン成分(化6)または(化7)は、陰極側分極性電極の表面もしくは陰極側分極性電極に接続された引き出しリードの表面で発生する強アルカリ成分である水酸化物イオンを消失させるため、強アルカリ成分による封口体の封口性能の低下ということもなく、これにより、アルカリ性電解液の漏出を確実に防ぐことができるものである。
【0014】
請求項2に記載の発明は、非水系電解液における混合系電解質の混合比率を第四級オニウム塩の重量1に対し、(化6)または(化7)で示される電解質カチオン成分を有する塩の重量を0.1以上としたもので、この構成においては、第四級オニウム塩と(化6)または(化7)で示される電解質カチオン成分を有する塩が広い温度範囲で極性溶媒に安定に溶解し、高い電気伝導度を示すと同時に広い電位窓を示すことにより、広い温度範囲で内部抵抗が低くかつ高耐電圧の電気二重層コンデンサを得ることができるものである。
【0015】
また、第四級オニウム塩の重量1に対し、(化6)または(化7)で示される電解質カチオン成分を有する塩の重量が0.1より小さい場合は、電解液の電気伝導度上昇の効果や耐電圧上昇の効果が見られなくなり、電気二重層コンデンサの内部抵抗低減、耐電圧向上の効果が得られなくなるとともに低温での容量変化が大きくなる問題点があり、したがって、(化6)または(化7)で示される電解質カチオン成分を有する塩の重量は第四級オニウム塩の重量1に対し0.1以上が最適である。
【0016】
請求項3に記載の発明は、混合系電解質の濃度を3.0モル/kg以下としたもので、この構成においては、混合系電解質が広い温度範囲で安定に極性溶媒に溶解しているため、この混合系電解質を用いた電気二重層コンデンサは広い温度範囲で内部抵抗が低くかつ高耐電圧の効果が得られるものである。
【0017】
また、混合系電解質の濃度が3.0モル/kg以上の場合は低温で電解質が析出し、安定性が低下するなどの不具合を起こすおそれがあり、したがって、混合系電解質の濃度は3.0モル/kg以下が最適である。
【0018】
請求項4に記載の発明は、非水系電解液の含まれる水分を3000ppm以下としたもので、この構成においては、非水系電解液の水分による電位窓の変化が比較的小さいため、電気二重層コンデンサ用電解液としての耐電圧を十分有していると考えられるが、非水系電解液の含水率が3000ppmを超える場合は、電解液中の水分の電気分解により電解液の耐電圧が低下し、請求項1〜3のいずれか1つに記載の構成で得られる耐電圧上昇の効果が得られなくなるものであり、したがって、非水系電解液の含水率は3000ppm以下が適正であると考えられる。
【0019】
請求項5に記載の発明は、(化6)で示される電解質カチオン成分が(化8)であり、この電解質カチオン成分を有する塩と第四級オニウム塩の混合系電解質を極性非プロトン溶媒に溶解してなる混合系電解液を用いたもので、この構成によれば、(化8)で示される電解質カチオン成分の塩が電気化学的に安定なことと極性非プロトン溶媒への溶解度が高いため、耐電圧が高くかつ低温での安定性が高い電気二重層コンデンサが得られるものである。
【0020】
【化8】
Figure 0003872182
【0021】
請求項6に記載の発明は、(化6)で示される電解質カチオン成分が(化9)であり、この電解質カチオン成分を有する塩と第四級オニウム塩の混合系電解質を極性非プロトン溶媒に溶解してなる混合系電解液を用いたもので、この構成によれば、(化9)で示される電解質カチオン成分の塩が電気化学的に安定であり高い耐電圧を示すとともに、極性非プロトン溶媒中での移動度が高いため、この電解質カチオン成分の塩を用いた電解液は高い電気伝導度を示すものであり、これらの構成により、耐電圧が高くかつ内部抵抗が低い電気二重層コンデンサが得られるものである。
【0022】
【化9】
Figure 0003872182
【0023】
請求項7に記載の発明は、(化6)で示される電解質カチオン成分が(化10)であり、この電解質カチオン成分を有する塩と第四級オニウム塩の混合系電解質を極性非プロトン溶媒に溶解してなる混合系電解液を用いたもので、電気二重層コンデンサであり、この構成によれば、(化10)で示される電解質カチオン成分の塩が電気化学的に安定であり高い耐電圧を示すとともに、高い耐熱性を示すものであり、これらの構成により、耐電圧が高くかつ高い耐熱性を有する電気二重層コンデンサが得られるものである。
【0024】
【化10】
Figure 0003872182
【0025】
以下、本発明の一実施の形態について説明する。
本発明の電気二重層コンデンサの基本は、分極性電極と、この分極性電極に含浸される非水系電解液とを有し、前記非水系電解液が極性非プロトン溶媒と、電解質として第四級オニウム塩と(化6)または(化7)で示される電解質カチオン成分およびBF 4 - の電解質アニオンを有する塩の混合系電解質で構成したものである。
【0026】
本発明に用いられる極性非プロトン溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、γ−ブチロラクトン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、アセトニトリルのいずれか1種もしくは2種以上の混合物が挙げられる。
【0027】
本発明に用いられる第四級オニウムイオンとして、テトラエチルアンモニウム、メチルトリエチルアンモニウム、テトラエチルホスホニウム、メチルトリエチルホスホニウム、テトラブチルアンモニウム、テトラブチルホスホニウム等が挙げられる。
【0029】
本発明の電解液には必要により副溶媒を含有させることもできる。副溶媒としては、テトラヒドロフラン、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート等が挙げられる。
【0030】
本発明の電解液での電解質の濃度が3.0モル/kg以上の場合は飽和溶解度を超えて低温で溶媒中に電解質が析出してくるものであり、したがって、電解質の濃度は3.0モル/kg以下が好適であり、高い電導性や広い温度範囲で電解液の安定性を得るためには、特に0.5〜2.0モル/kgの範囲が好ましい。
【0031】
本発明で使用する分極性電極は活性炭、グラファイト、ポリアセン系有機半導体のいずれか1種もしくは2種以上の混合物で構成した炭素材料を含有するものである。
【0032】
本発明の非水系電解液に含まれる水分は3000ppm以下である。
(表1)は本発明の実施の形態1〜5および従来例1〜3の電解液組成を示したものである。(表2)は本発明の実施の形態1〜5および従来例1〜3の電解液について電解質濃度と、温度30℃で電気伝導度を測定した結果および捲回形の電気二重層コンデンサ(定格電圧2.5V−静電容量30F、サイズ;φ18mm×L40mm)を作製したときの内部抵抗を示したものである。
【0033】
【表1】
Figure 0003872182
【0034】
【表2】
Figure 0003872182
【0035】
(表2)から明らかなように、本発明の実施の形態1〜5の電解液は従来例1〜3の電解液と比較して高い電気伝導度を示し、これにより、内部抵抗の低い電気二重層コンデンサが得られることがわかる。
【0036】
次に本発明の実施の形態1および従来例1の電解液を使用して、サイクリックボルタンメトリーによる各電解液の電位窓の測定を行った。本発明の実施の形態1の測定結果を図1に示し、従来例1の測定結果を図2に示す。また、サイクリックボルタンメトリーの測定条件を(表3)に示す。
【0037】
【表3】
Figure 0003872182
【0038】
図1と図2の比較から明らかなように、本発明の実施の形態1の電解液は従来例1の電解液に比べて電位窓が広く、高い耐電圧を有していることがわかる。
【0039】
次に、本発明の実施の形態1〜5および従来例1〜3の電解液を使用して捲回形の電気二重層コンデンサ(定格電圧2.5V−静電容量10F、サイズ;φ18mm×L35mm)を作製した。そしてこれらの電気二重層コンデンサに60℃で3.0Vの電圧を印加したときの2000時間後の容量変化率を測定した。その測定結果を(表4)に示す。
【0040】
【表4】
Figure 0003872182
【0041】
(表4)から明らかなように、本発明の実施の形態1〜5の電解液を使用した電気二重層コンデンサは、従来例1〜3の電解液を使用した電気二重層コンデンサに比べて容量変化率が小さく、高耐電圧の電気二重層コンデンサを構成することができるものである。
【0042】
次に、上記した本発明の実施の形態1〜5および従来例1〜3の電解液を使用した捲回形の電気二重層コンデンサに70℃で3.0Vの電圧を印加したときの2000時間後の信頼性評価を実施し、その試験終了後に電気二重層コンデンサの封口体を構成する封口ゴム面の状態を観察した。その観察結果を(表5)に示す。
【0043】
【表5】
Figure 0003872182
【0044】
(表5)から明らかなように、本発明の実施の形態1〜5の電解液を用いた電気二重層コンデンサは、電解液中に封口体の封口性能低下につながる過剰の水酸化イオンを消失させることができる(化6)または(化7)で示される電解液カチオン成分を含んでいるため、封口体を劣化させることもなく高信頼性の電気二重層コンデンサを構成することができるものである。
【0045】
なお、上記本発明の実施の形態1〜5においては捲回形電気二重層コンデンサについて説明したが、コイン形や積層形など他の構造の電気二重層コンデンサの電解液に適用しても、本発明の実施の形態1〜5と同様の効果が得られるものである。
【0046】
【発明の効果】
以上のように本発明の電気二重層コンデンサは、分極性電極と、この分極性電極に含浸される非水系電解液とを有し、前記非水系電解液が極性非プロトン溶媒と、電解質として第四級オニウム塩と(化6)または(化7)で示される電解質カチオン成分およびBF 4 - の電解質アニオンを有する塩の混合系電解質で構成したもので、この構成によれば、非水系電解液の電気伝導度、耐電圧および耐熱性を向上させることができ、しかも陰極側分極性電極の表面もしくは陰極側分極性電極に接続された引き出しリードの表面で発生する強アルカリ成分である水酸化物イオンも消失させることができるため、内部抵抗が低く、耐電圧、耐熱性が高く、さらには強アルカリ成分による封口体の封口性能の低下も防ぐことができる電気二重層コンデンサが得られるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態1の電解液を使用したサイクリックボルタンメトリーによる電解液の電位窓の測定結果を示す特性図
【図2】従来例1の電解液を使用したサイクリックボルタンメトリーによる電解液の電位窓の測定結果を示す特性図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric double layer capacitor used in various electronic devices.
[0002]
[Prior art]
In general, this type of electric double layer capacitor is configured by forming a capacitor element by facing a pair of polarizable electrodes with a separator interposed therebetween, and impregnating the capacitor element with an electrolytic solution. The polarizable electrode is obtained by applying an electrode slurry to aluminum foil or copper foil to a predetermined thickness, and the electrode slurry is a mixture of activated carbon, graphite or polyacene organic semiconductor and carbon black, acetylene black or ketjen black. PTFE, CMC or the like is added as a binder, and it is wetted with pure water or alcohol.
[0003]
As the solvent for the electrolytic solution, propylene carbonate, γ-butyrolactone, ethylene carbonate, sulfolane, acetonitrile, dimethyl carbonate, diethyl carbonate, or methyl ethyl carbonate is used, or a mixture of two or more thereof. Further, quaternary ammonium or quaternary phosphonium is used as the electrolyte cation, while BF 4 , PF 6 , ClO 4 , CF 3 SO 3 or N (CF 3 SO 3) is used as the electrolyte anion. 2 ) 2 - is used.
[0004]
In addition, it is known that an electric double layer capacitor having a high withstand voltage can be obtained when sulfolane or a derivative thereof is used as a solvent of an electrolytic solution (see Japanese Patent Application Laid-Open No. 62-237715). It is also known that the use of a quaternary salt of a compound having an N, N, N′-substituted amidine group in the electrolyte can suppress the production of hydroxide ions that degrade the sealing performance of the sealing body.
[0005]
[Problems to be solved by the invention]
However, in the conventional electric double layer capacitor described above, a quaternary ammonium salt or a quaternary phosphonium salt is used as the electrolyte of the non-aqueous electrolyte solution. The breakdown voltage at 60 ° C. is approximately 2.3 V to 2.5 V. In this case, when a voltage higher than this is applied, there is a problem that the change in capacity, internal resistance, and external dimensions increases. It was.
[0006]
In addition, since sulfolane, which is a solvent of an electrolytic solution described in JP-A-62-237715, has lower electrolyte solubility than a solvent used in a conventional electrolytic solution such as propylene carbonate, the electrical conductivity of the electrolytic solution. Therefore, the internal resistance of the electric double layer capacitor increases. Furthermore, since sulfolane has a higher melting point than solvents used in conventional electrolytes such as propylene carbonate, electric double layer capacitors using sulfolane solvent electrolytes have problems with low-temperature characteristics.
[0007]
In addition, when a quaternary salt of a compound having an N, N, N′-substituted amidine group is used as an electrolyte of an electrolytic solution for an electric double layer capacitor, the electrolyte cation component itself undergoes an electrochemical reaction on the surface of the polarizable electrode. In some cases, this causes problems such as a large internal resistance change and capacitance change of the electric double layer capacitor.
[0008]
The present invention solves the above-mentioned conventional problems, and can improve the electrical conductivity, withstand voltage and heat resistance of the non-aqueous electrolyte, and can be applied to the surface of the cathode side polarizable electrode or the cathode side polarizable electrode. The strong alkali component generated on the surface of the connected lead leads can be eliminated, which makes the internal resistance low, withstand voltage and heat resistance high, and does not reduce the sealing performance of the sealing body. An object of the present invention is to provide a double layer capacitor.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the electric double layer capacitor of the present invention has a polarizable electrode and a nonaqueous electrolyte solution impregnated in the polarizable electrode, and the nonaqueous electrolyte solution is a polar aprotic solvent, quaternary onium salt and (Formula 6) or (Formula 7) electrolytic cation component and BF 4 represented by as an electrolyte - which was composed of a mixture based electrolyte salt with the electrolyte anions, according to this structure, a The electrical conductivity, withstand voltage and heat resistance of the aqueous electrolyte can be improved, and strong alkali components generated on the surface of the cathode-side polarizable electrode or on the surface of the lead lead connected to the cathode-side polarizable electrode are eliminated. As a result, it is possible to obtain an electric double layer capacitor that has low internal resistance, high withstand voltage and heat resistance, and that does not deteriorate the sealing performance of the sealing body. It is possible.
[0010]
[Chemical 6]
Figure 0003872182
[0011]
[Chemical 7]
Figure 0003872182
[0012]
DETAILED DESCRIPTION OF THE INVENTION
According to a first aspect of the present invention, a polarizable electrode, and a nonaqueous electrolytic solution is impregnated into the polarizable electrode, the a non-aqueous electrolyte is a polar aprotic solvent, fourth as the electrolyte This is composed of a mixed electrolyte of a salt having a cation salt of the grade onium salt and an electrolyte cation component represented by (Chemical Formula 6) or (Chemical Formula 7) and a BF 4 electrolyte anion . 6) or (Chemical formula 7) is considered to have a higher mobility in a polar solvent than a quaternary onium salt, so that the equivalent electrical conductivity is high, and the electrolyte cation component (Chemical formula 6) or (Chemical formula 7) Electrolyte solution with a broader electrochemically stable potential region (potential window) than electrolyte solution with quaternary onium salt shows high withstand voltage and solubility of electrolyte by mixing electrolyte This will improve As a result, an electric double layer capacitor having low internal resistance, high withstand voltage, and high stability at low temperatures can be obtained.
[0013]
The electrolyte cation component (Chem. 6) or (Chem. 7) of the mixed electrolyte is water that is a strong alkali component generated on the surface of the cathode-side polarizable electrode or the surface of the lead lead connected to the cathode-side polarizable electrode. Since the oxide ions are eliminated, the sealing performance of the sealing body due to the strong alkali component is not deteriorated, and thereby leakage of the alkaline electrolyte can be surely prevented.
[0014]
The invention according to claim 2 is a salt having an electrolyte cation component represented by (Chemical Formula 6) or (Chemical Formula 7) with respect to the weight 1 of the quaternary onium salt in the mixing ratio of the mixed electrolyte in the nonaqueous electrolytic solution. In this configuration, a salt having a quaternary onium salt and an electrolyte cation component represented by (Chem. 6) or (Chem. 7) is stable in a polar solvent over a wide temperature range. Thus, an electric double layer capacitor having a low internal resistance and a high withstand voltage can be obtained in a wide temperature range by exhibiting a high electric conductivity and simultaneously exhibiting a wide potential window.
[0015]
In addition, when the weight of the salt having an electrolyte cation component represented by (Chemical Formula 6) or (Chemical Formula 7) is less than 0.1 with respect to the weight of the quaternary onium salt, the electrical conductivity of the electrolytic solution is increased. There is a problem that the effect of increasing the withstand voltage and the effect of increasing the withstand voltage are not seen, the effect of reducing the internal resistance of the electric double layer capacitor and improving the withstand voltage cannot be obtained, and the capacitance change at low temperature becomes large. Or, the weight of the salt having the electrolyte cation component represented by (Chemical Formula 7) is optimally 0.1 or more with respect to the weight 1 of the quaternary onium salt.
[0016]
In the invention according to claim 3, the concentration of the mixed system electrolyte is 3.0 mol / kg or less, and in this configuration, the mixed system electrolyte is stably dissolved in the polar solvent in a wide temperature range. The electric double layer capacitor using the mixed electrolyte has a low internal resistance and a high withstand voltage effect in a wide temperature range.
[0017]
In addition, when the concentration of the mixed electrolyte is 3.0 mol / kg or more, the electrolyte may be deposited at a low temperature, which may cause problems such as a decrease in stability. Therefore, the concentration of the mixed electrolyte is 3.0. Mole / kg or less is optimal.
[0018]
In the invention according to claim 4, the moisture contained in the non-aqueous electrolyte is 3000 ppm or less, and in this configuration, the change in the potential window due to the moisture of the non-aqueous electrolyte is relatively small. Although it is considered that the withstand voltage of the electrolytic solution for capacitors is sufficient, when the water content of the nonaqueous electrolytic solution exceeds 3000 ppm, the withstand voltage of the electrolytic solution decreases due to the electrolysis of water in the electrolytic solution. Thus, the effect of increasing the withstand voltage obtained with the configuration according to any one of claims 1 to 3 cannot be obtained, and therefore, the water content of the non-aqueous electrolyte solution is considered to be 3000 ppm or less. .
[0019]
In the invention according to claim 5, the electrolyte cation component represented by (Chemical Formula 6) is (Chemical Formula 8), and a mixed electrolyte of a salt having the electrolyte cation component and a quaternary onium salt is used as a polar aprotic solvent. This is a mixed electrolytic solution that is dissolved. According to this configuration, the salt of the electrolyte cation component represented by (Chemical Formula 8) is electrochemically stable and has high solubility in a polar aprotic solvent. Therefore, an electric double layer capacitor having a high withstand voltage and high stability at a low temperature can be obtained.
[0020]
[Chemical 8]
Figure 0003872182
[0021]
In the invention of claim 6, the electrolyte cation component represented by (Chemical Formula 6) is (Chemical Formula 9), and a mixed electrolyte of a salt having the electrolyte cation component and a quaternary onium salt is used as a polar aprotic solvent. According to this configuration, a salt of the electrolyte cation component represented by (Chemical Formula 9) is electrochemically stable and has a high withstand voltage, and is also polar aprotic. Because of its high mobility in the solvent, the electrolytic solution using the salt of the electrolyte cation component exhibits high electrical conductivity. With these configurations, an electric double layer capacitor having high withstand voltage and low internal resistance Is obtained.
[0022]
[Chemical 9]
Figure 0003872182
[0023]
In the invention according to claim 7, the electrolyte cation component represented by (Chemical Formula 6) is (Chemical Formula 10), and a mixed electrolyte of a salt having the electrolyte cation component and a quaternary onium salt is used as a polar aprotic solvent. This is an electric double layer capacitor that uses a mixed electrolyte solution that is dissolved. According to this configuration, the salt of the electrolyte cation component represented by (Chemical Formula 10) is electrochemically stable and has a high withstand voltage. In addition, the electric double layer capacitor having high withstand voltage and high heat resistance can be obtained.
[0024]
[Chemical Formula 10]
Figure 0003872182
[0025]
Hereinafter, an embodiment of the present invention will be described.
The basic of the electric double layer capacitor of the present invention includes a polarizable electrode and a nonaqueous electrolytic solution impregnated in the polarizable electrode, the nonaqueous electrolytic solution being a polar aprotic solvent and a quaternary as an electrolyte. It is composed of a mixed electrolyte of an onium salt and a salt having an electrolyte cation component represented by (Chemical Formula 6) or (Chemical Formula 7) and an electrolyte anion of BF 4 .
[0026]
As the polar aprotic solvent used in the present invention, one or more of propylene carbonate, ethylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, and acetonitrile are used. A mixture is mentioned.
[0027]
Examples of the quaternary onium ion used in the present invention include tetraethylammonium, methyltriethylammonium, tetraethylphosphonium, methyltriethylphosphonium, tetrabutylammonium, tetrabutylphosphonium and the like.
[0029]
If necessary, the electrolytic solution of the present invention may contain a secondary solvent. Examples of the auxiliary solvent include tetrahydrofuran, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and the like.
[0030]
When the concentration of the electrolyte in the electrolytic solution of the present invention is 3.0 mol / kg or more, the electrolyte is deposited in the solvent at a low temperature exceeding the saturation solubility. Therefore, the concentration of the electrolyte is 3.0. The mol / kg or less is suitable, and in order to obtain high conductivity and stability of the electrolytic solution in a wide temperature range, the range of 0.5 to 2.0 mol / kg is particularly preferable.
[0031]
The polarizable electrode used in the present invention contains a carbon material composed of activated carbon, graphite, or a mixture of two or more of polyacene organic semiconductors.
[0032]
The moisture contained in the non-aqueous electrolyte of the present invention is 3000 ppm or less.
(Table 1) shows the electrolyte compositions of Embodiments 1 to 5 of the present invention and Conventional Examples 1 to 3. (Table 2) shows the results of measuring the electrolyte concentration and the electric conductivity at a temperature of 30 ° C. for the electrolytic solutions of Embodiments 1 to 5 of the present invention and Conventional Examples 1 to 3, and a wound electric double layer capacitor (rated This shows the internal resistance when a voltage of 2.5 V-capacitance of 30 F, size: φ18 mm × L40 mm) is produced.
[0033]
[Table 1]
Figure 0003872182
[0034]
[Table 2]
Figure 0003872182
[0035]
As is clear from Table 2, the electrolytic solutions of Embodiments 1 to 5 of the present invention exhibit higher electrical conductivity than the electrolytic solutions of Conventional Examples 1 to 3, and thus have an electric resistance with a low internal resistance. It can be seen that a double layer capacitor is obtained.
[0036]
Next, the potential window of each electrolyte solution was measured by cyclic voltammetry using the electrolyte solutions of Embodiment 1 and Conventional Example 1 of the present invention. The measurement result of Embodiment 1 of the present invention is shown in FIG. 1, and the measurement result of Conventional Example 1 is shown in FIG. Moreover, the measurement conditions of cyclic voltammetry are shown in (Table 3).
[0037]
[Table 3]
Figure 0003872182
[0038]
As is apparent from the comparison between FIG. 1 and FIG. 2, it can be seen that the electrolytic solution of Embodiment 1 of the present invention has a wider potential window and a higher withstand voltage than the electrolytic solution of Conventional Example 1.
[0039]
Next, a wound-type electric double layer capacitor (rated voltage 2.5 V-capacitance 10 F, size: φ18 mm × L35 mm) using the electrolytes of Embodiments 1 to 5 of the present invention and Conventional Examples 1 to 3 ) Was produced. The capacity change rate after 2000 hours when a voltage of 3.0 V was applied to these electric double layer capacitors at 60 ° C. was measured. The measurement results are shown in (Table 4).
[0040]
[Table 4]
Figure 0003872182
[0041]
As apparent from (Table 4), the electric double layer capacitor using the electrolytic solution of Embodiments 1 to 5 of the present invention has a capacity compared to the electric double layer capacitor using the electrolytic solution of Conventional Examples 1 to 3. An electric double layer capacitor having a small change rate and a high withstand voltage can be configured.
[0042]
Next, 2000 hours when a voltage of 3.0 V is applied at 70 ° C. to the wound electric double layer capacitor using the electrolytic solutions of Embodiments 1 to 5 and Conventional Examples 1 to 3 described above. Later, the reliability was evaluated, and after the test, the state of the sealing rubber surface constituting the sealing body of the electric double layer capacitor was observed. The observation results are shown in (Table 5).
[0043]
[Table 5]
Figure 0003872182
[0044]
As is clear from (Table 5), the electric double layer capacitor using the electrolytic solution according to the first to fifth embodiments of the present invention loses excess hydroxide ions that lead to deterioration of the sealing performance of the sealing body in the electrolytic solution. Since the electrolytic solution cation component represented by (Chemical Formula 6) or (Chemical Formula 7) can be included, a highly reliable electric double layer capacitor can be configured without deteriorating the sealing body. is there.
[0045]
In addition, in Embodiments 1 to 5 of the present invention described above, the wound type electric double layer capacitor has been described, but the present invention can be applied to an electrolytic solution of an electric double layer capacitor having another structure such as a coin type or a laminated type. The same effects as those of the first to fifth embodiments of the invention can be obtained.
[0046]
【The invention's effect】
The electric double layer capacitor of the present invention as described above, the polarizable electrode, and a nonaqueous electrolytic solution is impregnated into the polarizable electrode, the non-aqueous electrolyte solution is a polar aprotic solvent, first as an electrolyte It is composed of a mixed electrolyte of a quaternary onium salt and a salt having an electrolyte cation component represented by (Chem. 6) or (Chem. 7) and a BF 4 electrolyte anion. Hydroxide, which is a strong alkali component that can be improved on the surface of the cathode-side polarizable electrode or the surface of the lead lead connected to the cathode-side polarizable electrode. Electric double layer capacitor with low internal resistance, high withstand voltage, high heat resistance, and prevention of deterioration of sealing performance due to strong alkali components because ions can be eliminated Is obtained.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing a measurement result of a potential window of an electrolytic solution by cyclic voltammetry using the electrolytic solution of Embodiment 1 of the present invention. FIG. 2 is a cyclic voltammetry using an electrolytic solution of Conventional Example 1. Characteristic diagram showing measurement results of potential window of electrolyte

Claims (7)

分極性電極と、この分極性電極に含浸される非水系電解液とを有し、前記非水系電解液が極性非プロトン溶媒と、電解質として第四級オニウム塩と(化1)または(化2)で示される電解質カチオン成分およびBF 4 - の電解質アニオンを有する塩の混合系電解質で構成した電気二重層コンデンサ。
Figure 0003872182
Figure 0003872182
A nonpolar electrolyte solution impregnated in the polarizable electrode and the polarizable electrode, wherein the nonaqueous electrolyte solution is a polar aprotic solvent and a quaternary onium salt as an electrolyte (Chemical Formula 1) or (Chemical Formula 2) An electric double layer capacitor composed of a mixed electrolyte of a salt having an electrolyte cation component and a BF 4 electrolyte anion .
Figure 0003872182
Figure 0003872182
非水系電解液における混合系電解質の混合比率は第四級オニウム塩の重量1に対し、(化1)または(化2)で示される電解質カチオン成分を有する塩の重量を0.1以上とした請求項1に記載の電気二重層コンデンサ。  The mixing ratio of the mixed electrolyte in the non-aqueous electrolytic solution is 0.1 or more with respect to the weight of the quaternary onium salt having the electrolyte cation component represented by (Chemical Formula 1) or (Chemical Formula 2). The electric double layer capacitor according to claim 1. 混合系電解質の濃度を3.0モル/kg以下とした請求項1または2に記載の電気二重層コンデンサ。  The electric double layer capacitor according to claim 1 or 2, wherein the concentration of the mixed electrolyte is 3.0 mol / kg or less. 非水系電解液に含まれる水分を3000ppm以下とした請求項1〜3のいずれか1つに記載の電気二重層コンデンサ。  The electric double layer capacitor according to any one of claims 1 to 3, wherein the moisture contained in the non-aqueous electrolyte is 3000 ppm or less. (化1)で示される電解質カチオン成分が(化3)であり、この電解質カチオン成分を有する塩と第四級オニウム塩の混合系電解質を極性非プロトン溶媒に溶解してなる混合系電解液を用いた請求項1〜4のいずれか1つに記載の電気二重層コンデンサ。
Figure 0003872182
An electrolyte cation component represented by (Chemical Formula 1) is (Chemical Formula 3), and a mixed electrolyte solution obtained by dissolving a mixed electrolyte of a salt having the electrolyte cation component and a quaternary onium salt in a polar aprotic solvent is prepared. The electric double layer capacitor according to any one of claims 1 to 4, which is used.
Figure 0003872182
(化1)で示される電解質カチオン成分が(化4)であり、この電解質カチオン成分を有する塩と第四級オニウム塩の混合系電解質を極性非プロトン溶媒に溶解してなる混合系電解液を用いた請求項1〜4のいずれか1つに記載の電気二重層コンデンサ。
Figure 0003872182
An electrolyte cation component represented by (Chemical Formula 1) is (Chemical Formula 4), and a mixed electrolyte solution obtained by dissolving a mixed electrolyte of a salt having the electrolyte cation component and a quaternary onium salt in a polar aprotic solvent is prepared. The electric double layer capacitor according to any one of claims 1 to 4, which is used.
Figure 0003872182
(化1)で示される電解質カチオン成分が(化5)であり、この電解質カチオン成分を有する塩と第四級オニウム塩の混合系電解質を極性非プロトン溶媒に溶解してなる混合系電解液を用いた請求項1〜4のいずれか1つに記載の電気二重層コンデンサ。
Figure 0003872182
An electrolyte cation component represented by (Chemical Formula 1) is (Chemical Formula 5), and a mixed electrolyte solution obtained by dissolving a mixed electrolyte of a salt having this electrolyte cation component and a quaternary onium salt in a polar aprotic solvent is prepared. The electric double layer capacitor according to any one of claims 1 to 4, which is used.
Figure 0003872182
JP21278797A 1997-08-07 1997-08-07 Electric double layer capacitor Expired - Fee Related JP3872182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21278797A JP3872182B2 (en) 1997-08-07 1997-08-07 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21278797A JP3872182B2 (en) 1997-08-07 1997-08-07 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPH1154376A JPH1154376A (en) 1999-02-26
JP3872182B2 true JP3872182B2 (en) 2007-01-24

Family

ID=16628385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21278797A Expired - Fee Related JP3872182B2 (en) 1997-08-07 1997-08-07 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3872182B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140293A (en) * 2002-10-21 2004-05-13 Honda Motor Co Ltd Nonaqueous electrolyte for electric double-layer capacitor, and electric double-layer capacitor using it
WO2004109727A1 (en) * 2003-06-09 2004-12-16 Matsushita Electric Industrial Co., Ltd. Electrolytic solution for electrochemical element, method of searching for the same, method of producing the same, and electrochemical element
EP1876611A4 (en) * 2005-04-12 2009-12-09 Sumitomo Chemical Co Electric double layer capacitor
US7800886B2 (en) 2005-04-12 2010-09-21 Sumitomo Chemical Company, Limited Electric double layer capacitor
JP4894282B2 (en) 2005-08-26 2012-03-14 パナソニック株式会社 Electric double layer capacitor
EP2785726B1 (en) 2011-12-02 2018-08-01 Dow Silicones Corporation Ester-functional silanes and the preparation and use thereof; and use of iminium compounds as phase transfer catalysts
CN108172900B (en) * 2017-12-18 2019-08-16 中节能万润股份有限公司 A kind of new lithium salts and its preparation method and application

Also Published As

Publication number Publication date
JPH1154376A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
US8273263B2 (en) Ionic compound
EP2037468B1 (en) Additive for electrolyte solution and electrolyte solution
US8116069B2 (en) Electrolytic capacitor
EP1394824A1 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using it
JP4366917B2 (en) Aluminum electrolytic capacitor
US6980415B2 (en) Electrolyte for electrical double layer capacitor and electrical double layer capacitor using the electrolyte
JP2945890B2 (en) Electric double layer capacitor
JP2007234854A (en) Electrochemical element
JP4808358B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP3872182B2 (en) Electric double layer capacitor
US7755879B2 (en) Non-aqueous electrolytic solution for electric double layer capacitor and electric double layer capacitor using the same
JP4780812B2 (en) Aluminum electrolytic capacitor
US11114695B2 (en) Electrolyte for electrochemical device, electrolytic solution, and electrochemical device
JPH08250378A (en) Nonaqueous electrolyte for electrochemical capacitor
KR20190036478A (en) Electrolyte for electrochemical device and electrochemical device
JP2001223136A (en) Aluminum electrolytic capacitor
JP3860303B2 (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor using the same
JP2007194311A (en) Electric double-layer capacitor
JPH1154377A (en) Electric double layer capacitor
JP4307820B2 (en) Aluminum electrolytic capacitor
JPH11135374A (en) Electrolytic solution for electrochemical capacitor
JP3814447B2 (en) Electrolytic solution and electrochemical device using the same
JP2001230159A (en) Electric double layer capacitor
JP2011100777A (en) Electrolyte and electrochemical element using the same
JP4458208B2 (en) Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees