JPH09139325A - Device and method for manufacturing electrolytic capacitor - Google Patents

Device and method for manufacturing electrolytic capacitor

Info

Publication number
JPH09139325A
JPH09139325A JP7298084A JP29808495A JPH09139325A JP H09139325 A JPH09139325 A JP H09139325A JP 7298084 A JP7298084 A JP 7298084A JP 29808495 A JP29808495 A JP 29808495A JP H09139325 A JPH09139325 A JP H09139325A
Authority
JP
Japan
Prior art keywords
capacitor
electrolytic solution
electrolytic
electrolytic capacitor
vacuum impregnation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7298084A
Other languages
Japanese (ja)
Inventor
Hiroshi Narisawa
鴻 成澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADOFUOKUSU KK
Shoei Co Ltd
Original Assignee
ADOFUOKUSU KK
Shoei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADOFUOKUSU KK, Shoei Co Ltd filed Critical ADOFUOKUSU KK
Priority to JP7298084A priority Critical patent/JPH09139325A/en
Publication of JPH09139325A publication Critical patent/JPH09139325A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent a gas and breakdown from being generated in a resin case of an aluminum electrolytic capacitor when aging it in case of its manufacture by using the resin case. SOLUTION: An electrolytic capacitor part, which includes a PPS (polyphenylene sulfide) resin case 15 having an opening 15A used both for injecting an electrolyte into it and for degasing it and having a capacitor main body 7 integrated into it and so formed as for the lead terminals of the body 7 to be sealed in an airtight way in it by a resin, is attached to a movable capacitor holding member 26 present in a vacuum pressure impregnation vessel 21 and used jointly as a positive side power supply voltage feeding path. Then, after at least the opening 15A is dipped into an electrolyte 36 in the vacuum pressure impregnation vessel 21 for the electrolyte 36 to be vacuum-impregnated into the resin case 15, in the intact state, using the anode foil of the capacitor main body 7 as a positive electrode side and the electrolyte 36 as a negative electrode side, an aging current for forming an oxide film on the anode foil is made to flow through the oxide film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルミニウム電解
コンデンサを製造する工程中、特に、エージング工程中
に発生するガスに起因し、ケース内部圧力が上昇して破
壊に至る事故を抑止できるようにした電解コンデンサを
製造する方法及びそれを製造する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention makes it possible to prevent an accident that may cause destruction due to an increase in internal pressure of a case due to a gas generated during a process of manufacturing an aluminum electrolytic capacitor, particularly during an aging process. The present invention relates to a method for manufacturing an electrolytic capacitor and an apparatus for manufacturing the same.

【0002】一般に、アルミニウム電解コンデンサを製
造する場合、アルミニウム陽極箔に形成した酸化膜が欠
落する場合があるので、それをエージング工程で修復す
ることが行われている。
In general, when an aluminum electrolytic capacitor is manufactured, an oxide film formed on an aluminum anode foil may be lost, so that it is repaired in an aging process.

【0003】然しながら、エージングの際に発生するガ
スが原因となって、事故が発生する場合があるので、そ
の問題を解決しなければならないが、本発明に依れば、
それに対処する一手段が提供される。
However, since the gas generated during aging may cause an accident, the problem must be solved. According to the present invention, however,
One means of dealing with it is provided.

【0004】[0004]

【従来の技術】図3及び図4は標準的な電解コンデンサ
を製造する方法を説明する為の工程要所に於けるコンデ
ンサ諸部材を表す要部斜面説明図であり、以下、各図を
参照しつつ解説する。
2. Description of the Related Art FIG. 3 and FIG. 4 are perspective views of principal parts showing capacitor members in process steps for explaining a method of manufacturing a standard electrolytic capacitor. I will explain while doing it.

【0005】図3(A)参照 3−(1) 例えば鉄(Fe)或いは銅(Cu)の線材からなるリー
ド線1A及び端部をプレスして扁平にしたアルミニウム
(Al)からなる取り付け部1Bを溶接することに依っ
て結合してリード端子1を形成する。
3 (A) 3- (1) For example, a lead wire 1A made of a wire material of iron (Fe) or copper (Cu) and a mounting portion 1B made of aluminum (Al) which is flattened by pressing an end portion. Are joined together by welding to form the lead terminal 1.

【0006】図3(B)参照 3−(2) エッチャントを例えば塩酸又は硫酸、硝酸、酢酸などの
混合液とするウエット・エッチング法を適用することに
依り、アルミニウムを材料とする陽極箔2の表面にエッ
チングを施すことに依って粗面化する。
See FIG. 3B. 3- (2) By applying a wet etching method using an etchant as a mixed solution of hydrochloric acid or sulfuric acid, nitric acid, acetic acid or the like, the anode foil 2 made of aluminum is used. The surface is roughened by etching.

【0007】3−(3) 陽極酸化法を適用することに依り、陽極箔2を電解液中
に浸漬して表面の化成を行って酸化膜を形成する。
3- (3) By applying the anodic oxidation method, the anode foil 2 is dipped in an electrolytic solution to form the surface thereof to form an oxide film.

【0008】3−(4) 超音波溶接法或いはかしめ法などを適用することに依
り、陽極箔2にリード端子1を固着する。
3- (4) The lead terminal 1 is fixed to the anode foil 2 by applying an ultrasonic welding method or a caulking method.

【0009】図3(C)及び(D)参照 3−(5) 陽極箔2と同じ方法で、アルミニウムからなる陰極箔3
にリード端子1を固着する。
3 (C) and 3 (D) 3- (5) In the same manner as the anode foil 2, the cathode foil 3 made of aluminum is used.
The lead terminal 1 is fixed to.

【0010】3−(6) 陽極箔2、絶縁紙からなるセパレータ4、陰極箔3、絶
縁紙からなるセパレータ5を重ね、その全体を巻き込ん
で円柱状とし、端部を巻き留めテープ6で留めてコンデ
ンサ本体7を形成する。
3- (6) The anode foil 2, the separator 4 made of insulating paper, the cathode foil 3, and the separator 5 made of insulating paper are piled up, and the whole is rolled into a columnar shape, and the ends are fastened with a fastening tape 6. To form the capacitor body 7.

【0011】3−(7) コンデンサ本体7を真空含浸装置にセットし、装置内を
減圧することでコンデンサ本体7中の空気を排除してか
ら駆動用電解液の注入を行う。その際の注入は、陽極箔
2を粗面にすることで生成させた細孔内にまで電解液が
入り込むように行う。
3- (7) The capacitor main body 7 is set in a vacuum impregnating device, and the air inside the capacitor main body 7 is eliminated by depressurizing the inside of the device, and then the driving electrolytic solution is injected. The injection at that time is performed so that the electrolytic solution enters the pores generated by roughening the anode foil 2.

【0012】図4(A)及び(B)参照 4−(1) コンデンサ本体7から導出されているリード線1Aにゴ
ムからなる封止体8を圧入してから、アルミニウム・ケ
ース9を被せ、封止体8とアルミニウム・ケース9との
当接部分にカーリングと呼ばれる巻き締め部10を形成
して封止する。
4 (A) and 4 (B) 4- (1) A sealing body 8 made of rubber is press-fitted into the lead wire 1A led out from the capacitor body 7, and then an aluminum case 9 is covered. A winding tightening portion 10 called curling is formed at a contact portion between the sealing body 8 and the aluminum case 9 for sealing.

【0013】図4(C)参照 4−(2) 必要に応じて外装を施す。外装する場合には、メーカー
名、型番、定格、ロット番号、極性などを印刷した熱収
縮チューブ11で被覆することが行われている。
Refer to FIG. 4C. 4- (2) An exterior is provided as required. In the case of exterior packaging, it is performed by covering with a heat shrinkable tube 11 on which a manufacturer name, model number, rating, lot number, polarity, etc. are printed.

【0014】4−(3) 定格電圧よりも約10〔%〕程度高い電圧、及び、使用
温度上限の温度、例えば80〔℃〕程度に加温し、30
〔分〕から120〔分〕の範囲でエージングを行う。こ
れは、電解コンデンサの自己修復作用を利用して、加工
中に起こった主として陽極箔2に於ける酸化膜に関する
欠陥を修復する為である。
4- (3) A voltage higher by about 10% than the rated voltage and a temperature at the upper limit of the operating temperature, for example, about 80 [° C], and heated to 30
Aging is performed in the range of [minute] to 120 [minute]. This is because the self-repairing action of the electrolytic capacitor is utilized to repair defects mainly relating to the oxide film in the anode foil 2 that occur during processing.

【0015】このエージング条件は、電解コンデンサの
製造条件に依って異なり、各メーカーが適切と考えられ
る条件を種々と設定している。
The aging conditions differ depending on the manufacturing conditions of the electrolytic capacitor, and each manufacturer sets various conditions considered appropriate.

【0016】尚、コンデンサ本体7をアルミニウム・ケ
ース9に密封してからエージングを行う理由は、非密封
状態でエージングを行った場合、電解液がエージング装
置に付着したり、電解液が大気中に蒸発したり、或い
は、大気中の水分が電解液に取り込まれて組成が変化す
ることに依る。
The reason why the aging is performed after the capacitor body 7 is sealed in the aluminum case 9 is that when the aging is performed in a non-sealed state, the electrolytic solution adheres to the aging device or the electrolytic solution is exposed to the atmosphere. This is because the composition changes due to evaporation or moisture in the air taken into the electrolytic solution.

【0017】4−(4) 製品仕様に沿った検査を行って不良品を排除する。4- (4) Inspect according to product specifications to eliminate defective products.

【0018】前記のようにして製造された電解コンデン
サの寿命は、高々1000〔時間〕乃至2000〔時
間〕であって、そのように寿命が短い主な理由は、電解
液がゴムの封止体8を通って散失することに在る。
The life of the electrolytic capacitor manufactured as described above is at most 1000 [hours] to 2000 [hours], and the main reason for such a short life is that the electrolyte is a rubber sealant. It is in the loss through 8.

【0019】近年、電子機器では、プリント基板に電子
部品を取り付けてリフロー半田付けする表面実装が盛ん
であるが、そのような工程では、約10〔秒〕程度では
あるが、電子部品は200〔℃〕〜240〔℃〕の高温
に曝されるので、電解コンデンサに於いては、ゴムの封
止体8とリード端子1との封止部分から電解液が漏出す
る事故が発生し易い。
In recent years, in electronic equipment, surface mounting has been popular in which electronic parts are attached to a printed circuit board and reflow soldering is performed. In such a process, the electronic parts are 200 [200 seconds] although it takes about 10 seconds. Since it is exposed to a high temperature of [° C.] to 240 [° C.], in the electrolytic capacitor, an accident is likely to occur in which the electrolytic solution leaks from the sealing portion between the rubber sealing body 8 and the lead terminal 1.

【0020】そこで、本発明者は、さきに、電解液が散
失しない構造をもつ電解コンデンサを提供した(要すれ
ば、特願平7−135116号、を参照)。
Therefore, the present inventor previously provided an electrolytic capacitor having a structure in which the electrolytic solution is not dissipated (see Japanese Patent Application No. 7-135116, if necessary).

【0021】図5は改良された電解コンデンサを製造す
る方法を説明する為の工程要所に於けるコンデンサ諸部
材を表す要部斜面説明図であり、以下、各図を参照しつ
つ解説する。尚、図3及び図4に於いて用いた記号と同
記号は同部分を表すか或いは同じ意味を持つものとす
る。
FIG. 5 is a perspective view of a main portion showing various capacitor members at a process step for explaining a method for manufacturing an improved electrolytic capacitor, which will be described below with reference to the drawings. Note that the same symbols as those used in FIGS. 3 and 4 represent the same parts or have the same meanings.

【0022】図5(A)参照 5−(1) 図3について説明した工程と同じ工程を経てコンデンサ
本体7を製造する。
5 (A) 5- (1) The capacitor body 7 is manufactured through the same steps as those described with reference to FIG.

【0023】5−(2) ポリフェニレンサルファイド(polyphenyle
ne sulfide:PPS)樹脂からなる接着剤阻
止体14の孔にコンデンサ本体7から導出されているリ
ード端子1を挿通してから、頂面にカラー部分15Bで
囲まれた電解液注入兼ガス抜き用開口15Aが形成され
た同じくPPS樹脂を材料とするケース15を被せる。
尚、接着剤阻止体14の材料としては、PPS樹脂の
他、例えばマイラー(商品名)などのポリエチレンテレ
フタラート樹脂、テフロン(商品名 Du Pont社
米国)などのフッ素樹脂を用いることができる。
5- (2) Polyphenylene sulfide (polyphenyle)
nebulide (PPS) resin for inserting the lead terminal 1 led out from the capacitor main body 7 into the hole of the adhesive blocking body 14 and then for injecting and degassing the electrolyte solution surrounded by the collar portion 15B on the top surface. A case 15 also made of PPS resin, in which the opening 15A is formed, is covered.
In addition to the PPS resin, a polyethylene terephthalate resin such as Mylar (trade name) or a fluororesin such as Teflon (trade name Du Pont Co., USA) can be used as the material of the adhesive blocker 14.

【0024】図5(B)参照 5−(3) ケース15に於ける接着剤阻止体14側にエポキシ樹脂
などの接着剤16を被着し、温度160〔℃〕の高温で
時間30〔分〕の熱処理を行うことで接着剤16を硬化
させ、リード端子1の気密封止を行う。尚、図5(B)
では、ケース15の一部を切欠し、内部を透視した状態
で表してある。
5 (B) 5- (3) An adhesive 16 such as an epoxy resin is adhered to the adhesive blocking body 14 side of the case 15, and the temperature is set to 160 [° C.] for 30 minutes. ] The adhesive 16 is hardened by performing the heat treatment, and the lead terminal 1 is hermetically sealed. FIG. 5B
Then, a part of the case 15 is cut away and the inside is seen through.

【0025】5−(4) 全体を真空含浸装置にセットし、装置内を減圧すること
でケース15内の空気を開口15Aから排除してから、
同じく開口15Aを介して電解液の注入を行い、且つ、
ケース15内に余剰の電解液があれば除去する。
5- (4) The whole is set in a vacuum impregnation device, and the air inside the case 15 is removed from the opening 15A by depressurizing the inside of the device.
Similarly, the electrolytic solution is injected through the opening 15A, and
Excessive electrolyte solution is removed from the case 15.

【0026】図5(C)参照 5−(5) ケース15に於ける開口15Aの周囲には、カラー部分
15Bが形成されていいるので、そのカラー部分15B
に加熱こてを当接且つ押圧することに依って圧潰し、開
口15Aを閉塞密閉する。
5 (C) 5- (5) Since the collar portion 15B is formed around the opening 15A in the case 15, the collar portion 15B is formed.
The heating iron is crushed by abutting and pressing the iron to close and seal the opening 15A.

【0027】図5(D)参照 5−(6) ケース15にメーカー名、型番、定格、ロット番号、極
性などのマーキングを施し且つリード端子1を表面実装
に適するような形状にフォーミングするなどしてから、
エージング及び検査を行う。
5 (D). 5- (6) The case 15 is marked with the manufacturer's name, model number, rating, lot number, polarity, etc., and the lead terminal 1 is formed into a shape suitable for surface mounting. Since then
Perform aging and inspection.

【0028】前記したように、PPS樹脂からなるケー
ス15を用いた電解コンデンサに於いては、含浸した電
解液が散失することはないから、長期に亙って電解液を
保持することができる。
As described above, in the electrolytic capacitor using the case 15 made of PPS resin, the impregnated electrolytic solution does not dissipate, so that the electrolytic solution can be retained for a long period of time.

【0029】[0029]

【発明が解決しようとする課題】一般に、アルミニウム
電解コンデンサに於いては、前記したように、陽極箔2
の表面に印加電圧に耐え得る酸化膜を化成処理に依って
形成してあるが、他の部材と共に巻き込んでコンデンサ
本体7を形成するまでの間に欠落部を発生する。
Generally, in the aluminum electrolytic capacitor, as described above, the anode foil 2 is used.
An oxide film capable of withstanding an applied voltage is formed on the surface of the capacitor by a chemical conversion treatment, but a missing portion is generated until the capacitor body is formed by being rolled up with other members.

【0030】この欠落部が発生する主な箇所は、陽極箔
2の切断面、リード端子1が電解液と接する面、陽極箔
2とリード端子1とを例えばかしめに依って結合した部
分に発生する。
The main places where this missing portion occurs are in the cut surface of the anode foil 2, the surface where the lead terminal 1 contacts the electrolytic solution, and the portion where the anode foil 2 and the lead terminal 1 are joined by caulking, for example. To do.

【0031】陽極箔2に於ける酸化膜に欠落部が存在す
る場合、エージングを行うと、陽極箔2は欠落部を介し
て電解液と直に接しているから、その部分には電流が流
れることになる。
When the oxide film in the anode foil 2 has a missing portion, when aging is performed, the anode foil 2 is in direct contact with the electrolytic solution through the missing portion, so that a current flows through that portion. It will be.

【0032】即ち、電解液中の酸素イオンが陽極箔2に
流れ且つ水素イオンが陰極箔3に流れ、酸素イオンは陽
極箔2で電子を失って酸素となり、その酸素はアルミニ
ウムを酸化して酸化膜を生成するので、欠落部は修復さ
れる。
That is, oxygen ions in the electrolytic solution flow into the anode foil 2 and hydrogen ions flow into the cathode foil 3, the oxygen ions lose electrons in the anode foil 2 to become oxygen, and the oxygen oxidizes and oxidizes aluminum. The defect is repaired as it creates a film.

【0033】ところで、陰極箔3に於いては、水素イオ
ンが電子を得て水素となり、その一部は電解液に溶解す
るが、大部分は水素として膨張し、その水素は、欠落部
が酸化膜で完全に修復され、電流が流れなくなるまで発
生し続け、容器に圧力を及ぼすことになる。
By the way, in the cathode foil 3, hydrogen ions acquire electrons and become hydrogen, and a part of it dissolves in the electrolytic solution, but most of it expands as hydrogen, and the hydrogen is oxidized at the lacking part. It will be fully repaired at the membrane and will continue to occur until the current stops flowing, exerting pressure on the container.

【0034】この場合、図3及び図4について説明した
従来の電解コンデンサでは、殆ど問題は起こらない。そ
の理由は、封止体8の構成材料であるゴムが水素を透過
するので、時間を経れば、アルミニウム・ケース9内の
圧力は下がってしまうからである。
In this case, the conventional electrolytic capacitor described with reference to FIGS. 3 and 4 causes almost no problem. The reason is that the rubber, which is the constituent material of the sealing body 8, permeates hydrogen, so that the pressure in the aluminum case 9 decreases with time.

【0035】然しながら、図3及び図5について説明し
た方法で製造した改良された電解コンデンサでは大きな
問題になる。即ち、ケース15からのガスの放出量は、
図3及び図4について説明した電解コンデンサと比較す
ると、約1/100以下であり、従って、ケース15内
でガスが発生することを抑止しないと内圧が上昇して破
壊に至る事故が起こる。
However, the improved electrolytic capacitor manufactured by the method described with reference to FIGS. 3 and 5 poses a serious problem. That is, the amount of gas released from the case 15 is
Compared with the electrolytic capacitors described with reference to FIGS. 3 and 4, it is about 1/100 or less. Therefore, if the generation of gas in the case 15 is not suppressed, the internal pressure rises and an accident that causes destruction occurs.

【0036】このような場合の水素発生量を少しでも低
減する為、陽極箔2に取り付けるリード端子1に予め酸
化膜を生成させる化成処理を施して使用したり、電解液
に水素吸収剤を添加するなどの対策も試みられている
が、何れも根本的な解決にはなっていない。
In order to reduce the amount of hydrogen generated in such a case as much as possible, the lead terminal 1 attached to the anode foil 2 is used after being subjected to a chemical conversion treatment for forming an oxide film in advance, or a hydrogen absorbent is added to the electrolytic solution. Although measures such as doing so have been attempted, none of them have been a fundamental solution.

【0037】本発明は、樹脂ケースにコンデンサ本体を
密封したアルミニウム電解コンデンサを製造する工程な
どに簡単な改変を加えることで、エージングを行って
も、樹脂ケース内にはガスが発生せず、従って、破壊な
どが起こらないようにする。
According to the present invention, no gas is generated in the resin case even after aging by making a simple modification to the process of manufacturing an aluminum electrolytic capacitor in which the capacitor body is sealed in the resin case. , So that no destruction will occur.

【0038】[0038]

【課題を解決するための手段】本発明では、エージング
を行う際、酸化膜を修復すべき陽極箔と対を成して電流
を流す為に必要な陰極には、電解コンデンサの陰極箔を
用いず、真空含浸させる為の電解液中に陰極を別設して
代替し、樹脂ケース内に在る陰極箔には、水素を発生さ
せないことが基本になっている。
According to the present invention, the cathode foil of the electrolytic capacitor is used as the cathode required to flow the current by forming a pair with the anode foil whose oxide film is to be repaired during aging. Instead, a cathode is separately provided in the electrolytic solution for vacuum impregnation, and hydrogen is not generated in the cathode foil in the resin case.

【0039】一般に、エージング電流は、エージング初
期に大きく流れ、酸化膜の化成が進行するにつれて減少
し、実測では、通電してから2〔分〕後に約1/50程
度になってしまう。
Generally, the aging current largely flows in the initial stage of aging and decreases as the formation of the oxide film progresses, and in actual measurement, it becomes about 1/50 2 [minutes] after energization.

【0040】エージング中に発生する水素の量は電流に
比例するので、真空含浸を行うと同時に初期エージング
を行って、発生する水素を除去しておけば、電解コンデ
ンサに於ける樹脂ケースを完全密閉してから、更に最終
の仕上げエージングを長時間行った場合であっても、発
生する水素は極微量であって、樹脂ケースが破壊に至る
ような圧力を及ぼすことは皆無である。
Since the amount of hydrogen generated during aging is proportional to the electric current, if the hydrogen generated is removed by performing initial aging simultaneously with vacuum impregnation, the resin case in the electrolytic capacitor is completely sealed. Then, even when the final finishing aging is further performed for a long time, the amount of hydrogen generated is extremely small, and there is no possibility of exerting a pressure that causes the resin case to be destroyed.

【0041】前記したところから、本発明に依る電解コ
ンデンサの製造方法及び製造装置に於いては、
From the above, in the method and apparatus for manufacturing the electrolytic capacitor according to the present invention,

【0042】(1)電解液注入用開口(例えば電解液注
入兼ガス抜き用開口15A)が設けられ且つコンデンサ
本体(例えばコンデンサ本体7)を内蔵してリード端子
(例えばリード端子1)を樹脂で気密封止した樹脂ケー
ス(例えばPPS樹脂を材料とするケース15)を含む
電解コンデンサ部品を真空含浸槽(例えば真空含浸槽2
1)内に在る正側電源電圧供給路を兼ねたコンデンサ支
持部材(例えば正側電源電圧供給路を兼ねたコンデンサ
可動支持部材26)に取り付ける工程と、少なくとも前
記電解液注入用開口を前記真空含浸槽内の電解液(例え
ば電解液36)に浸漬して前記樹脂ケース内に真空含浸
を行う工程と、前記コンデンサ本体の陽極箔(例えば陽
極箔2)を正極側とすると共に前記電解液を負極側とし
て酸化膜を化成するエージング電流を流す工程とが含ま
れてなることを特徴とするか、或いは、
(1) An opening for injecting an electrolytic solution (for example, an opening 15A for injecting an electrolytic solution and degassing) is provided and a capacitor main body (for example, capacitor main body 7) is built in, and a lead terminal (for example, lead terminal 1) is made of resin. A vacuum impregnation tank (for example, the vacuum impregnation tank 2) is provided with an electrolytic capacitor component including a hermetically sealed resin case (for example, a case 15 made of PPS resin).
1) Attaching to a capacitor support member (for example, a capacitor movable support member 26 also serving as a positive power supply voltage supply passage) that also serves as a positive power supply voltage supply passage in the inside, and at least the opening for injecting the electrolytic solution is the vacuum. A step of immersing the resin case in vacuum by impregnating it in an electrolytic solution (for example, electrolytic solution 36) in an impregnation tank, and setting the anode foil (for example, anode foil 2) of the capacitor body on the positive electrode side and Or a step of passing an aging current for forming an oxide film on the negative electrode side, or

【0043】(2)前記(1)に於いて、コンデンサ本
体の陽極箔に超音波振動を伝える為に真空含浸槽内の電
解液に超音波振動を加えることを特徴とするか、或い
は、
(2) In (1) above, ultrasonic vibration is applied to the electrolytic solution in the vacuum impregnation tank in order to transmit ultrasonic vibration to the anode foil of the capacitor body, or

【0044】(3)前記(1)に於いて、エージング終
了後に再度真空含浸を行う工程が付加されてなることを
特徴とするか、或いは、
(3) In the above (1), a step of performing vacuum impregnation again after completion of aging is added, or

【0045】(4)真空含浸槽(例えば真空含浸槽2
1)内に突出して正側電源電圧供給路を兼ねるコンデン
サ支持部材(例えば正側電源電圧供給路を兼ねるコンデ
ンサ可動支持部材26)及び前記真空含浸槽内の電解液
(例えば電解液36)中に在って電解液を負極側とする
陰極として作用する電極(例えば陰極27)を備えてな
ることを特徴とするか、或いは、
(4) Vacuum impregnation tank (for example, vacuum impregnation tank 2
1) Capacitor supporting member projecting inward and also serving as a positive-side power supply voltage supply path (for example, capacitor movable supporting member 26 also serving as a positive-side power supply voltage supply path) and an electrolytic solution (for example, electrolytic solution 36) in the vacuum impregnation tank. Or an electrode (for example, a cathode 27) that acts as a cathode with the electrolytic solution on the negative electrode side, or

【0046】(5)前記(4)に於いて、電解液に超音
波振動を伝える為の超音波加振装置(例えば超音波加振
装置29)を備えてなることを特徴とする。
(5) The above (4) is characterized in that an ultrasonic vibration device (for example, an ultrasonic vibration device 29) for transmitting ultrasonic vibration to the electrolytic solution is provided.

【0047】前記手段を採ることに依り、電解コンデン
サのエージング中、勿論、陰極には水素が発生するので
あるが、その陰極は、コンデンサ本体の陰極箔ではな
く、電解コンデンサの樹脂ケース外に別設されたもので
あるから、そこで発生する水素は全て外部に放散されて
しまうので、樹脂ケースの内圧が高まって破壊に至るよ
うな事故が発生することは皆無である。従って、電解液
の散失がなく、長寿命であって、且つ、安全性が高い電
解コンデンサを容易に実現させることができる。
By adopting the above means, of course, during the aging of the electrolytic capacitor, hydrogen is generated at the cathode, but the cathode is not the cathode foil of the capacitor body but the outside of the resin case of the electrolytic capacitor. Since it is installed, all the hydrogen generated there will be dissipated to the outside, so there will be no accident that the internal pressure of the resin case rises and it will be destroyed. Therefore, it is possible to easily realize an electrolytic capacitor which does not disperse the electrolytic solution, has a long life, and is highly safe.

【0048】[0048]

【発明の実施の形態】図1及び図2は本発明を実施する
場合に用いる電解コンデンサ製造装置を表す要部切断側
面説明図であり、以下、これ等の図を参照しつつ解説す
る。尚、図3及び図5に於いて用いた記号と同記号は同
部分を表すか或いは同じ意味を持つものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 and 2 are side sectional explanatory views showing a main part of an electrolytic capacitor manufacturing apparatus used for carrying out the present invention, which will be described below with reference to these drawings. The same symbols as those used in FIGS. 3 and 5 represent the same parts or have the same meanings.

【0049】各図に於いて、21は真空含浸槽、22は
電解液送入管、23はバルブ、24は排気管、25は切
り替えバルブ、26は正側電源電圧供給路を兼ねたコン
デンサ可動支持部材、27は陰極、28は直流電源、2
9は超音波加振装置、30は振動子、31は液温制御ユ
ニット、32は電解液タンク、33は真空ポンプ、34
は排気管、35は外気供給管、36は電解液、37は完
成途中にある電解コンデンサ、37Aは陽極側リード端
子、37Bは陰極側リード端子、38は水素の気泡をそ
れぞれ示している。
In each drawing, 21 is a vacuum impregnation tank, 22 is an electrolytic solution inlet pipe, 23 is a valve, 24 is an exhaust pipe, 25 is a switching valve, and 26 is a movable capacitor that also serves as a positive power supply voltage supply path. Support member, 27 is a cathode, 28 is a DC power source, 2
9 is an ultrasonic vibration device, 30 is a vibrator, 31 is a liquid temperature control unit, 32 is an electrolytic solution tank, 33 is a vacuum pump, 34
Is an exhaust pipe, 35 is an outside air supply pipe, 36 is an electrolytic solution, 37 is an electrolytic capacitor in the process of completion, 37A is an anode side lead terminal, 37B is a cathode side lead terminal, and 38 is a hydrogen bubble.

【0050】図示の電解コンデンサ製造装置は真空含浸
装置と考えて良く、図1は、コンデンサ可動支持部材2
6を操作して、電解コンデンサ37が電解液36に触れ
ないようにした状態(電解液含浸前)を、また、図2
は、触れるようにした状態(電解液含浸中)をそれぞれ
表している。
The illustrated electrolytic capacitor manufacturing apparatus can be considered as a vacuum impregnating apparatus, and FIG.
2 is operated to prevent the electrolytic capacitor 37 from touching the electrolytic solution 36 (before impregnation with the electrolytic solution).
Indicates the state of being touched (during impregnation with the electrolytic solution).

【0051】図示の装置を用い、完成途中の電解コンデ
ンサ37に電解液の真空含浸を行う場合について、図1
並びに図2を参照しつつ説明する。
FIG. 1 shows a case where the electrolytic capacitor 37 in the process of completion is vacuum-impregnated with an electrolytic solution using the apparatus shown in FIG.
A description will be given with reference to FIG.

【0052】図1参照 1−(1) 図示装置に於けるバルブ23を開放して所要量の電解液
36を電解液タンク32から真空含浸槽21内に移し、
電解液36の液面が所定高さに維持されたらバルブ23
を閉止する。
1- (1) The valve 23 in the illustrated apparatus is opened to transfer a required amount of the electrolytic solution 36 from the electrolytic solution tank 32 into the vacuum impregnation tank 21,
When the liquid surface of the electrolytic solution 36 is maintained at a predetermined height, the valve 23
Is closed.

【0053】この場合、真空含浸作業が連続して行われ
ているのであれば、電解液タンク32から真空含浸槽2
1内に移す電解液36の量は、前回真空含浸作業に於け
る電解液36の消費を補う程度である。
In this case, if the vacuum impregnation work is continuously performed, the electrolytic solution tank 32 is moved to the vacuum impregnation tank 2.
The amount of the electrolytic solution 36 to be transferred into the No. 1 is such that the consumption of the electrolytic solution 36 in the previous vacuum impregnation work is compensated.

【0054】1−(2) 液温制御ユニット31を作動して、電解液36の液温が
適正になるように維持する。
1- (2) The liquid temperature control unit 31 is operated to maintain the liquid temperature of the electrolytic solution 36 at an appropriate level.

【0055】本発明では、特に電解液36の温度を規定
する必要はないが、真空含浸及びエージングの各処理は
電解液36の温度と深い係わり合いがあるので、電解液
36の種類に適した温度にコントロールした方が良い。
In the present invention, it is not necessary to specify the temperature of the electrolytic solution 36, but the vacuum impregnation and aging treatments are deeply related to the temperature of the electrolytic solution 36, and are suitable for the type of the electrolytic solution 36. It is better to control the temperature.

【0056】1−(3) 電解コンデンサ37を真空含浸槽21内にセットする
が、この場合、ケース15の開口15Aが真空含浸槽2
1の底に対向するように向け、そして、電解コンデンサ
37が電解液36の表面から離隔するように位置設定さ
れたコンデンサ可動支持部材26に陽極側リード端子3
7Aを接続して行う。
1- (3) The electrolytic capacitor 37 is set in the vacuum impregnation tank 21. In this case, the opening 15A of the case 15 is in the vacuum impregnation tank 2.
The anode side lead terminal 3 is attached to the capacitor movable support member 26 which is positioned so as to face the bottom of the electrolytic capacitor 37 and is positioned so that the electrolytic capacitor 37 is separated from the surface of the electrolytic solution 36.
7A is connected.

【0057】1−(4) 切り替えバルブ25は真空ポンプ33と連通するように
切り替えた状態にして、真空ポンプ33を作動させて真
空含浸槽21内の排気を行う。
1- (4) The switching valve 25 is switched to communicate with the vacuum pump 33, and the vacuum pump 33 is operated to evacuate the vacuum impregnation tank 21.

【0058】この際、電解コンデンサ37に於けるケー
ス15内も開口15Aを介して排気され、真空状態とな
る。
At this time, the inside of the case 15 of the electrolytic capacitor 37 is also evacuated through the opening 15A to be in a vacuum state.

【0059】図2参照 2−(1) 充分な排気が行われた後、コンデンサ可動支持部材26
を操作して、電解コンデンサ37に於けるケース15の
少なくとも開口15Aが電解液36中に浸漬される状態
とする。
See FIG. 2 2- (1) After sufficient exhaustion, the condenser movable support member 26
Is operated so that at least the opening 15A of the case 15 in the electrolytic capacitor 37 is immersed in the electrolytic solution 36.

【0060】2−(2) 切り替えバルブ25を操作して外気供給管35と連通さ
せ、真空含浸槽21内を大気圧の状態にすると電解液3
6は開口15Aを介してケース15内に入り込んで充満
する。
2- (2) When the switching valve 25 is operated to communicate with the outside air supply pipe 35 and the inside of the vacuum impregnation tank 21 is brought to the atmospheric pressure state, the electrolytic solution 3
6 enters the case 15 through the opening 15A and is filled there.

【0061】2−(3) 直流電源28から電解コンデンサ37の陽極側リード端
子37Aに(+)電圧を、又、電解液36中に在る陰極
27に(−)電圧をそれぞれ印加してエージングを行
う。
2- (3) Aging is performed by applying a (+) voltage from the DC power source 28 to the anode side lead terminal 37A of the electrolytic capacitor 37 and a (-) voltage to the cathode 27 in the electrolytic solution 36. I do.

【0062】ここで行うエージングは、通常、一次エー
ジングと呼ばれ、この一次エージングが行われている
間、超音波加振装置29を駆動し、電解液36に超音波
振動を加える。
The aging performed here is usually called primary aging. While the primary aging is performed, the ultrasonic vibration device 29 is driven to apply ultrasonic vibration to the electrolytic solution 36.

【0063】電解コンデンサ37の陽極箔に形成された
酸化膜に欠落部がある場合には、陽極→欠落部→電解液
36→陰極27の経路で電流が流れ、欠落部では電気分
解に起因する酸素が発生し、欠落部を酸化して酸化膜が
生成され、修復が行われる。
When the oxide film formed on the anode foil of the electrolytic capacitor 37 has a missing portion, a current flows through the path of the anode → the missing portion → the electrolytic solution 36 → the cathode 27, and the missing portion is caused by electrolysis. Oxygen is generated, the missing portion is oxidized, an oxide film is generated, and repair is performed.

【0064】この場合、ケース15内は電解液36で満
たされているので、陽極側リード端子37Aの根元部分
も含めて陽極側のアルミニウム面は全て化成処理されて
酸化膜で覆うことができる。
In this case, since the case 15 is filled with the electrolytic solution 36, the entire aluminum surface on the anode side including the root portion of the anode lead terminal 37A can be subjected to chemical conversion treatment and covered with an oxide film.

【0065】このように、エージング中に陽極側リード
端子37Aが酸化膜で覆われることで得られる効果は意
外に大きい。
As described above, the effect obtained by covering the anode side lead terminal 37A with the oxide film during the aging is surprisingly large.

【0066】即ち、本発明であるか、或いは、従来の技
術であるかに拘わらず、コンデンサ本体に電解液を真空
含浸した後、ケース内に封止する電解液は必要最低限に
留める必要があり、従って、コンデンサ本体に含浸され
ているもの以外は排出してから封止するようにしてい
る。
That is, regardless of the present invention or the conventional technique, it is necessary to keep the electrolytic solution sealed in the case to the minimum necessary after the capacitor body is vacuum-impregnated with the electrolytic solution. Therefore, the capacitors other than those impregnated in the capacitor body are discharged and then sealed.

【0067】従って、ケース内は、コンデンサ本体が占
有している領域以外には空間が存在し、リード端子の根
元部分は、電解液で濡れる場合と濡れない場合があり、
それが原因となって、従来の技術に依るエージングで
は、前記の部分に於ける化成処理は不充分であることが
多く、振動などに起因する電解液の移動に依って、前記
化成処理が不充分な箇所に電解液が被着した場合、漏洩
電流が増加して特性不良などの問題を発生するが、本発
明に依った場合には、そのようなことは起きない。
Therefore, in the case, there is a space other than the area occupied by the capacitor body, and the root of the lead terminal may or may not get wet with the electrolytic solution.
For that reason, in the aging according to the conventional technique, the chemical conversion treatment in the above-mentioned part is often insufficient, and the chemical conversion treatment is not sufficient due to the movement of the electrolytic solution due to vibration or the like. When the electrolytic solution adheres to a sufficient portion, the leakage current increases and problems such as defective characteristics occur. However, such a problem does not occur according to the present invention.

【0068】さて、電解液36中に在る陰極27に於い
ては、同じく電気分解に依って気泡38として指示して
あるように水素が発生するのであるが、その水素は電解
コンデンサ37に於けるケース15の外で発生して真空
含浸槽21内に放出されてしまうので、ケース15の内
圧を上昇させるなどの問題は発生しない。
At the cathode 27 in the electrolytic solution 36, hydrogen is also generated by electrolysis as indicated by bubbles 38, and the hydrogen is generated in the electrolytic capacitor 37. Since it is generated outside the case 15 and is discharged into the vacuum impregnation tank 21, there is no problem such as an increase in the internal pressure of the case 15.

【0069】前記一次エージングを行っている間中、電
解液36には超音波加振装置29に依って超音波振動を
加えられているのであるが、その超音波振動は陽極箔表
面にも達し、陽極箔表面に付着している微小気泡を振動
させて且つ移動させる効果があるので、欠落部は微小気
泡に覆われることなく電解液中に表出され、酸化膜の修
復はムラなく緻密に行われる。
During the primary aging, ultrasonic vibration is applied to the electrolytic solution 36 by the ultrasonic vibration device 29, and the ultrasonic vibration reaches the surface of the anode foil. Since it has the effect of vibrating and moving the micro bubbles adhering to the surface of the anode foil, the missing parts are exposed in the electrolytic solution without being covered by the micro bubbles, and the oxide film can be repaired uniformly and densely. Done.

【0070】また、エージング中、電解コンデンサ37
のコンデンサ本体7は電解液36中に浸漬されるので、
電解コンデンサ37を1個のみでなく、多数個をバッチ
処理する場合であっても、超音波加振装置39の超音波
振動は、電解液36を介して全ての電解コンデンサ37
に伝搬させることができる。
During aging, the electrolytic capacitor 37
Since the capacitor body 7 of is soaked in the electrolytic solution 36,
Even when not only one electrolytic capacitor 37 but also a large number of electrolytic capacitors 37 are batch-processed, ultrasonic vibration of the ultrasonic vibration device 39 causes all electrolytic capacitors 37 to pass through the electrolytic solution 36.
Can be propagated to

【0071】前記のような工程を経て電解液36の真空
含浸を行った電解コンデンサ37を真空含浸槽21から
取り出し、図3及び図5について説明した従来の技術と
同様にして、ケース15の液密封止を行って完成する。
The electrolytic capacitor 37, which has been vacuum-impregnated with the electrolytic solution 36 through the above-described steps, is taken out of the vacuum impregnation tank 21, and the liquid of the case 15 is removed in the same manner as the conventional technique described with reference to FIGS. 3 and 5. Densely sealed to complete.

【0072】尚、前記一次エージング実施中、超音波振
動が原因になって、ケース15内に気泡が発生してしま
う場合もあるが、その際は、前記工程を繰り返し行うこ
とで気泡はケース15から外に放出され、更に良い特性
を得ることができる。
During the primary aging, ultrasonic vibration may cause bubbles to be generated in the case 15. In that case, by repeating the above steps, the bubbles are generated in the case 15. It is released to the outside, and better characteristics can be obtained.

【0073】実験に依れば、完成された電解コンデンサ
37は、電解液の散失が皆無であることから、温度10
5〔℃〕の高温雰囲気中に於いて、10000〔時間〕
を越える寿命を維持することができ、いかも、そのよう
な液密性が高い封止を行っているにも拘わらず、ケース
15内の水素ガス圧力が上昇して破壊されるなどの事故
も発生しなかった。
According to the experiment, the completed electrolytic capacitor 37 has a temperature of 10% since the electrolyte solution is not scattered.
10,000 [hours] in a high temperature atmosphere of 5 [° C]
It is possible to maintain the service life of more than 80%, and even if the sealing is performed with high liquid tightness, the hydrogen gas pressure in the case 15 rises and the accident such as destruction occurs. Did not occur.

【0074】本発明に於いては、前記実施の形態に限ら
れることなく、他に多くの改変を実現することができ
る。
The present invention is not limited to the above embodiment, and many other modifications can be realized.

【0075】例えば、図1及び図2について説明した装
置に於いては、コンデンサ可動指示部材26を操作して
電解コンデンサ37を電解液36の液面から離隔した状
態に維持したり、或いは、電解液36中に浸漬するなど
しているが、これは、電解コンデンサ37を固定してセ
ットし、電解液36の液面を上下する構成を採っても同
効である。
For example, in the apparatus described with reference to FIGS. 1 and 2, the condenser movable indicator member 26 is operated to keep the electrolytic condenser 37 separated from the liquid surface of the electrolytic solution 36, or Although it is immersed in the liquid 36, this has the same effect even if the electrolytic capacitor 37 is fixedly set and the liquid surface of the electrolytic solution 36 is raised and lowered.

【0076】電解液36の液面を上下させるには、その
動作をさせる際、バルブ23を開放し、電解液タンク3
2中の電解液36を加圧或いは減圧すると簡単である
が、バルブ23を開放した状態で真空含浸槽21内の真
空度を加減するなど、多くの手段が採ることができる。
To raise or lower the liquid level of the electrolytic solution 36, the valve 23 is opened and the electrolytic solution tank 3 is operated when the operation is performed.
Although it is easy to pressurize or depressurize the electrolytic solution 36 in 2, it is possible to employ various means such as adjusting the degree of vacuum in the vacuum impregnation tank 21 with the valve 23 opened.

【0077】また、図1及び図2では、電解コンデンサ
37を1個のみ示して説明したが、多数の電解コンデン
サ37を並べ、各々の陽極箔を並列して正側電源電圧供
給路を兼ねたコンデンサ可動支持部材26に接続するこ
とに依って、同時にバッチ処理することも可能である。
Although only one electrolytic capacitor 37 is shown and described in FIGS. 1 and 2, a large number of electrolytic capacitors 37 are arranged and the respective anode foils are arranged in parallel to serve as the positive power supply voltage supply path. By connecting to the condenser movable support member 26, it is possible to perform batch processing at the same time.

【0078】そのようなバッチ処理を行う場合、従来の
技術であれば、各陽極箔を正側電源電圧供給路に並列的
に接続すると共に陰極箔も負側電源電圧供給路に並列的
に接続することになるから、1個の電解コンデンサに短
絡が生じていると、全ての電解コンデンサに於ける端子
電圧は零になってしまい、エージングを行うことは不可
能である。
When performing such batch processing, according to the conventional technique, each anode foil is connected in parallel to the positive power supply voltage supply path and the cathode foil is also connected in parallel to the negative power supply voltage supply path. Therefore, if a short circuit occurs in one electrolytic capacitor, the terminal voltage in all electrolytic capacitors becomes zero, and aging cannot be performed.

【0079】然しながら、本発明の場合、エージング
中、正常な電解コンデンサの陰極箔はフローティングの
状態に在り、短絡を起こしている電解コンデンサのみ
は、陰極箔にも陽極箔を介して正電圧が印加されて酸化
膜が生成されることになり、従って、短絡を起こした電
解コンデンサは不良品となるが、他の電解コンデンサは
何ら支障なくエージングを実施することができる。
However, in the case of the present invention, during aging, the cathode foil of the normal electrolytic capacitor is in a floating state, and only the electrolytic capacitor which has a short circuit is applied with a positive voltage through the anode foil also to the cathode foil. As a result, an oxide film is generated, and thus the electrolytic capacitor that caused the short circuit becomes a defective product, but other electrolytic capacitors can perform aging without any trouble.

【0080】また、前記一連の作業を行う場合、エージ
ング電圧を印加したり或いは遮断したりする必要はな
く、対象とする電解コンデンサを装置にセットした後
は、エージング電圧を常に印加状態としておくことがで
きる。
Further, when performing the series of operations, it is not necessary to apply or cut off the aging voltage, and the aging voltage should always be applied after the target electrolytic capacitor is set in the device. You can

【0081】そのようにすると、真空含浸が始まって、
電解コンデンサの陽極箔に電解液が接触した部分からエ
ージングが始まり、含浸が進行するにつれて徐々にエー
ジング面積が拡がるので、突入電流を抑える働きがある
ので、装置に於ける種々な耐性の面では好ましい。この
場合、電解コンデンサを電解液から引き離した時点でエ
ージング電流は遮断状態となる。
By doing so, vacuum impregnation begins,
Aging starts from the part where the electrolytic solution is in contact with the anode foil of the electrolytic capacitor, and the aging area gradually expands as the impregnation progresses, so it has the function of suppressing the inrush current, which is preferable in terms of various resistance in the device. . In this case, the aging current is cut off when the electrolytic capacitor is separated from the electrolytic solution.

【0082】また、本来、真空含浸とエージングとは別
の工程であるから、例えば一つの真空含浸槽で電解コン
デンサをセットして真空含浸を行ってから、他の電解液
槽に移してエージングを行うようにしても良く、その場
合、真空含浸とエージングとを含めた工程時間は短縮さ
れることは勿論であり、また、真空含浸専用の真空含浸
槽には、陰極となる電極を設ける必要はなくなる。
Since the vacuum impregnation and the aging are originally separate processes, for example, the electrolytic capacitor is set in one vacuum impregnation tank to carry out vacuum impregnation, and then transferred to another electrolytic solution tank for aging. However, in that case, the process time including the vacuum impregnation and the aging is of course shortened, and it is not necessary to provide the cathode electrode in the vacuum impregnation tank dedicated to the vacuum impregnation. Disappear.

【0083】[0083]

【発明の効果】本発明に依る電解コンデンサの製造方法
及び製造装置に於いては、電解液注入用開口が設けられ
且つコンデンサ本体を内蔵してリード端子を樹脂で気密
封止した樹脂ケースを含む電解コンデンサ部品を真空含
浸槽内に在る正側電源電圧供給路を兼ねたコンデンサ支
持部材に取り付け、少なくとも前記電解液注入用開口を
前記真空含浸槽内の電解液に浸漬して前記樹脂ケース内
に真空含浸を行い、前記コンデンサ本体の陽極箔を正極
側とすると共に前記電解液を負極側として酸化膜を化成
するエージング電流を流すようにしている。
The method and apparatus for manufacturing an electrolytic capacitor according to the present invention includes a resin case which is provided with an opening for injecting an electrolytic solution, has a built-in capacitor body, and hermetically seals lead terminals with resin. The electrolytic capacitor part is attached to a capacitor supporting member also serving as a positive-side power supply voltage supply path in the vacuum impregnation tank, and at least the opening for injecting the electrolytic solution is immersed in the electrolytic solution in the vacuum impregnating tank so as to be in the resin case. Is subjected to vacuum impregnation so that the anode foil of the capacitor body is on the positive electrode side and the electrolytic solution is on the negative electrode side, and an aging current for forming an oxide film is passed.

【0084】前記構成を採ることに依り、電解コンデン
サのエージング中、勿論、陰極には水素が発生するので
あるが、その陰極は、コンデンサ本体の陰極箔ではな
く、電解コンデンサの樹脂ケース外に別設されたもので
あるから、そこで発生する水素は全て外部に放散されて
しまうので、樹脂ケースの内圧が高まって破壊に至るよ
うな事故が発生することは皆無である。従って、電解液
の散失がなく、長寿命であって、且つ、安全性が高い電
解コンデンサを容易に実現させることができる。
According to the above configuration, hydrogen is generated in the cathode, of course, during the aging of the electrolytic capacitor. However, the cathode is not the cathode foil of the capacitor body but the outside of the resin case of the electrolytic capacitor. Since it is installed, all the hydrogen generated there will be dissipated to the outside, so there will be no accident that the internal pressure of the resin case rises and it will be destroyed. Therefore, it is possible to easily realize an electrolytic capacitor which does not disperse the electrolytic solution, has a long life, and is highly safe.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する場合に用いる電解コンデンサ
製造装置を表す要部切断側面説明図である。
FIG. 1 is a side sectional explanatory view showing a main part of an electrolytic capacitor manufacturing apparatus used for carrying out the present invention.

【図2】本発明を実施する場合に用いる電解コンデンサ
製造装置を表す要部切断側面説明図である。
FIG. 2 is a side cut side explanatory view showing an essential part of an electrolytic capacitor manufacturing apparatus used when implementing the present invention.

【図3】標準的な電解コンデンサを製造する方法を説明
する為の工程要所に於けるコンデンサ諸部材を表す要部
斜面説明図である。
FIG. 3 is a perspective view of a main part showing various capacitor members in process steps for explaining a method for manufacturing a standard electrolytic capacitor.

【図4】標準的な電解コンデンサを製造する方法を説明
する為の工程要所に於けるコンデンサ諸部材を表す要部
斜面説明図である。
FIG. 4 is a perspective view of a main part showing various capacitor members in process steps for explaining a method for manufacturing a standard electrolytic capacitor.

【図5】改良された電解コンデンサを製造する方法を説
明する為の工程要所に於けるコンデンサ諸部材を表す要
部斜面説明図である。
FIG. 5 is a perspective view of a main part showing various capacitor members in process steps for explaining a method for manufacturing an improved electrolytic capacitor.

【符号の説明】[Explanation of symbols]

1 リード端子 1A リード線 1B 取り付け部 2 陽極箔 3 陰極箔 4及び5 セパレータ 6 巻き留めテープ 7 コンデンサ本体 14 接着剤阻止体 15 PPS樹脂ケース 15A 電解液注入兼ガス抜き用開口 15B カラー部分 16 接着剤 21 真空含浸槽 22 電解液送入管 23 バルブ 24 排気管 25 切り替えバルブ 26 正側電源電圧供給路を兼ねたコンデンサ可動支持
部材 27 陰極 28 直流電源 29 超音波加振装置 30 振動子 31 液温制御ユニット 32 電解液タンク 33 真空ポンプ 34 排気管 35 外気供給管 36 電解液 37 完成途中にある電解コンデンサ 37A 陽極側リード端子 37B 陰極側リード端子 38 水素の気泡
1 Lead Terminal 1A Lead Wire 1B Attachment Part 2 Anode Foil 3 Cathode Foil 4 and 5 Separator 6 Wrapping Tape 7 Capacitor Main Body 14 Adhesive Blocker 15 PPS Resin Case 15A Electrolyte Injection and Gas Venting Opening 15B Color Part 16 Adhesive 21 Vacuum Impregnation Tank 22 Electrolyte Inlet Pipe 23 Valve 24 Exhaust Pipe 25 Switching Valve 26 Capacitor Movable Support Member that Also Works as Positive Power Supply Voltage Supply Path 27 Cathode 28 DC Power Supply 29 Ultrasonic Vibration Device 30 Transducer 31 Liquid Temperature Control Unit 32 Electrolyte tank 33 Vacuum pump 34 Exhaust pipe 35 Outside air supply pipe 36 Electrolyte 37 Electrolytic capacitor 37 in the process of completion 37A Anode lead terminal 37B Cathode lead terminal 38 Hydrogen bubble

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】電解液注入用開口が設けられ且つコンデン
サ本体を内蔵してリード端子を樹脂で気密封止した樹脂
ケースを含む電解コンデンサ部品を真空含浸槽内に在る
正側電源電圧供給路を兼ねたコンデンサ支持部材に取り
付ける工程と、 少なくとも前記電解液注入用開口を前記真空含浸槽内の
電解液に浸漬して前記樹脂ケース内に真空含浸を行う工
程と、 前記コンデンサ本体の陽極箔を正極側とすると共に前記
電解液を負極側として酸化膜を化成するエージング電流
を流す工程とが含まれてなることを特徴とする電解コン
デンサの製造方法。
1. A positive-side power supply voltage supply path for an electrolytic capacitor part including a resin case having an opening for injecting an electrolytic solution and having a built-in capacitor body and hermetically sealing lead terminals with a resin in a vacuum impregnation tank. A step of attaching to the capacitor supporting member which also serves as: a step of immersing at least the electrolytic solution injection opening in the electrolytic solution in the vacuum impregnation tank to perform vacuum impregnation in the resin case; And a step of passing an aging current for forming an oxide film on the positive electrode side and the electrolytic solution on the negative electrode side, the method for producing an electrolytic capacitor.
【請求項2】コンデンサ本体の陽極箔に超音波振動を伝
える為に真空含浸槽内の電解液に超音波振動を加えるこ
とを特徴とする請求項1記載の電解コンデンサの製造方
法。
2. The method for producing an electrolytic capacitor according to claim 1, wherein ultrasonic vibration is applied to the electrolytic solution in the vacuum impregnation tank in order to transmit ultrasonic vibration to the anode foil of the capacitor body.
【請求項3】エージング終了後に再度真空含浸を行う工
程が付加されてなることを特徴とする請求項1記載の電
解コンデンサの製造方法。
3. The method of manufacturing an electrolytic capacitor according to claim 1, further comprising a step of performing vacuum impregnation again after the aging is completed.
【請求項4】真空含浸槽内に突出して正側電源電圧供給
路を兼ねるコンデンサ支持部材及び前記真空含浸槽内の
電解液中に在って電解液を負極側とする陰極として作用
する電極を備えてなることを特徴とする電解コンデンサ
の製造装置。
4. A capacitor supporting member which projects into the vacuum impregnation tank and also serves as a positive power supply voltage supply path, and an electrode which is present in the electrolyte solution in the vacuum impregnation tank and acts as a cathode with the electrolyte solution on the negative electrode side. An apparatus for manufacturing an electrolytic capacitor, which is characterized by being provided.
【請求項5】電解液に超音波振動を伝える為の超音波加
振装置を備えてなることを特徴とする請求項4記載の電
解コンデンサの製造装置。
5. An electrolytic capacitor manufacturing apparatus according to claim 4, further comprising an ultrasonic vibration device for transmitting ultrasonic vibration to the electrolytic solution.
JP7298084A 1995-11-16 1995-11-16 Device and method for manufacturing electrolytic capacitor Pending JPH09139325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7298084A JPH09139325A (en) 1995-11-16 1995-11-16 Device and method for manufacturing electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7298084A JPH09139325A (en) 1995-11-16 1995-11-16 Device and method for manufacturing electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH09139325A true JPH09139325A (en) 1997-05-27

Family

ID=17854954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7298084A Pending JPH09139325A (en) 1995-11-16 1995-11-16 Device and method for manufacturing electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH09139325A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200964A (en) * 2006-01-24 2007-08-09 Shindengen Electric Mfg Co Ltd Electric circuit apparatus
JP2009200370A (en) * 2008-02-25 2009-09-03 Sanyo Electric Co Ltd Method for manufacturing solid-state electrolytic capacitor
JP2010171207A (en) * 2009-01-22 2010-08-05 Rubycon Corp Capacitor element fixture and method of manufacturing the capacitor element
JP2012182230A (en) * 2011-02-28 2012-09-20 Showa Denko Kk Method of manufacturing solid electrolytic capacitor element
KR101416813B1 (en) * 2012-12-31 2014-07-15 비나텍주식회사 Electrolyte impregnation system, manufacturing system and manufacturing method of super capacitor thereof
CN104779081A (en) * 2015-05-07 2015-07-15 益阳市和天电子有限公司 Aging manufacturing technology for aluminum electrolytic capacitor and detecting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200964A (en) * 2006-01-24 2007-08-09 Shindengen Electric Mfg Co Ltd Electric circuit apparatus
JP2009200370A (en) * 2008-02-25 2009-09-03 Sanyo Electric Co Ltd Method for manufacturing solid-state electrolytic capacitor
JP2010171207A (en) * 2009-01-22 2010-08-05 Rubycon Corp Capacitor element fixture and method of manufacturing the capacitor element
JP2012182230A (en) * 2011-02-28 2012-09-20 Showa Denko Kk Method of manufacturing solid electrolytic capacitor element
KR101416813B1 (en) * 2012-12-31 2014-07-15 비나텍주식회사 Electrolyte impregnation system, manufacturing system and manufacturing method of super capacitor thereof
CN104779081A (en) * 2015-05-07 2015-07-15 益阳市和天电子有限公司 Aging manufacturing technology for aluminum electrolytic capacitor and detecting device

Similar Documents

Publication Publication Date Title
JPH09129519A (en) Electrolytic capacitor with safety mechanism
JP3198376B2 (en) Manufacturing method of electrolytic capacitor
JPS5843528A (en) Method of self-reparing insulating film
JPH09139325A (en) Device and method for manufacturing electrolytic capacitor
JPH07211596A (en) Electronic component and its manufacture
US6605127B2 (en) Method of manufacturing an aluminum solid electrolyte capacitor
JP3132053B2 (en) Solid electrolytic capacitors
JP3763052B2 (en) Manufacturing method of aluminum solid electrolytic capacitor
JP2662080B2 (en) Aging method of aluminum electrolytic capacitor
JP3240911B2 (en) Spiral lithium battery, method of manufacturing the same, and liquid injection device
JP2008028074A (en) Laminated aluminum electrolytic capacitor and manufacturing method therefor
KR20030004663A (en) Method of manufacturing an aluminum solid electroyte capacitor
JPH0620890A (en) Aluminum electrolytic capacitor
JPH09283375A (en) Manufacture of electrolytic capacitor
JPH06244060A (en) Manufacture of solid electrolytic capacitor
JP3367221B2 (en) Electrolytic capacitor
JP2006060201A (en) Capacitor
JPH1064768A (en) Electrolytic capacitor and manufacture thereof
JPH0786102A (en) Aluminium electrolytic capacitor
JPH06244066A (en) Manufacture of solid electrolytic capacitor
JPS6065516A (en) Method of treating electrode lead for aluminum electrolytic condenser
JP3400021B2 (en) Fuse replaceable electrolytic capacitor
JP4101939B2 (en) Polarized aluminum electrolytic capacitor
JPH07111228A (en) Electrolytic capacitor
JPH11145005A (en) Manufacture of solid state electrolytic capacitor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term