JP2000049059A - Manufacture of aluminum electrolytic capacitor and its manufacturing apparatus - Google Patents

Manufacture of aluminum electrolytic capacitor and its manufacturing apparatus

Info

Publication number
JP2000049059A
JP2000049059A JP21061398A JP21061398A JP2000049059A JP 2000049059 A JP2000049059 A JP 2000049059A JP 21061398 A JP21061398 A JP 21061398A JP 21061398 A JP21061398 A JP 21061398A JP 2000049059 A JP2000049059 A JP 2000049059A
Authority
JP
Japan
Prior art keywords
capacitor element
electrolytic solution
capacitor
electrolyte
impregnation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21061398A
Other languages
Japanese (ja)
Inventor
守裕 ▲吉▼田
Morihiro Yoshida
Fumiaki Kawaguchi
文明 川口
Kiyoshi Sakamoto
清 坂本
Toshiyuki Hatake
稔行 畠
Kunihiro Nishida
邦広 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21061398A priority Critical patent/JP2000049059A/en
Publication of JP2000049059A publication Critical patent/JP2000049059A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for accurately manufacturing an aluminum electrolytic capacitor in a short time including a capacitor element impregnation with an electrolyte solution and moreover for which the manufacturing facility be reduced in size. SOLUTION: After a capacitor element 1 is impregnated in an electrolyte solution 9 in an impregnating bath 2, it is picked up from the impregnating bath 2, and the amount of electrolyte solution impregnated in the capacitor element 1 is adjusted to a specified amount. Thus the capacitor element 1 can be impregnated with the electrolyte solution 9 in a very short time and accurately.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は各種電子機器に使用
されるアルミ電解コンデンサにおいて、特にコンデンサ
素子への電解液の含浸方法を主体としたアルミ電解コン
デンサの製造方法およびその製造装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum electrolytic capacitor used for various electronic devices, and more particularly to a method of manufacturing an aluminum electrolytic capacitor mainly using a method of impregnating a capacitor element with an electrolytic solution and an apparatus for manufacturing the same. .

【0002】[0002]

【従来の技術】従来のこの種のアルミ電解コンデンサの
製造方法について図面を用いて説明する。図15
(a),(b)はコンデンサ素子に電解液を含浸させる
ための含浸装置を示したものであり、同図において、3
1は陽極箔と陰極箔とをその間にセパレータを介在させ
て巻回することにより構成されたコンデンサ素子、32
はこのコンデンサ素子31に電解液を含浸させるための
含浸槽、33はこの含浸槽32に連結された真空ポン
プ、34は電解液35が充填された電解液槽、36は開
閉バルブである。
2. Description of the Related Art A conventional method of manufacturing this type of aluminum electrolytic capacitor will be described with reference to the drawings. FIG.
(A) and (b) show an impregnating device for impregnating the capacitor element with an electrolytic solution.
1 is a capacitor element formed by winding an anode foil and a cathode foil with a separator interposed therebetween, 32
Is an impregnation tank for impregnating the capacitor element 31 with an electrolyte, 33 is a vacuum pump connected to the impregnation tank 32, 34 is an electrolyte tank filled with an electrolyte 35, and 36 is an open / close valve.

【0003】次に、このように構成された含浸装置を用
いてコンデンサ素子31に電解液35を含浸させる方法
を説明すると、まず図15(a)に示すように、コンデ
ンサ素子31を含浸槽32内に入れ、真空ポンプ33に
より含浸槽32内を5300Pa(約40mmHg)以下
に減圧する。次に、図15(b)に示すように、電解液
槽34から電解液35を含浸槽32内に注入し、その後
含浸槽32内を大気圧状態に開放することによりコンデ
ンサ素子31に電解液35を含浸させるようにしてい
た。
Next, a method for impregnating the capacitor element 31 with the electrolytic solution 35 by using the impregnating apparatus thus constructed will be described. First, as shown in FIG. And the pressure inside the impregnation tank 32 is reduced to 5300 Pa (about 40 mmHg) or less by the vacuum pump 33. Next, as shown in FIG. 15B, the electrolytic solution 35 is injected into the impregnating tank 32 from the electrolytic solution tank 34, and then the impregnating tank 32 is opened to the atmospheric pressure state. 35 was impregnated.

【0004】しかしながらこのような真空含浸方法で
は、コンデンサ素子31の内部に十分に電解液35を含
浸させようとした場合、上記真空含浸を行った後、電解
液35中にコンデンサ素子31を浸漬したまま長時間放
置する必要があるため、アルミ電解コンデンサの生産性
を著しく低下させるものであった。
However, in such a vacuum impregnation method, when the electrolytic solution 35 is sufficiently impregnated inside the capacitor element 31, the capacitor element 31 is immersed in the electrolytic solution 35 after the vacuum impregnation is performed. Since it is necessary to leave it for a long time, the productivity of the aluminum electrolytic capacitor is significantly reduced.

【0005】また、この真空含浸方法においては含浸時
間が長時間であるために、外部引き出し用のリード線を
備えた陽極箔と陰極箔とをその間にセパレータを介在さ
せて巻回するための設備と、巻回されたコンデンサ素子
31を有底筒状のケース内に挿入し、このケースの開口
部を封口部材により封口するための設備とを一連の設備
として連結させることが設備構成上極めて困難であり、
このために設備が大形化するばかりでなく、コンデンサ
素子31に含浸した電解液35の液量のバラツキを抑え
にくく、また大気中にさらされた電解液35の中にコン
デンサ素子31を長時間浸漬しておかなければならない
ため、含浸槽32内の電解液35の水分率の変動に対し
ても対応が困難であるという問題点も有していた。
[0005] Further, in this vacuum impregnation method, since the impregnation time is long, equipment for winding an anode foil and a cathode foil having lead wires for external drawing with a separator interposed therebetween is used. And inserting the wound capacitor element 31 into a bottomed cylindrical case, and connecting the equipment for sealing the opening of the case with a sealing member as a series of equipment is extremely difficult in terms of equipment configuration. And
This not only increases the size of the equipment, but also makes it difficult to suppress variations in the amount of the electrolytic solution 35 impregnated in the capacitor element 31, and furthermore, the capacitor element 31 is kept in the electrolytic solution 35 exposed to the atmosphere for a long time. Since it has to be immersed, there is also a problem that it is difficult to cope with a change in the moisture content of the electrolytic solution 35 in the impregnation tank 32.

【0006】さらに、使用する電解液35の粘度が高い
コンデンサ素子31においては、含浸不十分により静電
容量や誘電損失(tanδ)等の電気特性に悪影響を及
ぼすという問題点も有していた。
Further, in the capacitor element 31 having a high viscosity of the electrolytic solution 35 to be used, there is another problem that insufficient impregnation adversely affects electric characteristics such as capacitance and dielectric loss (tan δ).

【0007】そこで、これらの問題点を改善するため
に、図16に示すような方法によりコンデンサ素子31
へ電解液35を含浸する方法が提案されていた。すなわ
ち、まず図16(a)に示すように、コンデンサ素子3
1を含浸槽32内に入れ、その後、含浸槽32内を真空
ポンプ33により5300Pa(約40mmHg)以下に
減圧することによりコンデンサ素子31内の空気を抜
く。
Therefore, in order to improve these problems, the capacitor element 31 is formed by a method as shown in FIG.
A method of impregnating the electrolyte solution 35 with the electrolyte solution has been proposed. That is, first, as shown in FIG.
1 is put into the impregnation tank 32, and then the pressure inside the impregnation tank 32 is reduced to 5300 Pa (about 40 mmHg) or less by the vacuum pump 33, whereby the air in the capacitor element 31 is evacuated.

【0008】次に、図16(b)に示すように、圧送ポ
ンプ37を用いて電解液槽34より電解液35を含浸槽
32内に強制的に注入することによりコンデンサ素子3
1に電解液35を含浸させる。その後、一旦含浸槽32
内を大気圧に開放し、続いて含浸槽32内の上部に位置
する空隙部に圧送ポンプ37により電解液槽34内の電
解液35を注入して含浸槽32内を電解液35で満た
し、その後、この状態から図16(c)に示すようにさ
らに圧送ポンプ37により含浸槽32内に電解液槽34
内の電解液35を圧送することにより含浸槽32内の電
解液35自体に[10×105〜500×105Pa(約
10〜500kgf/cm2)]の圧力をかけることに
より、コンデンサ素子31には、この電解液35の液
圧、すなわち[10×105〜500×105Pa(約1
0〜500kgf/cm2)]の液圧がかかることにな
り、コンデンサ素子31に保持させた電解液35がコン
デンサ素子31の内部まで瞬時に含浸されるようにした
ものである。
Next, as shown in FIG. 16B, the electrolytic solution 35 is forcibly injected from the electrolytic solution tank 34 into the impregnation tank 32 by using a pressure feed pump 37, thereby forming the capacitor element 3
1 is impregnated with the electrolytic solution 35. Then, once the impregnation tank 32
The inside of the impregnation tank 32 is filled with the electrolyte 35 by injecting the electrolyte 35 in the electrolyte tank 34 by a pressure feed pump 37 into the gap located at the upper part of the impregnation tank 32, Thereafter, from this state, as shown in FIG.
The pressure of [10 × 10 5 to 500 × 10 5 Pa (approximately 10 to 500 kgf / cm 2 )] is applied to the electrolyte 35 itself in the impregnation tank 32 by pumping the electrolyte 35 in the inside. 31 indicates the liquid pressure of the electrolytic solution 35, that is, [10 × 10 5 to 500 × 10 5 Pa (about 1 × 10 5 Pa).
0 to 500 kgf / cm 2 )], so that the electrolytic solution 35 held in the capacitor element 31 is instantaneously impregnated into the inside of the capacitor element 31.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記従
来のアルミ電解コンデンサの製造方法では図16に示す
ような真空含浸方法と加圧方法とを組み合わせたものに
おいても、含浸時間の短縮は大幅に図れるものの真空含
浸方法以上に電解液35がコンデンサ素子31に過剰に
含浸されてしまうという品質上の課題があり、このよう
な状態で組み立てを行ったアルミ電解コンデンサの寿命
試験においては、コンデンサ素子31の入った有底筒状
のケースが膨れたり、静電容量や誘電損失(tanδ)
等の電気特性のバラツキが大きくなるという問題点があ
った。また、製造装置上の課題としては、圧送ポンプ3
7で電解液35自体の圧力上昇を図る場合、配管等の裂
傷により一部が破損した場合には、高圧のエネルギーを
持った電解液35が周囲に飛散するという課題を有して
いた。
However, in the above-mentioned conventional method for manufacturing an aluminum electrolytic capacitor, even when the vacuum impregnation method and the pressurization method shown in FIG. 16 are combined, the impregnation time can be greatly reduced. However, there is a quality problem that the electrolytic solution 35 is excessively impregnated into the capacitor element 31 more than the vacuum impregnation method. In the life test of the aluminum electrolytic capacitor assembled in such a state, the The bottomed cylindrical case that swells, or the capacitance or dielectric loss (tan δ)
However, there is a problem that the variation of the electrical characteristics such as the above becomes large. In addition, as a problem on the manufacturing apparatus, the pressure pump 3
In the case where the pressure of the electrolyte 35 itself is increased in step 7, when a part of the electrolyte 35 is broken due to a tear in a pipe or the like, there is a problem that the electrolyte 35 having high-pressure energy is scattered around.

【0010】また、含浸槽32の上部の空隙部(大気
圧)に電解液35を注入する場合には、上部空隙部の空
気が圧縮されて含浸槽32上部に高圧のエネルギーを持
った空気層が残るとともに、この空気が圧送ポンプ37
内に流入するために、圧送ポンプ37による連続した電
解液35の充填・加圧が極めて困難になるものであっ
た。
When the electrolytic solution 35 is injected into the upper gap (atmospheric pressure) of the impregnation tank 32, the air in the upper gap is compressed and an air layer having high-pressure energy is formed above the impregnation tank 32. Is left, and this air is
Therefore, it is extremely difficult to continuously fill and pressurize the electrolytic solution 35 by the pressure feed pump 37.

【0011】従って、これらの問題点を解決しようとし
た場合、連続して含浸槽32へ電解液35の充填・加圧
を実現できる設備の開発、瞬時で圧力を上昇させること
ができる加圧方法、多数の電解液35を使用できる小口
径・短距離の配管系統の確立、短時間で含浸槽32の内
部の電解液35を排出することができる方法の確立な
ど、多くの技術的課題を抱えたものであった。
Therefore, in order to solve these problems, development of equipment capable of continuously filling and pressurizing the electrolytic solution 35 into the impregnation tank 32, and a pressurizing method capable of instantaneously increasing the pressure. There are many technical issues, such as establishment of a small-diameter and short-distance piping system that can use a large number of electrolytes 35 and establishment of a method that can discharge the electrolyte 35 inside the impregnation tank 32 in a short time. It was.

【0012】一方で圧送ポンプ37により電解液35を
押し込んで圧力を上昇させる場合、簡単に圧力上昇カー
ブや設定値を変更できないために多品種の電解液やコン
デンサ素子を構成する材料に対して最適な含浸条件の確
立が難しいという課題も残されていた。
On the other hand, when the pressure is increased by pushing the electrolyte 35 by the pressure pump 37, the pressure rise curve and the set value cannot be easily changed, so that it is most suitable for a wide variety of electrolytes and materials constituting capacitor elements. There is also a problem that it is difficult to establish appropriate impregnation conditions.

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に本発明のアルミ電解コンデンサの製造方法は、コンデ
ンサ素子を入れた含浸槽内を減圧状態にし、この含浸槽
内に電解液を充填してこの電解液を加圧することにより
コンデンサ素子に電解液を含浸させた後、コンデンサ素
子に含浸された電解液の液量を調整してからケース内に
組み込むようにしたものである。
In order to solve the above-mentioned problems, a method of manufacturing an aluminum electrolytic capacitor according to the present invention is to reduce the pressure in an impregnation tank containing a capacitor element and fill the impregnation tank with an electrolytic solution. After the electrolytic solution is impregnated in the capacitor element by pressurizing the electrolytic solution, the amount of the electrolytic solution impregnated in the capacitor element is adjusted and then incorporated in the case.

【0014】この製造方法により、コンデンサ素子が保
持する電解液を所定の量に調整してから組み立てを行う
ために電気的特性のバラツキが少なく、品質の安定した
アルミ電解コンデンサを得ることができるばかりでな
く、極めて短時間でコンデンサ素子に電解液を精度良く
含浸させることができるため、製造設備の小形化を図る
ことができるものである。
According to this manufacturing method, since the electrolytic solution held by the capacitor element is adjusted to a predetermined amount and then assembled, an aluminum electrolytic capacitor with little variation in electric characteristics and stable quality can be obtained. Instead, the electrolytic solution can be accurately impregnated into the capacitor element in a very short time, so that the manufacturing equipment can be downsized.

【0015】[0015]

【発明の実施の形態】本発明の請求項1に記載の発明
は、外部引き出し用のリード線を備えた陽極箔と陰極箔
とをその間にセパレータを介在させて巻回することによ
りコンデンサ素子を形成し、次にこのコンデンサ素子を
含浸槽内に入れてから含浸槽内を減圧状態にし、引き続
きこの減圧状態となった含浸槽内全体に電解液を充填
し、この電解液を加圧することにより上記コンデンサ素
子に電解液を含浸させた後、上記含浸槽内の電解液を除
去して含浸槽内を大気圧に戻し、続いて電解液の含浸が
終わったコンデンサ素子を含浸槽から取り出してコンデ
ンサ素子に含浸された電解液の量を所定の量に調整し、
この電解液量を調整したコンデンサ素子を有底筒状のケ
ース内に挿入し、このケースの開口部を封口部材により
封口するアルミ電解コンデンサの製造方法というもので
あり、この製造方法により、コンデンサ素子が保持する
電解液を所定量に調整してから組み立てを行うために、
電気的特性のバラツキが少なく、品質の安定したアルミ
電解コンデンサを得ることができるばかりでなく、極め
て短時間でコンデンサ素子に電解液を精度良く含浸させ
ることができるため、製造設備の小形化を図ることがで
きるという作用を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the first aspect of the present invention, a capacitor element is formed by winding an anode foil and a cathode foil provided with external lead wires with a separator interposed therebetween. After forming the capacitor element in the impregnation tank, the inside of the impregnation tank is depressurized, and then the electrolyte is filled in the entire impregnation tank in the depressurized state, and the electrolyte is pressurized. After the capacitor element is impregnated with the electrolytic solution, the electrolytic solution in the impregnating tank is removed and the pressure in the impregnating tank is returned to the atmospheric pressure.Then, the capacitor element impregnated with the electrolytic solution is taken out of the impregnating tank and the capacitor is removed. Adjust the amount of electrolyte impregnated in the element to a predetermined amount,
This method is a method for manufacturing an aluminum electrolytic capacitor in which a capacitor element having an adjusted amount of electrolyte is inserted into a bottomed cylindrical case, and an opening of the case is sealed with a sealing member. In order to assemble after adjusting the electrolyte held by to a predetermined amount,
Small variations in electrical characteristics, not only can obtain an aluminum electrolytic capacitor of stable quality, but also the impregnation of the capacitor element with the electrolytic solution in a very short time with high precision allows the production equipment to be downsized. It has the effect of being able to.

【0016】請求項2に記載の発明は、請求項1に記載
の発明において、コンデンサ素子として、コンデンサ素
子から引き出されたリード線に端子板を接続した端子板
付きのコンデンサ素子を用いるようにしたものであり、
この製造方法により、端子板付きのコンデンサ素子を用
いた場合においても、請求項1に記載の発明による作用
と同様の作用を有する。
According to a second aspect of the present invention, in the first aspect, a capacitor element having a terminal plate connected to a terminal wire connected to a lead wire drawn from the capacitor element is used as the capacitor element. Things,
According to this manufacturing method, even when a capacitor element with a terminal plate is used, the same operation as the operation according to the first aspect of the present invention is obtained.

【0017】請求項3に記載の発明は、請求項1または
2に記載の発明において、含浸槽内でコンデンサ素子に
電解液を加圧状態で含浸させる際に、電解液を常温より
高い液温に加熱して行うようにしたものであり、この製
造方法により、容易に、かつ精度良く電解液を含浸させ
ることができるという作用を有する。
According to a third aspect of the present invention, in the first or the second aspect of the present invention, when the electrolytic solution is impregnated into the capacitor element in the impregnation tank in a pressurized state, the electrolytic solution is heated to a temperature higher than room temperature. This manufacturing method has an effect that the electrolytic solution can be easily and accurately impregnated with this manufacturing method.

【0018】請求項4に記載の発明は、外部引き出し用
のリード線を備えた陽極箔と陰極箔とをその間にセパレ
ータを介在させて巻回することによりコンデンサ素子を
組み立てる素子組み立て部と、この組み立てを終えたコ
ンデンサ素子に含浸槽を用いて電解液を含浸する含浸部
と、コンデンサ素子に含浸された電解液の液量を調整す
る液量調整部と、電解液が含浸されたコンデンサ素子を
有底筒状のケース内に挿入してこのケースの開口部を封
口する組み立て部からなる構成の製造装置としたもので
あり、極めて短時間でコンデンサ素子に電解液を精度良
く含浸させることができるため、含浸槽を従来の1/2
00〜1/300のサイズまで小形化することができ、
設備全体の小形化を図ることができるという作用を有す
る。
According to a fourth aspect of the present invention, there is provided an element assembling section for assembling a capacitor element by winding an anode foil and a cathode foil having lead wires for external lead-out with a separator interposed therebetween. An impregnating section for impregnating the assembled capacitor element with an electrolytic solution using an impregnation tank, a liquid amount adjusting section for adjusting the amount of the electrolytic solution impregnated in the capacitor element, and a capacitor element impregnated with the electrolytic solution. This is a manufacturing apparatus having a configuration including an assembly portion that is inserted into a bottomed cylindrical case and seals the opening of the case, and the capacitor element can be accurately impregnated with the electrolytic solution in a very short time. Therefore, the impregnating tank is
It can be downsized to the size of 00 to 1/300,
This has the effect that the entire equipment can be downsized.

【0019】請求項5に記載の発明は、請求項4に記載
の発明において、含浸部が含浸槽内を減圧する減圧機構
と、含浸槽内に電解液を充填する電解液充填機構と、含
浸槽内に充填された電解液を加圧する電解液加圧機構
と、これらの各動作を制御する制御機構を備えた構成と
したものであり、含浸槽内の電解液が直接大気に接する
ことがなく、短時間でコンデンサ素子へ電解液を充填す
ることができるため、安定した品質のアルミ電解コンデ
ンサを得ることができるという作用を有する。
According to a fifth aspect of the present invention, in accordance with the fourth aspect of the present invention, there is provided a pressure reducing mechanism in which the impregnating section decompresses the inside of the impregnating tank, an electrolytic solution filling mechanism for filling the impregnating tank with the electrolytic solution, It is equipped with an electrolytic solution pressurizing mechanism that pressurizes the electrolytic solution filled in the tank and a control mechanism that controls each of these operations, so that the electrolytic solution in the impregnation tank can be in direct contact with the atmosphere. In addition, since the electrolytic solution can be filled in the capacitor element in a short time, an aluminum electrolytic capacitor having a stable quality can be obtained.

【0020】請求項6に記載の発明は、請求項5に記載
の発明において、電解液加圧機構としてエアシリンダを
用い、このエアシリンダのエア導入経路にスピードコン
トローラを設けてシリンダ内のピストンを駆動するよう
にしたものであり、含浸槽内部に充填された電解液の圧
力と圧力上昇速度を容易に調整することができるという
作用を有する。
According to a sixth aspect of the present invention, in the fifth aspect of the present invention, an air cylinder is used as an electrolyte pressurizing mechanism, and a speed controller is provided in an air introduction path of the air cylinder to connect a piston in the cylinder. It is driven and has the effect that the pressure and the rate of pressure rise of the electrolyte filled in the impregnation tank can be easily adjusted.

【0021】請求項7に記載の発明は、請求項5に記載
の発明において、電解液加圧機構としてシリンダ内のピ
ストンをモータで駆動するモータ駆動方式を用い、上記
モータにサーボモータを用いてシリンダ内にピストンを
駆動するようにしたものであり、請求項6に記載の発明
による作用と同様の作用を有する。
According to a seventh aspect of the present invention, in the fifth aspect of the present invention, a motor drive system for driving a piston in a cylinder by a motor is used as an electrolyte pressurizing mechanism, and a servo motor is used as the motor. The piston is driven in the cylinder, and has the same operation as the operation according to the sixth aspect of the present invention.

【0022】請求項8に記載の発明は、請求項4に記載
の発明において、液量調整部が含浸されたコンデンサ素
子を個々に保持する保持部と、この保持部に連結された
吸引機構により構成したものであり、コンデンサ素子に
含浸させた電解液の液量を精度良く所定の量に調整する
ことができるという作用を有する。
According to an eighth aspect of the present invention, in accordance with the fourth aspect of the present invention, a holding unit for individually holding the capacitor elements impregnated with the liquid amount adjusting unit, and a suction mechanism connected to the holding unit. This has the effect that the amount of the electrolytic solution impregnated in the capacitor element can be accurately adjusted to a predetermined amount.

【0023】(実施の形態1)以下、本発明の第1の実
施の形態について図面を用いて説明する。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

【0024】図1〜図6は、同実施の形態によるアルミ
電解コンデンサの製造方法の中で、コンデンサ素子に電
解液を含浸させるための含浸装置を示したものであり、
同図において、1は陽極箔と陰極箔とをその間にセパレ
ータを介在させて巻回することにより構成されたコンデ
ンサ素子、2はコンデンサ素子1に電解液を含浸させる
ための含浸槽、5はこの含浸槽2に真空バルブ3と絶対
真空圧力測定用のセンサ4を介して連結された真空ポン
プ、6は電解液充填部、7は電解液加圧部、8は電解液
供給バルブ、9は電解液である。
FIGS. 1 to 6 show an impregnating device for impregnating a capacitor element with an electrolytic solution in the method of manufacturing an aluminum electrolytic capacitor according to the embodiment.
In the figure, 1 is a capacitor element formed by winding an anode foil and a cathode foil with a separator interposed therebetween, 2 is an impregnation tank for impregnating the capacitor element 1 with an electrolytic solution, and 5 is A vacuum pump connected to the impregnation tank 2 via a vacuum valve 3 and a sensor 4 for measuring the absolute vacuum pressure, 6 is an electrolyte filling section, 7 is an electrolyte pressurization section, 8 is an electrolyte supply valve, and 9 is an electrolyte supply valve. Liquid.

【0025】次に、このように構成された含浸装置を用
いてコンデンサ素子1に電解液9を含浸させる方法を説
明すると、まず図1に示すように、コンデンサ素子1を
含浸槽2内に入れた後、図2に示すように、真空ポンプ
5を駆動して真空バルブ3を開いて含浸槽2内を265
0Pa(約20mmHg)以下に減圧することによりコン
デンサ素子1内の空気を希薄拡散する。次に、図3に示
すように真空バルブ3を閉じてから電解液供給バルブ8
を開き、電解液充填部6により電解液9を含浸槽2内に
一杯になるように充填する。
Next, a method for impregnating the capacitor element 1 with the electrolytic solution 9 by using the impregnating apparatus thus constructed will be described. First, as shown in FIG. 1, the capacitor element 1 is put in the impregnation tank 2. After that, as shown in FIG. 2, the vacuum pump 5 is driven to open the vacuum valve 3 so that
By reducing the pressure to 0 Pa (about 20 mmHg) or less, the air in the capacitor element 1 is diffused and diffused. Next, as shown in FIG.
Is opened, and the electrolytic solution filling section 6 fills the impregnation tank 2 with the electrolytic solution 9 so as to be full.

【0026】その後、含浸槽2内部が電解液9で一杯に
充填されていることを確認した後に、図4に示すよう
に、あらかじめ想定したコンデンサ素子1の電解液吸収
量分の電解液9を電解液加圧部7により電解液9が一杯
に充填された含浸槽2内部に更に強制的に押し込んでや
ることにより、含浸槽2内部の圧力を瞬時に約1(MP
a)(10(kgf/cm2))以上に上昇させ、その
上昇した含浸槽2の内部圧力を一定時間保持し続けるこ
とによりコンデンサ素子1の内部に両端から瞬時に電解
液9が含浸されるものである。
Thereafter, after confirming that the inside of the impregnation tank 2 is fully filled with the electrolytic solution 9, as shown in FIG. The pressure inside the impregnation tank 2 is instantaneously increased to about 1 (MP) by forcibly pushing the inside of the impregnation tank 2 filled with the electrolyte 9 by the electrolyte pressurizing section 7.
a) The electrolyte solution 9 is instantaneously impregnated from both ends into the inside of the capacitor element 1 by increasing the pressure to more than (10 (kgf / cm 2 )) and keeping the increased internal pressure of the impregnation tank 2 for a certain period of time. Things.

【0027】その後、含浸槽2内部の電解液9を除去し
た後、図5に示すように、コンデンサ素子1を含浸槽2
から取り出し、続いて図6に示すようにコンデンサ素子
1を液量調整槽10に入れ、吸引ポンプ11により液量
調整槽11から空気を吸い込むことによりコンデンサ素
子1に含浸された電解液9の量を最適な量に調整して効
率の良い電解液含浸を行うことができるものである。
Thereafter, after the electrolytic solution 9 inside the impregnation tank 2 is removed, as shown in FIG.
Then, as shown in FIG. 6, the capacitor element 1 is put into a liquid amount adjusting tank 10, and the amount of the electrolytic solution 9 impregnated in the capacitor element 1 by sucking air from the liquid amount adjusting tank 11 by a suction pump 11. Can be adjusted to an optimal amount to perform efficient electrolyte impregnation.

【0028】また、上記図4の電解液加圧工程で、上昇
した含浸槽2の内部圧力を一定時間保持している間に、
図1の素子投入工程のように、電解液供給バルブ8を閉
じて電解液9を電解液充填部6および電解液加圧部7に
充填して準備しておくことにより、次のサイクルに移る
際の時間短縮が図れ、更に生産性の高い電解液含浸を行
うことができるものである。
In the electrolytic solution pressurizing step shown in FIG. 4, while maintaining the raised internal pressure of the impregnation tank 2 for a certain period of time,
As in the device charging step of FIG. 1, the electrolyte supply valve 8 is closed and the electrolyte 9 is filled in the electrolyte filling unit 6 and the electrolyte pressurizing unit 7 to prepare for the next cycle. In this case, the time can be shortened, and the electrolytic solution can be impregnated with higher productivity.

【0029】また、種類の異なる複数の電解液を各々タ
ンク(図示せず)に充填して接続しておき、それを切り
替えて使用することにより、1台の含浸装置で種類の異
なるアルミ電解コンデンサを生産することも可能であ
る。
Further, a plurality of different types of electrolytes are filled in a tank (not shown) and connected to each other, and these are switched to be used. It is also possible to produce

【0030】このように本実施の形態によるアルミ電解
コンデンサの製造方法は、コンデンサ素子1への電解液
9の含浸を高効率で精度良く、しかも極めて短時間で行
うことができ、その含浸時間は従来例の約1/180程
度に短縮することができるものである。また、コンデン
サ素子1への電解液9の含浸を極めて短時間で行えるこ
とから含浸装置も極めて小型化でき、その大きさは従来
の約1/240程度に小型化でき、これによりコンデン
サ素子1の製造工程を連結したコンパクトな製造装置を
実現することができるものである。
As described above, the method for manufacturing an aluminum electrolytic capacitor according to the present embodiment can impregnate the capacitor element 1 with the electrolytic solution 9 with high efficiency and accuracy, and in a very short time. This can be reduced to about 1/180 of the conventional example. Further, since the impregnation of the capacitor element 1 with the electrolytic solution 9 can be performed in a very short time, the impregnating apparatus can be extremely miniaturized, and the size can be reduced to about 1/240 of the conventional size. It is possible to realize a compact manufacturing apparatus in which manufacturing steps are connected.

【0031】また、図1〜図6で示した本実施の形態に
よる電解液9の含浸方法と、図15(a),(b)で示
した従来の含浸方法を用いて、定格200V、2.2m
F、寸法φ35×L50のコンデンサ素子を作製し、こ
のコンデンサ素子1のエージング直後の電気特性のバラ
ツキを、静電容量と誘電損失(tanδ)と漏れ電流に
関して測定した結果を(表1)に示す。
The impregnation method of the electrolytic solution 9 according to the present embodiment shown in FIGS. 1 to 6 and the conventional impregnation method shown in FIGS. .2m
F, a capacitor element having a size of φ35 × L50 was manufactured, and the results of measuring the variation in electrical characteristics of the capacitor element 1 immediately after aging with respect to the capacitance, the dielectric loss (tan δ), and the leakage current are shown in Table 1. .

【0032】[0032]

【表1】 [Table 1]

【0033】この(表1)より明らかなように、本実施
の形態による製造方法の方が、従来の含浸方法に比べて
静電容量は若干高く、さらに誘電損失(tanδ)、漏
れ電流の値も小さいことから、電解液9が従来の含浸時
間より短時間でコンデンサ素子1の内部にまで十分に含
浸されていることがわかり、また、電気特性のバラツキ
も少なく、安定した品質のアルミ電解コンデンサを得る
ことができるものである。
As is apparent from Table 1, the manufacturing method according to the present embodiment has a slightly higher capacitance than the conventional impregnation method, and further has values of dielectric loss (tan δ) and leakage current. , The electrolyte 9 was sufficiently impregnated into the inside of the capacitor element 1 in a shorter time than the conventional impregnation time, and the dispersion of electric characteristics was small, and the aluminum electrolytic capacitor of stable quality was obtained. Can be obtained.

【0034】また、定格160V、680μF、寸法φ
30×L30のコンデンサ素子1を作製し、このコンデ
ンサ素子1内部に含浸された電解液9の量に関して測定
した結果を(表2)に示す。
Further, the rated voltage is 160 V, 680 μF, and the size is φ.
A capacitor element 1 of 30 × L30 was manufactured, and the result of measuring the amount of the electrolytic solution 9 impregnated inside the capacitor element 1 is shown in Table 2 below.

【0035】[0035]

【表2】 [Table 2]

【0036】この(表2)より明らかなように本実施の
形態による製造方法の方が、従来の含浸方法に比べて短
時間で精度良く電解液9の量をバラツキ無く調整して含
浸されていることがわかり、安定した品質のアルミ電解
コンデンサを得ることができるものである。
As is clear from Table 2, the production method according to the present embodiment is capable of adjusting the amount of the electrolytic solution 9 accurately and in a shorter time than the conventional impregnation method without variation, and impregnating it. It is possible to obtain a stable quality aluminum electrolytic capacitor.

【0037】(実施の形態2)以下、本発明の第2の実
施の形態について図7〜図12を用いて説明する。な
お、本実施の形態は、上記第1の実施の形態で用いたコ
ンデンサ素子に端子板を接続した構成のコンデンサ素子
1を用いたものであり、これ以外は上記第1の実施の形
態と同じであるため、ここでの詳細な説明は省略する。
(Embodiment 2) Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. Note that the present embodiment uses the capacitor element 1 having a configuration in which a terminal plate is connected to the capacitor element used in the first embodiment, and is otherwise the same as the first embodiment. Therefore, detailed description is omitted here.

【0038】このように、コンデンサ素子から引き出さ
れたリード線に端子板を接続した構成のコンデンサ素子
1を用いた場合でも、上記第1の実施の形態と同様のコ
ンデンサ素子1への電解液9の含浸を極めて短時間で、
かつ精度良く行うことができ、製造装置の大幅な小型化
も同時に実現することができるものである。
As described above, even when the capacitor element 1 having the structure in which the terminal plate is connected to the lead wire drawn from the capacitor element is used, the electrolytic solution 9 is applied to the capacitor element 1 in the same manner as in the first embodiment. Impregnation in a very short time,
In addition, the manufacturing can be performed with high accuracy, and the size of the manufacturing apparatus can be significantly reduced.

【0039】(実施の形態3)以下、本発明の第3の実
施の形態について図13(a),(b)および図14
(a),(b)を用いて説明する。
(Embodiment 3) Hereinafter, a third embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to (a) and (b).

【0040】図13(a)は、電解液加圧部7としてエ
アシリンダを用い、このエアシリンダのエア導入経路に
スピードコントローラ12を設けてピストン13を駆動
するようにしたものである。また、図13(b)は同じ
く電解液加圧部7としてピストン14を用い、このピス
トン14をサーボモータ15で駆動するようにしたもの
である。このような構成とすることにより、図14
(a),(b)に示すように含浸槽2内に充填された電
解液9の圧力や圧力上昇速度をスピードコントローラ1
2やサーボモータ15によって極めて容易に調整するこ
とができ、異なる品種のコンデンサ素子1に電解液9を
含浸する場合でも、最適な条件で含浸作業を行うことが
できるものである。
FIG. 13A shows a configuration in which an air cylinder is used as the electrolytic solution pressurizing section 7, and a speed controller 12 is provided in an air introduction path of the air cylinder to drive the piston 13. FIG. 13B shows a case where a piston 14 is used as the electrolytic solution pressurizing unit 7, and the piston 14 is driven by a servomotor 15. With such a configuration, FIG.
As shown in (a) and (b), the pressure of the electrolytic solution 9 filled in the impregnation tank 2 and the pressure rising speed are controlled by a speed controller 1.
2 and the servomotor 15 can be adjusted very easily, and even when the capacitor elements 1 of different types are impregnated with the electrolytic solution 9, the impregnation operation can be performed under optimal conditions.

【0041】[0041]

【発明の効果】以上のように本発明のアルミ電解コンデ
ンサの製造方法は、コンデンサ素子に電解液を含浸する
際に、含浸槽内を減圧状態にしてコンデンサ素子内部の
空気を希薄拡散した後に含浸槽内部に電解液を一杯に充
填し、その直後に電解液を圧縮することによって、瞬時
に電解液の圧力を上昇させ、その圧力を一定時間保持さ
せて電解液をコンデンサ素子に含浸させ、この後に電解
液量を調整する工程を設けることにより、コンデンサ素
子が保持する電解液量のバラツキを大幅に少なくして安
定した品質のアルミ電解コンデンサを得ることができ
る。
As described above, in the method for manufacturing an aluminum electrolytic capacitor of the present invention, when the capacitor element is impregnated with the electrolytic solution, the air inside the capacitor element is diluted and diffused while the pressure in the impregnation tank is reduced. By filling the inside of the tank with the electrolyte solution and immediately compressing the electrolyte solution, the pressure of the electrolyte solution is instantaneously increased, and the pressure is maintained for a certain time to impregnate the capacitor element with the electrolyte solution. By providing a step of adjusting the amount of the electrolytic solution later, variation in the amount of the electrolytic solution held by the capacitor element can be greatly reduced, and a stable quality aluminum electrolytic capacitor can be obtained.

【0042】また、上記コンデンサ素子への電解液の含
浸を極めて短時間で、かつ精度良く行うことができるた
め、生産効率の大幅な向上と設備の小型化を同時に実現
することができ、これによりコンデンサ素子の製造工程
から組み立て、検査の工程までの一連の製造工程を連結
したコンパクトな製造装置を実現することができるもの
である。
Further, since the above-mentioned capacitor element can be impregnated with the electrolytic solution in a very short time and with high precision, it is possible to realize a great improvement in production efficiency and a reduction in the size of the equipment at the same time. It is possible to realize a compact manufacturing apparatus in which a series of manufacturing processes from a manufacturing process of a capacitor element to an assembly and an inspection process are connected.

【0043】従って、材料、大きさ、形状が異なる各種
のコンデンサ素子に対して、圧力を上昇もしくは下降さ
せるか、圧力の保持時間を長くもしくは短くすることに
より、各種のコンデンサ素子に対しても最適条件を容易
に決定し、この最適条件下での含浸が安定して行えるも
のである。
Therefore, by increasing or decreasing the pressure or increasing or decreasing the pressure holding time for various types of capacitor elements having different materials, sizes, and shapes, it is also suitable for various types of capacitor elements. The conditions are easily determined, and the impregnation under the optimum conditions can be stably performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態によるアルミ電解コ
ンデンサの製造方法のコンデンサ素子の投入工程を示す
説明図
FIG. 1 is an explanatory view showing a step of inserting a capacitor element in a method for manufacturing an aluminum electrolytic capacitor according to a first embodiment of the present invention.

【図2】同真空減圧工程を説明する説明図FIG. 2 is an explanatory view illustrating the vacuum depressurizing step.

【図3】同電解液供給工程を示す説明図FIG. 3 is an explanatory view showing the electrolytic solution supply step.

【図4】同電解液加工工程を示す説明図FIG. 4 is an explanatory view showing the electrolytic solution processing step.

【図5】同素子取出工程を示す説明図FIG. 5 is an explanatory view showing the element removing step.

【図6】同電解液量調整工程を示す説明図FIG. 6 is an explanatory view showing an electrolytic solution amount adjusting step.

【図7】本発明の第2の実施の形態によるアルミ電解コ
ンデンサの製造方法の素子投入工程を示す説明図
FIG. 7 is an explanatory view showing an element input step of the method for manufacturing an aluminum electrolytic capacitor according to the second embodiment of the present invention.

【図8】同真空減圧工程を示す説明図FIG. 8 is an explanatory view showing the vacuum depressurizing step.

【図9】同電解液供給工程を示す説明図FIG. 9 is an explanatory view showing the electrolytic solution supply step.

【図10】同電解液加工工程を示す説明図FIG. 10 is an explanatory view showing the electrolytic solution processing step.

【図11】同素子取出工程を示す説明図FIG. 11 is an explanatory view showing a device removing step.

【図12】同電解液量調整工程を示す説明図FIG. 12 is an explanatory view showing an electrolytic solution amount adjusting step.

【図13】(a),(b)本発明の第3の実施の形態に
よる電解液加圧部の例を示す断面図
FIGS. 13A and 13B are cross-sectional views illustrating an example of an electrolyte pressurizing unit according to a third embodiment of the present invention.

【図14】(a),(b)図13(a),(b)の電解
液加圧部による電解液の加圧状態を示す特性図
14 (a), (b) are characteristic diagrams showing the state of pressurization of the electrolytic solution by the electrolytic solution pressurizing portions of FIGS. 13 (a), (b).

【図15】(a),(b)従来のアルミ電解コンデンサ
の製造方法のコンデンサ素子への電解液の含浸方法を説
明する製造工程図
15A and 15B are manufacturing process diagrams illustrating a method for impregnating a capacitor element with an electrolytic solution in a conventional method for manufacturing an aluminum electrolytic capacitor.

【図16】(a)〜(c)従来のアルミ電解コンデンサ
の製造方法の他のコンデンサ素子への電解液の含浸方法
を説明する製造工程図
16 (a) to 16 (c) are manufacturing process diagrams illustrating a method for impregnating another capacitor element with an electrolytic solution in a conventional method for manufacturing an aluminum electrolytic capacitor.

【符号の説明】[Explanation of symbols]

1 コンデンサ素子 2 含浸槽 3 真空バルブ 4 センサ 5 真空ポンプ 6 電解液充填部 7 電解液加圧部 8 電解液供給バルブ 9 電解液 10 液量調整槽 11 吸引ポンプ 12 スピードコントローラ 13,14 ピストン 15 サーボモータ DESCRIPTION OF SYMBOLS 1 Capacitor element 2 Impregnation tank 3 Vacuum valve 4 Sensor 5 Vacuum pump 6 Electrolyte filling part 7 Electrolyte pressurization part 8 Electrolyte supply valve 9 Electrolyte 10 Liquid amount adjustment tank 11 Suction pump 12 Speed controller 13, 14 Piston 15 Servo motor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂本 清 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 畠 稔行 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 西田 邦広 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5E082 AA07 AB04 AB09 BC38 EE03 EE24 FG27 GG04 GG08 HH03 HH08 HH14 KK04 LL21 MM22 MM23 MM24 MM27  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kiyoshi Sakamoto 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Kunihiro Nishida 1006 Kadoma, Kazuma, Osaka Pref.F-term in Matsushita Electric Industrial Co., Ltd. (Reference)

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 外部引き出し用のリード線を備えた陽極
箔と陰極箔とをその間にセパレータを介在させて巻回す
ることによりコンデンサ素子を形成し、次にこのコンデ
ンサ素子を含浸槽内に入れてから含浸槽内を減圧状態に
し、引き続きこの減圧状態となった含浸槽内全体に電解
液を充填し、この電解液を加圧することにより上記コン
デンサ素子に電解液を含浸させた後、上記含浸槽内の電
解液を除去して含浸槽内を大気圧に戻し、続いて電解液
の含浸が終わったコンデンサ素子を含浸槽から取り出し
てコンデンサ素子に含浸された電解液の量を所定の量に
調整し、この電解液量を調整したコンデンサ素子を有底
筒状のケース内に挿入し、このケースの開口部を封口部
材により封口するアルミ電解コンデンサの製造方法。
1. A capacitor element is formed by winding an anode foil and a cathode foil provided with external lead wires with a separator interposed therebetween to form a capacitor element, and then put the capacitor element into an impregnation tank. After that, the inside of the impregnation tank was depressurized, and then the entire inside of the impregnation tank in the depressurized state was filled with the electrolytic solution, and the electrolytic solution was pressurized to impregnate the capacitor element with the electrolytic solution. The electrolytic solution in the tank is removed and the inside of the impregnation tank is returned to the atmospheric pressure.Then, the capacitor element impregnated with the electrolytic solution is taken out of the impregnation tank, and the amount of the electrolytic solution impregnated in the capacitor element is reduced to a predetermined amount. A method for manufacturing an aluminum electrolytic capacitor in which the capacitor element having been adjusted and the amount of the electrolytic solution is adjusted is inserted into a bottomed cylindrical case, and the opening of the case is sealed with a sealing member.
【請求項2】 コンデンサ素子として、コンデンサ素子
から引き出されたリード線に端子板を接続した端子板付
きのコンデンサ素子を用いるようにした請求項1に記載
のアルミ電解コンデンサの製造方法。
2. The method of manufacturing an aluminum electrolytic capacitor according to claim 1, wherein a capacitor element having a terminal plate connected to a lead wire drawn from the capacitor element is used as the capacitor element.
【請求項3】 含浸槽内でコンデンサ素子に電解液を加
圧状態で含浸させる際に、電解液を常温より高い液温に
加熱して行うようにした請求項1または2に記載のアル
ミ電解コンデンサの製造方法。
3. The aluminum electrolytic device according to claim 1, wherein when the electrolytic solution is impregnated into the capacitor element in the impregnation tank in a pressurized state, the electrolytic solution is heated to a liquid temperature higher than room temperature. Manufacturing method of capacitor.
【請求項4】 外部引き出し用のリード線を備えた陽極
箔と陰極箔とをその間にセパレータを介在させて巻回す
ることによりコンデンサ素子を組み立てる素子組み立て
部と、この組み立てを終えたコンデンサ素子に含浸槽を
用いて電解液を含浸する含浸部と、コンデンサ素子に含
浸された電解液の液量を調整する液量調整部と、電解液
が含浸されたコンデンサ素子を有底筒状のケース内に挿
入してこのケースの開口部を封口する組み立て部からな
るアルミ電解コンデンサの製造装置。
4. An element assembling section for assembling a capacitor element by winding an anode foil and a cathode foil provided with external lead wires with a separator interposed therebetween, and a capacitor element having been assembled. An impregnating section for impregnating the electrolytic solution using the impregnation tank, a liquid amount adjusting section for adjusting the amount of the electrolytic solution impregnated in the capacitor element, and a capacitor element impregnated with the electrolytic solution in a bottomed cylindrical case. An aluminum electrolytic capacitor manufacturing device consisting of an assembly part that is inserted into the case and seals the opening of the case.
【請求項5】 含浸部が含浸槽内を減圧する減圧機構
と、含浸槽内に電解液を充填する電解液充填機構と、含
浸槽内に充填された電解液を加圧する電解液加圧機構
と、これらの各動作を制御する制御機構を備えたもので
ある請求項4に記載のアルミ電解コンデンサの製造装
置。
5. A decompression mechanism in which the impregnation section decompresses the inside of the impregnation tank, an electrolyte filling mechanism for filling the electrolyte in the impregnation tank, and an electrolyte pressurization mechanism for pressurizing the electrolyte filled in the impregnation tank. The apparatus for manufacturing an aluminum electrolytic capacitor according to claim 4, further comprising a control mechanism for controlling each of these operations.
【請求項6】 電解液加圧機構としてエアシリンダを用
い、このエアシリンダのエア導入経路にスピードコント
ローラを設けてシリンダ内のピストンを駆動するように
した請求項5に記載のアルミ電解コンデンサの製造装
置。
6. The aluminum electrolytic capacitor according to claim 5, wherein an air cylinder is used as an electrolyte pressurizing mechanism, and a speed controller is provided in an air introduction path of the air cylinder to drive a piston in the cylinder. apparatus.
【請求項7】 電解液加圧機構としてシリンダ内のピス
トンをモータで駆動するモータ駆動方式を用い、上記モ
ータにサーボモータを用いてシリンダ内にピストンを駆
動するようにした請求項5に記載のアルミ電解コンデン
サの製造装置。
7. The method according to claim 5, wherein a motor drive system for driving a piston in a cylinder by a motor is used as the electrolyte pressurizing mechanism, and the piston is driven in the cylinder by using a servo motor for the motor. Manufacturing equipment for aluminum electrolytic capacitors.
【請求項8】 液量調整部が、電解液が含浸されたコン
デンサ素子を個々に保持する保持部と、この保持部に連
結された吸引機構により構成されたものである請求項4
に記載のアルミ電解コンデンサの製造装置。
8. The liquid amount adjusting section includes a holding section for individually holding the capacitor elements impregnated with the electrolytic solution, and a suction mechanism connected to the holding section.
2. A manufacturing apparatus for an aluminum electrolytic capacitor according to claim 1.
JP21061398A 1998-07-27 1998-07-27 Manufacture of aluminum electrolytic capacitor and its manufacturing apparatus Pending JP2000049059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21061398A JP2000049059A (en) 1998-07-27 1998-07-27 Manufacture of aluminum electrolytic capacitor and its manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21061398A JP2000049059A (en) 1998-07-27 1998-07-27 Manufacture of aluminum electrolytic capacitor and its manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2000049059A true JP2000049059A (en) 2000-02-18

Family

ID=16592234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21061398A Pending JP2000049059A (en) 1998-07-27 1998-07-27 Manufacture of aluminum electrolytic capacitor and its manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP2000049059A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305898A (en) * 2006-05-15 2007-11-22 Rubycon Corp Impregnation method and impregnation apparatus of electrolyte in electrolytic capacitor manufacture
JP2010109162A (en) * 2008-10-30 2010-05-13 Jcc Engineering Co Ltd Method of manufacturing electrolytic capacitor, impregnation device for electrolytic capacitor, and machine for assembling electrolytic capacitor
JP2018504785A (en) * 2015-02-06 2018-02-15 肇慶緑宝石電子科技股▲フン▼有限公司 Method for producing high-voltage solid aluminum electrolytic capacitor
CN111226297A (en) * 2020-01-17 2020-06-02 诚捷智能装备(东莞)有限公司 Glue penetrating, impregnation and sealing integrated machine
KR20210107527A (en) * 2020-02-21 2021-09-01 청지에 인텔리전트 이큅먼트 (동관) 컴퍼니 리미티드 Capacitor automation production control system and production method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007305898A (en) * 2006-05-15 2007-11-22 Rubycon Corp Impregnation method and impregnation apparatus of electrolyte in electrolytic capacitor manufacture
JP4566156B2 (en) * 2006-05-15 2010-10-20 ルビコン株式会社 Electrolytic solution impregnation method and impregnation apparatus in electrolytic capacitor production
JP2010109162A (en) * 2008-10-30 2010-05-13 Jcc Engineering Co Ltd Method of manufacturing electrolytic capacitor, impregnation device for electrolytic capacitor, and machine for assembling electrolytic capacitor
JP2018504785A (en) * 2015-02-06 2018-02-15 肇慶緑宝石電子科技股▲フン▼有限公司 Method for producing high-voltage solid aluminum electrolytic capacitor
CN111226297A (en) * 2020-01-17 2020-06-02 诚捷智能装备(东莞)有限公司 Glue penetrating, impregnation and sealing integrated machine
KR20210093746A (en) * 2020-01-17 2021-07-28 청지에 인텔리전트 이큅먼트 (동관) 컴퍼니 리미티드 Grooming, impregnating and sealing all-in-one
KR102358056B1 (en) * 2020-01-17 2022-02-08 청지에 인텔리전트 이큅먼트 (동관) 컴퍼니 리미티드 Grooming, impregnating and sealing all-in-one
KR20210107527A (en) * 2020-02-21 2021-09-01 청지에 인텔리전트 이큅먼트 (동관) 컴퍼니 리미티드 Capacitor automation production control system and production method
KR102358057B1 (en) * 2020-02-21 2022-02-08 청지에 인텔리전트 이큅먼트 (동관) 컴퍼니 리미티드 Capacitor automation production control system and production method

Similar Documents

Publication Publication Date Title
CN101681724B (en) Method and apparatus for manufacturing solid electrolytic capacitor
KR101541588B1 (en) Battery manufacturing apparatus and method for manufacturing battery
CN105931862B (en) The production method of aluminium electrolutic capacitor
JP2015133179A (en) Method of manufacturing power storage device and electrolyte injector
CN110058730A (en) Make the method and touch-control display panel of touch-control display panel
JP2000049059A (en) Manufacture of aluminum electrolytic capacitor and its manufacturing apparatus
CN105637679A (en) Secondary cell production method
JP2009188003A (en) Manufacturing method of capacitor
US6605127B2 (en) Method of manufacturing an aluminum solid electrolyte capacitor
CN104538179B (en) A kind of axially molding tantalum capacitor and its manufacture method
JP3763052B2 (en) Manufacturing method of aluminum solid electrolytic capacitor
JP4617784B2 (en) Electrolyte injection method and apparatus for electric double layer capacitor
JP4125840B2 (en) Electrolyte injection method and apparatus for electric double layer capacitor
CN105428095B (en) Improve the vacuum control unit of polythiophene solid tantalum capacitor consistency of performance
JPH09139325A (en) Device and method for manufacturing electrolytic capacitor
JP2014165221A (en) Impregnation method
WO2020075493A1 (en) Stator inspection method and inspection system
WO2005098882A1 (en) Method for manufacturing solid electrolytic capacitor
JP3493144B2 (en) Method and apparatus for impregnating battery electrolyte
KR200152086Y1 (en) The vacuum impregnation apparatus of electrolytic capacitor
JPH09283375A (en) Manufacture of electrolytic capacitor
JP4566156B2 (en) Electrolytic solution impregnation method and impregnation apparatus in electrolytic capacitor production
JP2002313681A (en) Method for manufacturing solid electrolytic capacitor
JP2003109853A (en) Solid electrolytic capacitor and its manufacturing method
JP3942499B2 (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050621