JP2010213017A - Low-pass filter - Google Patents

Low-pass filter Download PDF

Info

Publication number
JP2010213017A
JP2010213017A JP2009057269A JP2009057269A JP2010213017A JP 2010213017 A JP2010213017 A JP 2010213017A JP 2009057269 A JP2009057269 A JP 2009057269A JP 2009057269 A JP2009057269 A JP 2009057269A JP 2010213017 A JP2010213017 A JP 2010213017A
Authority
JP
Japan
Prior art keywords
solid electrolytic
anode
terminal
cathode
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009057269A
Other languages
Japanese (ja)
Inventor
Tetsuya Yoshinari
哲也 吉成
Masanori Takahashi
雅典 高橋
Shinya Tokashiki
真哉 渡嘉敷
Katsuhiro Yoshida
勝洋 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2009057269A priority Critical patent/JP2010213017A/en
Publication of JP2010213017A publication Critical patent/JP2010213017A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Filters And Equalizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-performance low-pass filter which is made simple in processes and also wide in pass band, and large in an attenuation gradient. <P>SOLUTION: A low-pass filter is constituted by using an anode body 1 constituted of a valve operating metal in which enlargement processing is not applied to a surface to connect in parallel a plurality of double-terminal type solid-state electrolytic capacitors 30a, 30b having different electric lengths calculated from a cutoff frequency and molding them with an exterior resin. Lengths La, Lb of cathodes 7 of the double-terminal type solid-state electrolytic capacitors 30a, 30b are set to 1/4 of electric lengths. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電源ラインや信号ラインなどの導線上を伝搬するノイズを抑制するコンデンサタイプのローパスフィルタに関する。   The present invention relates to a capacitor-type low-pass filter that suppresses noise propagating on a conducting wire such as a power supply line and a signal line.

近年、マイクロコンピュータの発達により、産業機器、民生機器および通信機器等のあらゆる分野にマイクロコンピュータが搭載されている。しかし、最近のデジタル機器では機器間の通信ネットワークの発達やスイッチング電源の動作周波数の向上により高周波ノイズが増加する一方で、デジタル処理の高速化や動作電圧の低電圧化によりノイズに対する動作許容マージンが小さくなりつつあるため、高周波ノイズを除去する、いわゆるローパスフィルタの重要性が高まっている。   In recent years, with the development of microcomputers, microcomputers are mounted in all fields such as industrial equipment, consumer equipment, and communication equipment. However, in recent digital devices, high-frequency noise has increased due to the development of communication networks between devices and the improvement of the operating frequency of switching power supplies. On the other hand, there is an allowable operating margin for noise due to faster digital processing and lower operating voltages. Since it is becoming smaller, so-called low-pass filters that remove high-frequency noise are becoming more important.

マイクロコンピュータに侵入するノイズは、主に電源ラインおよび信号ラインから伝搬することが多いため、このような部位にはノイズフィルタが広く利用されている。従来から用いられているノイズフィルタとしては、二端子型コンデンサを用いたもの、三端子型コンデンサを用いたもの、インダクタを用いたもの、コンデンサとインダクタを複合したローパスフィルタなどが挙げられる。   Since noise that enters a microcomputer often propagates mainly from a power supply line and a signal line, a noise filter is widely used in such a part. Conventionally used noise filters include those using a two-terminal capacitor, those using a three-terminal capacitor, those using an inductor, and a low-pass filter that combines a capacitor and an inductor.

図5は、一般的なローパスフィルタの特性を説明する概念図で、理想フィルタと実際のフィルタとの違いと、特性用語を示している。図5に示すように、ローパスフィルタの要求特性として、低周波数帯域の通過域では挿入損失が小さい、挿入損失の減衰域が狭い、挿入損失の減衰傾度が大きい、高周波数帯域では阻止域が広いことが挙げられる。   FIG. 5 is a conceptual diagram for explaining the characteristics of a general low-pass filter, and shows the difference between an ideal filter and an actual filter and characteristic terms. As shown in FIG. 5, as the required characteristics of the low-pass filter, the insertion loss is small in the low frequency band pass band, the attenuation band of the insertion loss is narrow, the attenuation slope of the insertion loss is large, and the stop band is wide in the high frequency band. Can be mentioned.

一般に、二端子型コンデンサでは挿入損失の減衰傾度が小さいため信号品質を十分に保つことが困難となってきており、一方、インダクタは挿入損失の減衰傾度は大きいものの高速信号に対する応答性が悪く、信号品質を十分に確保することが出来ないことから、現状は三端子型コンデンサを用いたものや、コンデンサとインダクタを複合したローパスフィルタなどが主流になってきている。   In general, with a two-terminal capacitor, the attenuation slope of the insertion loss is small, so it has become difficult to maintain sufficient signal quality.On the other hand, although the attenuation slope of the insertion loss is large, the response to high-speed signals is poor. Since signal quality cannot be ensured sufficiently, current ones using three-terminal capacitors or low-pass filters combining capacitors and inductors have become mainstream.

図4は、従来の三端子型固体電解コンデンサの断面模式図である。三端子型固体電解コンデンサ102は、表面を拡面化処理した、板状又は箔状の弁作用金属からなる陽極体1の表面に、金属酸化物からなる誘電体皮膜2を形成し、その中央部の表面に導電性高分子からなる固体電解質層4、グラファイト層5、導電性ペースト層6を順次積層形成して陰極部7としている。また、陰極部7の両側には絶縁体層3をそれぞれ形成し、その絶縁体層3の更に外側の陽極体1の領域を陽極部8としている。これらの陽極部8には、銅箔等からなるリードフレーム9を超音波溶接等により接続している。その後、基板12の上面に形成した素子側陽極端子11aと素子側陰極端子11bに、該リードフレーム9と該陰極部7をそれぞれ導電性接着剤10を介して接合し、その後、外装樹脂でモールド成形する。なお、該基板12の下面には外部陽極端子13a、外部陰極端子13bを形成している。このような、三端子型固体電解コンデンサは特許文献1に開示されている。   FIG. 4 is a schematic cross-sectional view of a conventional three-terminal solid electrolytic capacitor. The three-terminal solid electrolytic capacitor 102 is formed by forming a dielectric film 2 made of a metal oxide on the surface of an anode body 1 made of a plate-like or foil-like valve action metal whose surface has been enlarged, and its center. A solid electrolyte layer 4 made of a conductive polymer, a graphite layer 5 and a conductive paste layer 6 are sequentially laminated on the surface of the part to form a cathode part 7. Insulator layers 3 are formed on both sides of the cathode portion 7, and the anode body 1 region further outside the insulator layer 3 is used as the anode portion 8. A lead frame 9 made of copper foil or the like is connected to these anode portions 8 by ultrasonic welding or the like. Thereafter, the lead frame 9 and the cathode portion 7 are bonded to the element-side anode terminal 11a and the element-side cathode terminal 11b formed on the upper surface of the substrate 12 through the conductive adhesive 10, respectively, and then molded with an exterior resin. Mold. An external anode terminal 13a and an external cathode terminal 13b are formed on the lower surface of the substrate 12. Such a three-terminal solid electrolytic capacitor is disclosed in Patent Document 1.

特開2008−294012号公報JP 2008-294012 A

しかしながら、図4に示したような従来の三端子型固体電解コンデンサをノイズフィルタとして用いた場合は、陰極部を貫く陽極体の長さが長くなるためインダクタンス成分が増えること、また、弁作用金属からなる陽極体の表面をエッチング等により拡面化処理を施しているため静電容量が大きくなることにより、高周波帯域の阻止域は広くなるが低周波帯域の通過域が狭くなり、信号品質を劣化させてしまうという欠点があった。   However, when the conventional three-terminal type solid electrolytic capacitor as shown in FIG. 4 is used as a noise filter, the length of the anode body penetrating the cathode portion is increased, so that the inductance component increases, and the valve action metal Since the surface of the anode body is made to be enlarged by etching or the like, the capacitance is increased, so that the high frequency band stop band is widened, but the low frequency band pass band is narrowed, and the signal quality is reduced. There was a drawback of deteriorating.

本発明は、上記の課題を解決するため、工程の簡素化を図ると共に、通過域を広げ、かつ減衰傾度の大きい高性能なローパスフィルタの提供を目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a high-performance low-pass filter that simplifies the process, widens the pass band, and has a large attenuation gradient.

本発明は上記の課題を解決するため、表面を拡面化処理しない弁作用金属からなる陽極体を用い、かつ、カットオフ周波数から算出される電気長がそれぞれ異なり、かつそれぞれの陰極部の長さがそれぞれの電気長の1/4とした複数の二端子型固体電解コンデンサを並列接続して構成されたローパスフィルタである。   In order to solve the above problems, the present invention uses an anode body made of a valve metal that does not enlarge the surface, has different electrical lengths calculated from the cut-off frequency, and the length of each cathode part. This is a low-pass filter configured by connecting a plurality of two-terminal solid electrolytic capacitors having a length equal to ¼ of each electric length in parallel.

また、二端子型固体電解コンデンサは、弁作用金属表面の非拡面化処理以外は従来の固体電解コンデンサと同一構成であるため、製造工数の煩雑化は生じない。なお、陰極部の長さLは電気長の1/4となるように数1の関係式を満足するように設定する。   Moreover, since the two-terminal solid electrolytic capacitor has the same configuration as the conventional solid electrolytic capacitor except for the non-enlarging process on the valve action metal surface, the manufacturing man-hour is not complicated. The length L of the cathode portion is set so as to satisfy the relational expression 1 so that it becomes 1/4 of the electrical length.

Figure 2010213017
ここでfはローパスフィルタでのカットしたい減衰域の周波数、cは光速、effは母材となる弁作用金属の酸化物からなる誘電体皮膜の実効誘電率である。また、複数の二端子型固体電解コンデンサは、それぞれ陰極部の長さLが異なり、陰極部の長さが長い方のコンデンサの陽極部の幅を、陰極部の長さが短い方のコンデンサの陽極部の幅より狭くし、各々の固体電解コンデンサの陽極部同士、陰極部同士をそれぞれ電気的に並列接続している。
Figure 2010213017
Here, f is the frequency of the attenuation region to be cut by the low-pass filter, c is the speed of light, and eff is the effective dielectric constant of the dielectric film made of the oxide of the valve metal that is the base material. The plurality of two-terminal solid electrolytic capacitors have different cathode portion lengths L, the width of the anode portion of the capacitor having the longer cathode portion, and the length of the capacitor having the shorter cathode portion. It is narrower than the width of the anode part, and the anode parts and cathode parts of each solid electrolytic capacitor are electrically connected in parallel.

本発明によれば、線状、板状または箔状の弁作用金属からなる陽極体の表面に、弁作用金属の酸化物から成る誘電体皮膜を形成し、誘電体皮膜の一部の上に、固体電解質層を含む陰極導体層が積層された陰極部を形成し、陰極部の隣に絶縁体層を形成し、絶縁体層を介して陰極部と分離された陽極体の部分を陽極部とした複数の二端子型固体電解コンデンサを並列接続した構造を有するローパスフィルタであって、複数の二端子型固体電解コンデンサは、カットオフ周波数から算出される電気長がそれぞれ異なり、複数の二端子型固体電解コンデンサの各々の陰極部の長さが各々の電気長の1/4で、かつ複数の二端子型固体電解コンデンサの各々の陽極体の表面は、共に拡面化処理を施していないローパスフィルタが得られる。   According to the present invention, a dielectric film made of an oxide of a valve action metal is formed on the surface of an anode body made of a linear, plate-like or foil-like valve action metal, and is formed on a part of the dielectric film. Forming a cathode part in which a cathode conductor layer including a solid electrolyte layer is laminated, forming an insulator layer next to the cathode part, and forming the anode part separated from the cathode part through the insulator layer as the anode part A plurality of two-terminal solid electrolytic capacitors having a structure in which a plurality of two-terminal solid electrolytic capacitors are connected in parallel. The length of each cathode portion of the solid electrolytic capacitor is 1/4 of the electrical length, and the surface of each anode body of the plurality of two-terminal solid electrolytic capacitors is not subjected to the surface expansion treatment. A low pass filter is obtained.

本発明によれば、複数の二端子型固体電解コンデンサの各々の陽極体は、それぞれ異なる弁作用金属からなるローパスフィルタが得られる。   According to the present invention, a low-pass filter made of a different valve metal can be obtained for each anode body of a plurality of two-terminal solid electrolytic capacitors.

本発明のローパスフィルタに用いる二端子型固体電解コンデンサでは、弁作用金属からなる陽極体の表面を拡面化処理していないので大容量化を抑えることで、ローパスフィルタの通過域を広げ、かつ挿入損失を抑制し、信号品質の高精度化を図ることが可能となる。   In the two-terminal solid electrolytic capacitor used in the low-pass filter of the present invention, the surface of the anode body made of a valve metal is not subjected to the surface enlargement process, so that the increase in the capacity is suppressed, the pass band of the low-pass filter is expanded, and It is possible to suppress the insertion loss and improve the signal quality.

また、陰極部の一方の端部が絶縁化され、また陰極部の長さが電気長の1/4とすることで、所望の周波数で定在波が発生し、二端子型固体電解コンデンサがオープンスタブとなる。一般に、オープンスタブの特性はスタブを形成する陽極体の形状に依存する。すなわち、陽極体の幅が細い場合は、インダクタンス成分の増加によって阻止域は狭くなるが減衰傾度が大きくなり、一方、陽極体の幅が太い場合は、静電容量成分の増加によって減衰傾度が小さくなるが阻止域が広くなる。これらの特性を利用して、陽極体の形状が、細長いものと太短いものを組み合わせて並列接続することで減衰傾度が大きく、かつ阻止域が広いローパスフィルタを得ることが出来る。   In addition, when one end of the cathode part is insulated and the length of the cathode part is ¼ of the electrical length, a standing wave is generated at a desired frequency, and the two-terminal solid electrolytic capacitor is Open stub. In general, the characteristics of an open stub depend on the shape of the anode body that forms the stub. That is, when the anode body is thin, the inhibition range is narrowed due to an increase in the inductance component, but the attenuation gradient is increased. On the other hand, when the anode body is wide, the attenuation gradient is decreased due to the increase in the capacitance component. However, the zone of inhibition becomes wider. Utilizing these characteristics, a low-pass filter having a large attenuation gradient and a wide blocking band can be obtained by combining the anode body with a long and short shape and connecting them in parallel.

また、各々の陽極部同士を電気的に接続することによって、陽極部が見掛け上延長されることでインダクタンス成分が増し、更なる減衰傾度の向上を図ることができる。   In addition, by electrically connecting the anode parts, the anode part is apparently extended, so that the inductance component is increased and the attenuation gradient can be further improved.

更に、本発明のローパスフィルタに用いる二端子型固体電解コンデンサは、弁作用金属からなる陽極体の非拡面化処理以外は従来と同一構成であるため、工程をより簡易化でき容易に作製することが可能となる。   Furthermore, since the two-terminal solid electrolytic capacitor used in the low-pass filter of the present invention has the same configuration as the conventional one except for the non-enlarging process of the anode body made of a valve metal, the process can be simplified and easily manufactured. It becomes possible.

本発明のローパスフィルタを説明する図、図1(a)は二端子型固体電解コンデンサの断面図、図1(b)はローパスフィルタの斜視図。FIG. 1A is a cross-sectional view of a two-terminal solid electrolytic capacitor, and FIG. 1B is a perspective view of a low-pass filter. 本発明のローパスフィルタを説明する図、図2(a)は二端子型固体電解コンデンサの断面図、図2(b)はローパスフィルタの斜視図。FIG. 2A is a sectional view of a two-terminal solid electrolytic capacitor, and FIG. 2B is a perspective view of the low-pass filter. ローパスフィルタの挿入損失の比較結果。Comparison result of insertion loss of low-pass filter. 従来の三端子型固体電解コンデンサの断面模式図。The cross-sectional schematic diagram of the conventional three terminal type solid electrolytic capacitor. ローパスフィルタの特性を説明する概念図。The conceptual diagram explaining the characteristic of a low-pass filter.

本発明を実施するための形態を、図面を用いて詳細に説明する。   A mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は、二端子型固体電解コンデンサを用いた本発明のローパスフィルタを説明する図で、図1(a)は二端子型固体電解コンデンサの断面図、図1(b)はローパスフィルタの斜視図をそれぞれ示す。   FIG. 1 is a diagram for explaining a low-pass filter of the present invention using a two-terminal solid electrolytic capacitor. FIG. 1 (a) is a cross-sectional view of the two-terminal solid electrolytic capacitor, and FIG. 1 (b) is a perspective view of the low-pass filter. Each figure is shown.

実施の形態1として、同じ弁作用金属を用いた2つの二端子型固体電解コンデンサを並列に接続したローパスフィルタについて説明する。図1(a)に示すように、二端子型固体電解コンデンサは、アルミ箔の弁作用金属からなる陽極体1を用い、所望の形状・寸法に切り出し、切断面を含む表面に陽極酸化により誘電体皮膜2を形成する。   As a first embodiment, a low-pass filter in which two two-terminal solid electrolytic capacitors using the same valve metal are connected in parallel will be described. As shown in FIG. 1 (a), a two-terminal solid electrolytic capacitor uses an anode body 1 made of an aluminum foil valve metal, cut into a desired shape and size, and anodized on the surface including the cut surface. The body film 2 is formed.

次いで、誘電体皮膜2の上の所定位置にエポキシ樹脂などにより絶縁体層3を形成して、この絶縁体層3により区分された二つの領域を有する陽極体1とする。この状態を絶縁体層3付き陽極体と呼ぶ。該二つの領域の一方の領域に対して、前記陽極体1を覆うように、導電性高分子からなる固体電解質層4、グラファイト層5、導電性ペースト層6などによる金属層を順次積層し陰極部7を構成する。   Next, an insulator layer 3 is formed at a predetermined position on the dielectric film 2 with an epoxy resin or the like, and an anode body 1 having two regions separated by the insulator layer 3 is obtained. This state is called an anode body with an insulator layer 3. A metal layer made of a solid electrolyte layer 4 made of a conductive polymer, a graphite layer 5, a conductive paste layer 6, etc. is sequentially laminated on one of the two regions so as to cover the anode body 1. Part 7 is configured.

ここで、この領域の長さ、すなわち陰極部7の長さLは電気長の1/4となるように数1の関係式を満足するように設定する。   Here, the length of this region, that is, the length L of the cathode portion 7 is set so as to satisfy the relational expression 1 so that it becomes 1/4 of the electrical length.

Figure 2010213017
ここでfはローパスフィルタでのカットオフ周波数、cは光速、effは母材となる弁作用金属の酸化物からなる誘電体の実効誘電率である。
Figure 2010213017
Here, f is a cutoff frequency in the low-pass filter, c is the speed of light, and eff is an effective dielectric constant of a dielectric made of an oxide of a valve metal that serves as a base material.

続いて、この絶縁体層で分割された二つの領域の陰極部の領域でない方の領域に対して、表面の誘電体皮膜2をレーザ等により全て剥離して陽極体1を露出させ、陽極部8を形成する。   Subsequently, the dielectric film 2 on the surface is completely peeled off with a laser or the like to expose the anode body 1 with respect to the area that is not the cathode area of the two areas divided by the insulator layer, and the anode section is exposed. 8 is formed.

上記の二端子型固体電解コンデンサについて、図1(b)に示したように、陽極体1の幅Wa、Wb、陰極部7の長さLa、Lbがそれぞれ異なる2種類のものを作製する。1つは、陽極体1の幅Waが小さく、陰極部7の長さLaが長い、いわゆる細長い形状の二端子型固体電解コンデンサ30aとし、もう1つは、陽極体1の幅Wbが大きく、陰極部の長さLbが短い、いわゆる太短い形状の二端子型固体電解コンデンサ30bとした。なお、二端子型固体電解コンデンサ30bの陽極体1の幅Wbと、陰極部7の長さLbは、二端子型固体電解コンデンサ30aの陽極体1の幅Waと、陰極部7の長さLaに対して、それぞれWb>Wa、La>Lbとなるようにする。   As shown in FIG. 1B, two types of the above-described two-terminal solid electrolytic capacitors are produced, in which the widths Wa and Wb of the anode body 1 and the lengths La and Lb of the cathode portion 7 are different from each other. One is a so-called elongate two-terminal solid electrolytic capacitor 30a in which the width Wa of the anode body 1 is small and the length La of the cathode portion 7 is long, and the other is the width Wb of the anode body 1 being large. A so-called thick and short two-terminal solid electrolytic capacitor 30b having a short cathode portion length Lb was obtained. The width Wb of the anode body 1 of the two-terminal solid electrolytic capacitor 30b and the length Lb of the cathode portion 7 are the width Wa of the anode body 1 of the two-terminal solid electrolytic capacitor 30a and the length La of the cathode portion 7. In contrast, Wb> Wa and La> Lb are set.

続いて、図1(b)に示したように、上記の陽極体1の幅Wa、および陰極部7の長さLaを有する二端子型固体電解コンデンサ30aと、陽極体1の幅Wb、および陰極部7の長さLbを有する二端子型固体電解コンデンサ30bの各々の陽極部8を、銅箔等から成るリードフレーム9に並べて載置し、超音波溶接法で電気的に接続する。   Subsequently, as shown in FIG. 1B, the two-terminal solid electrolytic capacitor 30a having the width Wa of the anode body 1 and the length La of the cathode portion 7, the width Wb of the anode body 1, and The anode portions 8 of the two-terminal solid electrolytic capacitor 30b having the length Lb of the cathode portion 7 are placed side by side on a lead frame 9 made of copper foil or the like and electrically connected by ultrasonic welding.

その後、素子側陽極端子11a、素子側陰極端子11b、外部陽極端子13a、外部陰極端子13bをそれぞれ上下面に形成した基板12の、素子側陽極端子11a、素子側陰極端子11bの上に、導電性接着剤10を介して、この2種類の二端子型固体電解コンデンサ30a、30bの陽極部8同士を接続したリードフレーム9及び2つの陰極部7を載置し、加熱硬化させることにより電気的に接続し、図示しない外装樹脂でモールド成形してローパスフィルタ100を構成する。   Thereafter, the element-side anode terminal 11a, the element-side cathode terminal 11b, the external anode terminal 13a, and the external cathode terminal 13b are electrically conductive on the element-side anode terminal 11a and the element-side cathode terminal 11b of the substrate 12 formed on the upper and lower surfaces, respectively. The lead frame 9 and the two cathode portions 7 connecting the anode portions 8 of the two types of two-terminal type solid electrolytic capacitors 30a and 30b are placed and heat-cured through the adhesive 10 The low pass filter 100 is configured by molding with an exterior resin (not shown).

図2は、二端子型固体電解コンデンサを用いた本発明のローパスフィルタを説明する図で、図2(a)は二端子型固体電解コンデンサの断面図、図2(b)はローパスフィルタの斜視図をそれぞれ示す。   2A and 2B are diagrams illustrating a low-pass filter of the present invention using a two-terminal solid electrolytic capacitor. FIG. 2A is a cross-sectional view of the two-terminal solid electrolytic capacitor, and FIG. 2B is a perspective view of the low-pass filter. Each figure is shown.

実施の形態2として、異種の弁作用金属を用いた2つの二端子型固体電解コンデンサを並列に接続したローパスフィルタについて説明する。図2(a)は、図1(a)と同一構成の固体電解コンデンサの断面図なので、構造説明は省略する。ここでの2種類の二端子型固体電解コンデンサは、1つは、タンタル線の弁作用金属からなる陽極体1を用い、その陽極体1の幅Wcが小さく、陰極部の長さLcが長い、いわゆる細長い形状の二端子型固体電解コンデンサ30cとし、もう1つは、図1(b)で示した陽極体1の幅Wbが大きく、陰極部の長さLbが短い、いわゆる太短い形状の二端子型固体電解コンデンサ30bと同一とした。なお、細長い形状の二端子型固体電解コンデンサ30cの陽極体1の幅Wcと、陰極部7の長さLcは、図1(b)に示した細長い形状の二端子型固体電解コンデンサ30aの陽極体1の幅Waと、陰極部7の長さLaに対して、それぞれWa>Wc、Lc>Laとなるようにする。   As a second embodiment, a low-pass filter in which two two-terminal solid electrolytic capacitors using different types of valve metal are connected in parallel will be described. FIG. 2A is a cross-sectional view of a solid electrolytic capacitor having the same configuration as FIG. Two types of two-terminal solid electrolytic capacitors here use an anode body 1 made of a valve metal of a tantalum wire, the anode body 1 has a small width Wc, and a cathode portion length Lc is long. A so-called elongated two-terminal solid electrolytic capacitor 30c, and the other is a so-called thick and short shape in which the width Wb of the anode body 1 shown in FIG. 1B is large and the length Lb of the cathode portion is short. The same as the two-terminal solid electrolytic capacitor 30b. The width Wc of the anode body 1 of the elongated two-terminal solid electrolytic capacitor 30c and the length Lc of the cathode portion 7 are the anode of the elongated two-terminal solid electrolytic capacitor 30a shown in FIG. The width Wa of the body 1 and the length La of the cathode portion 7 are set such that Wa> Wc and Lc> La, respectively.

図2(b)に示したように、上記の陽極体1の幅Wc、および陰極部7の長さLcを有する二端子型固体電解コンデンサ30cと、陽極体1の幅Wb、および陰極部7の長さLbを有する二端子型固体電解コンデンサ30bの各々の陽極部8を、銅箔等から成るリードフレーム9に並べて載置し、超音波溶接法で電気的に接続する。   As shown in FIG. 2B, the two-terminal solid electrolytic capacitor 30c having the width Wc of the anode body 1 and the length Lc of the cathode part 7, the width Wb of the anode body 1, and the cathode part 7 The anode portions 8 of the two-terminal solid electrolytic capacitor 30b having the length Lb are placed side by side on a lead frame 9 made of copper foil or the like, and are electrically connected by ultrasonic welding.

その後、素子側陽極端子11a、素子側陰極端子11b、外部陽極端子13a、外部陰極端子13bをそれぞれ上下面に形成した基板12の、素子側陽極端子11a、素子側陰極端子11bの上に、導電性接着剤10を介して、2種類の二端子型固体電解コンデンサ30b、30cの陽極部8同士を接続したリードフレーム9及び2つの陰極部7を載置し、加熱硬化させることにより電気的に接続し、(図示しない)外装樹脂でモールド成形してローパスフィルタ101を構成する。   Thereafter, the element-side anode terminal 11a, the element-side cathode terminal 11b, the external anode terminal 13a, and the external cathode terminal 13b are electrically conductive on the element-side anode terminal 11a and the element-side cathode terminal 11b of the substrate 12 formed on the upper and lower surfaces, respectively. The lead frame 9 and the two cathode portions 7 that connect the anode portions 8 of the two types of two-terminal solid electrolytic capacitors 30b and 30c are placed through the adhesive 10 and electrically cured by heating and curing. The low pass filter 101 is configured by connecting and molding with exterior resin (not shown).

陽極体1の材料は、アルミニウム、タンタル、ニオブ、チタン等の弁作用金属を用い、形状は線状、板状または箔状等何れでもよいが、選択する弁作用金属の特性、加工性も考慮し、適宜選定するのが好ましい。   The anode body 1 may be made of a valve metal such as aluminum, tantalum, niobium, titanium, etc. The shape may be any of linear, plate or foil, but the characteristics and workability of the selected valve metal are also considered. It is preferable to select appropriately.

誘電体皮膜2は、誘電体として作用するもので、通常の固体電解コンデンサと同様に、弁作用金属を電解液中に漬け、電流を流すことで金属表面に形成される。電解液の種類、電流を適宜調整して製膜するのが好ましい。   The dielectric film 2 acts as a dielectric, and is formed on the metal surface by immersing the valve action metal in the electrolytic solution and flowing an electric current in the same manner as a normal solid electrolytic capacitor. It is preferable to form a film by appropriately adjusting the type and current of the electrolyte.

絶縁体層3は、材質が高耐熱性を有するものであれば、エポキシ系、シリコーン系などの熱硬化性樹脂、ポリイミド系などの熱可塑性樹脂のいずれでもよく、ペースト又は液状のものを用いるのが好ましく、製膜加工性を考慮すると、シリコーン系熱硬化性樹脂がより好適である。形成方法は、浸漬、吹き付け、塗布、印刷法などの一般的な工法を用いればよく、絶縁の機能を確保するのに十分な厚さである10〜30μmとするのが好ましい。また、絶縁体層3は、陰極部7の両側に設けているが、この絶縁体層3は陽極部と陰極部との絶縁のための処理であるため、陽極部8と反対側の陽極体1の端部に誘電体皮膜2が形成される場合は、陽極体の端部に設けずに陰極部7の片側、すなわち陽極部8側にのみ設けても良い。   As long as the material has high heat resistance, the insulator layer 3 may be an epoxy-based or silicone-based thermosetting resin, a polyimide-based thermoplastic resin, or a paste or a liquid material is used. In view of film forming processability, a silicone-based thermosetting resin is more preferable. A general method such as dipping, spraying, coating, or printing may be used as the forming method, and the thickness is preferably 10 to 30 μm, which is sufficient to ensure an insulating function. The insulator layer 3 is provided on both sides of the cathode portion 7. Since the insulator layer 3 is a treatment for insulation between the anode portion and the cathode portion, the anode body on the side opposite to the anode portion 8 is provided. When the dielectric film 2 is formed at the end of the first electrode, it may be provided only on one side of the cathode portion 7, that is, on the anode portion 8 side, without being provided on the end portion of the anode body.

固体電解質層4は、通常の固体電解コンデンサと同様に、ポリチオフェンまたはポリピロールなどの導電性高分子を用いるのが好ましい。   As the solid electrolyte layer 4, it is preferable to use a conductive polymer such as polythiophene or polypyrrole, as in a normal solid electrolytic capacitor.

グラファイト層5は、通常の固体電解コンデンサと同様に、その上層に積層する前記銀7と、下層に形成する固体電解質層4との結合性を高めるためのものである。   The graphite layer 5 is for enhancing the bonding between the silver 7 laminated on the upper layer and the solid electrolyte layer 4 formed on the lower layer, as in a normal solid electrolytic capacitor.

導電性ペースト層6は、陰極電極材として汎用的に用いられている銀ペーストをディスペンサ等で塗布し乾燥硬化して形成するのが好ましい。   The conductive paste layer 6 is preferably formed by applying a silver paste, which is generally used as a cathode electrode material, with a dispenser or the like, followed by drying and curing.

リードフレーム9は、銅、アルミニウム、ステンレス、またはそれらの合金などの金属製の導電材を用い、更にその表面を金、銀、錫、ニッケルなどでめっき処理したものを用いるのが好ましい。   The lead frame 9 is preferably made of a conductive material made of metal such as copper, aluminum, stainless steel, or an alloy thereof, and further having its surface plated with gold, silver, tin, nickel or the like.

導電性接着剤10は、金、銀、銅などの金属粉末を含むエポキシ系などのペースト状の樹脂をディスペンサを用いて塗布するのが好ましい。   The conductive adhesive 10 is preferably applied by using a dispenser with a paste-like resin such as an epoxy resin containing metal powder such as gold, silver and copper.

素子側陽極端子11a、素子側陰極端子11bは、基板12の上面に、銅、アルミニウムなどの金属製の導電性箔体を接着し貼り付けた後、グラビア印刷、スクリーン印刷などの一般的な印刷工法でレジスト印刷を施し、エッチング処理にて形成することができる。上記方法に限らず、導電性ペーストを印刷してもよい。   The element-side anode terminal 11a and the element-side cathode terminal 11b are formed by attaching a conductive foil body made of metal such as copper or aluminum to the upper surface of the substrate 12, and then printing such as gravure printing or screen printing. It can be formed by etching by applying a resist printing method. Not only the above method but also a conductive paste may be printed.

基板12は、高耐熱性の絶縁材を用いるのが好ましく、ガラスエポキシ材、BTレジン、ポリイミド、液晶ポリマーなどの樹脂系や、アルミナなどのセラミック系等何れを用いてもよいが、薄型化、可とう性、コスト面で有効で、汎用的なガラスエポキシ材を用いるのがより好適である。   The substrate 12 is preferably made of a highly heat-resistant insulating material, and any of a resin system such as a glass epoxy material, a BT resin, a polyimide, a liquid crystal polymer, or a ceramic system such as alumina may be used. It is more preferable to use a general-purpose glass epoxy material that is effective in terms of flexibility and cost.

外部陽極端子13a、外部陰極端子13bは、基板12の下面に、銅、アルミニウムなどの金属製の導電性箔体を接着し貼り付けた後、グラビア印刷、スクリーン印刷などの一般的な印刷工法でレジスト印刷を施し、エッチング処理にて形成することができる。上記方法に限らず、導電性ペーストを印刷してもよい。   The external anode terminal 13a and the external cathode terminal 13b are formed by a general printing method such as gravure printing or screen printing after a conductive foil body made of metal such as copper or aluminum is bonded and attached to the lower surface of the substrate 12. It can be formed by performing resist printing and etching. Not only the above method but also a conductive paste may be printed.

陽極体1の幅Wa、Wb、Wcは、ローパスフィルタの外観形状に応じて適宜調整することができ、低背型では大きく、小床面積では小さくするのが好ましい。   The widths Wa, Wb, and Wc of the anode body 1 can be appropriately adjusted according to the external shape of the low-pass filter, and are preferably large for a low profile and small for a small floor area.

陰極部7の長さLa、Lb、Lcは、前述の数1を満足する長さLとし、カットしたい信号の周波数、すなわちカットオフ周波数fと実効誘電率effとにより算出される電気長の1/4となるように、また、カットオフ周波数fより高い周波数帯域に、各々の二端子型固体電解コンデンサ30a、30b、30cの固有の共振周波数をそれぞれもつように適宜調整するのが望ましい。 The lengths La, Lb, and Lc of the cathode part 7 are lengths L that satisfy the above-mentioned formula 1, and the electrical length calculated by the frequency of the signal to be cut, that is, the cut-off frequency f and the effective dielectric constant eff It is desirable that the frequency is adjusted to ¼ so that each of the two-terminal solid electrolytic capacitors 30a, 30b, and 30c has a specific resonance frequency in a frequency band higher than the cutoff frequency f.

図示しない外装樹脂は、汎用の封止用樹脂で、使用環境に耐えうるものであればどんなものでもよく、エポキシ系、フェノール系などの熱硬化性樹脂やポリプロピレン(PP)、ポリスチレン(PS)などの熱可塑性樹脂の何れでもよいが、耐熱性、加工性を考慮し適宜選定するのが好ましい。電源基板での半田リフロー実装性を考慮し、エポキシ系熱硬化性樹脂がより好適である。また、封止方法はインジェクション法、トランスファー法など何れの工法でもよい。   The exterior resin (not shown) is a general-purpose sealing resin and can be any resin that can withstand the usage environment, such as epoxy-based, phenol-based thermosetting resins, polypropylene (PP), polystyrene (PS), etc. Any of these thermoplastic resins may be used, but it is preferable to select them appropriately in consideration of heat resistance and workability. In consideration of solder reflow mounting property on the power supply board, an epoxy-based thermosetting resin is more preferable. The sealing method may be any method such as an injection method or a transfer method.

以下、本発明のローパスフィルタについて実施例を用いて詳細に説明する。   Hereinafter, the low-pass filter of the present invention will be described in detail with reference to examples.

(実施例1)
先ず、陽極体1として、表面を拡面化処理しない、公称化成電圧20V、厚み100μmのアルミ箔を用い、以下の2種類の二端子型固体電解コンデンサ30a、30bを作製した。
Example 1
First, as the anode body 1, the following two types of two-terminal solid electrolytic capacitors 30 a and 30 b were produced using an aluminum foil having a nominal chemical formation voltage of 20 V and a thickness of 100 μm that does not have a surface-enlarging treatment.

細長い形状の二端子型固体電解コンデンサ30aは、上記のアルミ箔の幅Waを1.0mm、長さ8.0mmの長方形状に切り出し、10%のアジピン酸二アンモニウム水溶液に浸漬し、25Vの電圧を印加して、切断面を含む全面に陽極酸化により誘電体皮膜2を形成した。その後、アルミ箔の長さ方向の一端部から1.0mm内側の位置にエポキシ性樹脂を幅0.5mmで塗布し硬化させて絶縁体層3を形成し、一端面から絶縁層体3までの1.0mmの領域を陽極領域とした。また、絶縁体層3を介した他方の領域に、絶縁体層3から6.0mmの位置に同じくエポキシ性樹脂を幅0.5mm、厚さ50μmで塗布し硬化させて絶縁体層3を形成し、これらの2つの絶縁体層3に挟まれた6.0mmの領域を陰極領域とした。この状態を絶縁体層3付き陽極体と呼ぶ。   An elongated two-terminal solid electrolytic capacitor 30a is cut into a rectangular shape having a width Wa of 1.0 mm and a length of 8.0 mm, and immersed in a 10% diammonium adipate aqueous solution, and a voltage of 25V is obtained. Was applied to form a dielectric film 2 on the entire surface including the cut surface by anodic oxidation. Thereafter, an insulating layer 3 is formed by applying and curing an epoxy resin with a width of 0.5 mm at a position 1.0 mm inside from one end in the length direction of the aluminum foil. A 1.0 mm region was defined as an anode region. Also, in the other region through the insulator layer 3, an epoxy resin is similarly applied at a position of 6.0 mm from the insulator layer 3 with a width of 0.5 mm and a thickness of 50 μm and cured to form the insulator layer 3 A 6.0 mm region sandwiched between these two insulator layers 3 was defined as a cathode region. This state is called an anode body with an insulator layer 3.

続いて、絶縁体層3付き陽極体の陰極領域に対して、誘電体皮膜2の表面にモノマーとして3,4−エチレンジオキシチオフェン、酸化剤としてペルオキソ二硫酸アンモニウム、ドーパントとしてパラトルエンスルホン酸をそれぞれモル比6:1:2の割合で反応させて導電性高分子からなる固体電解質層4を形成し、更にその表面にスクリーン印刷によってグラファイト層5を厚さ15μmになるように形成した。そしてグラファイト層5の上に重量80%以上の銀含有量を有した導電性ペースト層6を厚さ30μmに形成し、150℃にて放置して前記導電性ペースト中の有機溶剤を揮発させ同時に硬化させることで、銀層を形成し、陰極部7とした。上記の陰極部7の長さLa、陽極体1の幅Waは、数1において、カットオフ周波数f=4GHz、実効誘電率eff=9を狙い値とし決定している。 Subsequently, 3,4-ethylenedioxythiophene as a monomer, ammonium peroxodisulfate as an oxidizing agent, and paratoluenesulfonic acid as a dopant on the surface of the dielectric film 2 with respect to the cathode region of the anode body with the insulator layer 3, respectively. A solid electrolyte layer 4 made of a conductive polymer was formed by reaction at a molar ratio of 6: 1: 2, and a graphite layer 5 was formed on the surface thereof to a thickness of 15 μm by screen printing. A conductive paste layer 6 having a silver content of 80% by weight or more is formed on the graphite layer 5 to a thickness of 30 μm and left at 150 ° C. to volatilize the organic solvent in the conductive paste. The silver layer was formed by making it harden | cure and it was set as the cathode part 7. FIG. The length La of the cathode portion 7 and the width Wa of the anode body 1 are determined in Equation 1 with a cutoff frequency f = 4 GHz and an effective dielectric constant e ff = 9 as target values.

また、絶縁体層3付き陽極体の陽極領域に対しては、表面の誘電体皮膜2をレーザで除去し、アルミ箔を露出させ陽極部8とした。   In addition, for the anode region of the anode body with the insulator layer 3, the dielectric film 2 on the surface was removed with a laser, and the aluminum foil was exposed to form the anode portion 8.

一方、太短い形状の二端子型固体電解コンデンサ30bは、アルミ箔の幅Wbを5.0mm、長さ5.0mmの長方形状に切り出し、10%のアジピン酸二アンモニウム水溶液に浸漬し、25Vの電圧を印加して、切断面を含む全面に陽極酸化により誘電体皮膜2を形成した。その後、アルミ箔の長さ方向の一端部から1.0mm内側の位置にエポキシ性樹脂を幅0.5mmで塗布し硬化させて絶縁体層3を形成し、一端面から絶縁層体3までの1.0mmの領域を陽極領域とした。また、絶縁体層3を介した他方の領域に、絶縁体層3から3.0mmの位置に同じくエポキシ性樹脂を幅0.5mm、厚さ50μmで塗布し硬化させて絶縁体層3を形成し、これらの2つの絶縁体層3に挟まれた3.0mmの領域を陰極領域とした。この状態を絶縁体層3付き陽極体と呼ぶ。   On the other hand, a two-terminal solid electrolytic capacitor 30b having a thick and short shape is cut into a rectangular shape having an aluminum foil width Wb of 5.0 mm and a length of 5.0 mm, and immersed in a 10% diammonium adipate aqueous solution, A dielectric film 2 was formed by anodic oxidation on the entire surface including a cut surface by applying a voltage. Thereafter, an insulating layer 3 is formed by applying and curing an epoxy resin with a width of 0.5 mm at a position 1.0 mm inside from one end in the length direction of the aluminum foil. A 1.0 mm region was defined as an anode region. Also, in the other region through the insulator layer 3, an epoxy resin is similarly applied at a position of 3.0 mm from the insulator layer 3 with a width of 0.5 mm and a thickness of 50 μm and cured to form the insulator layer 3 A region of 3.0 mm sandwiched between these two insulator layers 3 was used as a cathode region. This state is called an anode body with an insulator layer 3.

続いて、絶縁体層3付き陽極体の陰極領域に対して、上記と同一工程により、固体電解質層4、グラファイト層5、導電性ペースト層6を順次積層形成し、陰極部7とした。上記の陰極部7の長さLb、陽極体1の幅Wbは、数1において、カットオフ周波数f=9GHz、実効誘電率eff=9を狙い値とし決定している。 Subsequently, the solid electrolyte layer 4, the graphite layer 5, and the conductive paste layer 6 were sequentially laminated on the cathode region of the anode body with the insulator layer 3 by the same process as described above, thereby forming the cathode portion 7. The length Lb of the cathode portion 7 and the width Wb of the anode body 1 are determined in Equation 1 with a cutoff frequency f = 9 GHz and an effective dielectric constant e ff = 9 as target values.

また、絶縁体層3付き陽極体の陽極領域に対しては、両面の誘電体皮膜2をレーザで除去し、アルミ箔を露出させ陽極部8とした。   Further, with respect to the anode region of the anode body with the insulator layer 3, the dielectric film 2 on both sides was removed with a laser, and the aluminum foil was exposed to form the anode portion 8.

上記の要領で作製した2種類の二端子型固体電解コンデンサ30a、30bの各々の陽極部8を、予め打抜きにて切り出した長さ10mm、幅0.4mm、厚さ50μmの銅箔からなるリードフレーム9に並べて載置し、超音波溶接法を用い、陽極部8同士を電気的に接続した。   A lead made of a copper foil having a length of 10 mm, a width of 0.4 mm, and a thickness of 50 μm obtained by punching out each of the anode portions 8 of the two types of two-terminal solid electrolytic capacitors 30a and 30b prepared as described above. The anode parts 8 were electrically connected to each other using the ultrasonic welding method.

その後、基板12の素子側陽極端子11aと素子側陰極端子11bに導電性接着剤10を厚さ40μmに塗布して、その上に、上記の2種類の二端子型固体電解コンデンサ30a、30bのそれぞれの陰極部7と、リードフレーム9を載置し、150℃で熱硬化することにより電気的に接続し、外装樹脂でモールド成形することで、図1(b)に示した二端子固体電解コンデンサタイプのローパスフィルタ100を得た。   Thereafter, the conductive adhesive 10 is applied to the element-side anode terminal 11a and the element-side cathode terminal 11b of the substrate 12 to a thickness of 40 μm, and the two types of the two-terminal solid electrolytic capacitors 30a and 30b described above are applied thereon. Each cathode part 7 and lead frame 9 are placed, electrically connected by thermosetting at 150 ° C., and molded with an exterior resin, so that the two-terminal solid electrolysis shown in FIG. A capacitor type low-pass filter 100 was obtained.

(実施例2)
実施例2のローパスフィルタでは、実施例1の2種類の二端子型固体電解コンデンサのうち、細長い形状の二端子型固体電解コンデンサ30cのみを置き換えたもので、陽極体1としてタンタル線を弁作用金属として用い、陽極部8とリードフレーム9を抵抗溶接法を用いて接続した以外は実施例1と同様の工法により、図2(b)に示した二端子型固体電解コンデンサを用いたローパスフィルタ101を得た。
(Example 2)
In the low-pass filter of the second embodiment, only the elongated two-terminal solid electrolytic capacitor 30c of the two types of the two-terminal solid electrolytic capacitor of the first embodiment is replaced. A low-pass filter using the two-terminal type solid electrolytic capacitor shown in FIG. 2 (b) by the same construction method as in Example 1 except that the anode 8 and the lead frame 9 are connected by resistance welding. 101 was obtained.

細長い形状の二端子型固体電解コンデンサ30cは、弁作用金属として、表面を拡面化処理を施していない、φ0.1mm、長さ7mmのタンタル線を用いて陽極体1とし、これをリン酸水溶液中、80Vの電圧を印加して陽極酸化し誘電体皮膜2を形成した。続いて、タンタル線の長さ方向の一端部から1.0mm内側の位置にエポキシ性樹脂を幅0.5mm、厚さ50μmで塗布し硬化させて絶縁体層3を形成し、一端面から絶縁層体3までの1.0mmの領域を陽極領域とした。また、この絶縁体層3を介した他方の領域に、絶縁体層3から5.0mmの位置に同じくエポキシ性樹脂を幅0.5mm、厚さ50μmで塗布し硬化させて絶縁体層3を形成し、これらの2つの絶縁体層3に挟まれた5.0mmの領域を陰極領域とした。その後、実施例1の二端子型固体電解コンデンサ30aと同一工程により、陰極部7と陽極部8を形成し、二端子型固体電解コンデンサ30cを得た。上記の陰極部7の長さLc、陽極体1の幅Wcは、数1において、カットオフ周波数f=4GHz、実効誘電率eff=14を狙い値とし決定している。また、もう1つの二端子型固体電解コンデンサ30bも実施例1と同一のものを用いた。 The two-terminal solid electrolytic capacitor 30c having an elongated shape is formed as an anode body 1 using a tantalum wire having a diameter of 0.1 mm and a length of 7 mm, which has not been subjected to a surface enlargement process, as a valve metal. A dielectric film 2 was formed by applying a voltage of 80 V in an aqueous solution and anodizing. Subsequently, an epoxy resin is applied with a width of 0.5 mm and a thickness of 50 μm at a position 1.0 mm inside from one end in the length direction of the tantalum wire and cured to form the insulator layer 3, and insulation from one end surface An area of 1.0 mm up to the layer body 3 was defined as an anode area. In addition, in the other region through the insulator layer 3, an epoxy resin is similarly applied at a position of 5.0 mm from the insulator layer 3 with a width of 0.5 mm and a thickness of 50 μm and cured to form the insulator layer 3. A region of 5.0 mm formed and sandwiched between these two insulator layers 3 was defined as a cathode region. Then, the cathode part 7 and the anode part 8 were formed by the same process as the two-terminal solid electrolytic capacitor 30a of Example 1, and the two-terminal solid electrolytic capacitor 30c was obtained. The length Lc of the cathode portion 7 and the width Wc of the anode body 1 are determined in Equation 1 with a cutoff frequency f = 4 GHz and an effective dielectric constant e ff = 14 as target values. The same two-terminal solid electrolytic capacitor 30b as in Example 1 was used.

上記の2種類の二端子型固体電解コンデンサ30b、30cの各々の陽極部8を、予め打抜きにて切り出した長さ10mm、幅0.4mm、厚さ50μmの銅箔からなるリードフレーム9に並べて載置し、超音波溶接法を用い、陽極部8同士を電気的に接続した。   The anode portions 8 of the two types of two-terminal solid electrolytic capacitors 30b and 30c are arranged on a lead frame 9 made of a copper foil having a length of 10 mm, a width of 0.4 mm, and a thickness of 50 μm previously cut out by punching. The anode parts 8 were electrically connected using an ultrasonic welding method.

その後、基板12の素子側陽極端子11aと素子側陰極端子11bに導電性接着剤10を厚さ40μmに塗布して、その上に、上記の2種類の二端子型固体電解コンデンサ30b、30cのそれぞれの陰極部7と、リードフレーム9を載置し、150℃で熱硬化することにより電気的に接続し、図示しない外装樹脂でモールド成形することで、図2(b)に示した二端子固体電解コンデンサタイプのローパスフィルタ101を得た。   Thereafter, the conductive adhesive 10 is applied to the element-side anode terminal 11a and the element-side cathode terminal 11b of the substrate 12 to a thickness of 40 μm, and the two types of the two-terminal solid electrolytic capacitors 30b and 30c described above are applied thereon. Each cathode part 7 and the lead frame 9 are placed, electrically connected by thermosetting at 150 ° C., and molded with an exterior resin (not shown), so that the two terminals shown in FIG. A solid electrolytic capacitor type low-pass filter 101 was obtained.

(比較例)
比較例として、図4に示した従来の三端子型固体電解コンデンサの単体からなるローパスフィルタの構造とし、また陽極体1は、実施例1と同様、エッチング等による拡面化処理を施さない、公称化成電圧20V、厚み100μmアルミ箔を用いた。このアルミ箔を幅2.5mm、長さ7.0mmの長方形状に切りだし、10%のアジピン酸二アンモニウム水溶液に浸漬し、25Vの電圧を印加して、切断面を含む全面に陽極酸化により誘電体皮膜2を形成した。その後、長さ方向の両端部からそれぞれ1.0mm内側の位置にエポキシ性樹脂を幅0.5mm、厚さ50μmで塗布し硬化させて絶縁体層3を形成し、両端面から絶縁層体3までの1.0mmの領域を陽極領域とし、これら2つの絶縁層体3で挟まれた4.0mmの領域を陰極領域とした。
(Comparative example)
As a comparative example, it has a structure of a low-pass filter composed of a single unit of the conventional three-terminal solid electrolytic capacitor shown in FIG. 4, and the anode body 1 is not subjected to a surface enlargement process by etching or the like as in Example 1. An aluminum foil having a nominal formation voltage of 20 V and a thickness of 100 μm was used. This aluminum foil was cut into a rectangular shape having a width of 2.5 mm and a length of 7.0 mm, immersed in a 10% aqueous solution of diammonium adipate, a voltage of 25 V was applied, and the entire surface including the cut surface was anodized. Dielectric film 2 was formed. Thereafter, an insulating layer 3 is formed by applying and curing an epoxy resin with a width of 0.5 mm and a thickness of 50 μm at positions 1.0 mm inside from both ends in the length direction. The 1.0 mm region up to this point was used as the anode region, and the 4.0 mm region sandwiched between these two insulating layers 3 was used as the cathode region.

続いて、実施例1の二端子型固体電解コンデンサ30aと同一工程により、陰極部7と陽極部8を形成し、更に陽極部8には、予め打抜きにて切り出した長さ0.8mm、幅2.5mm、厚さ50μmの銅箔からなるリードフレーム9を超音波溶接法を用いて接続して、三端子型固体電解コンデンサを得た。   Subsequently, the cathode part 7 and the anode part 8 are formed by the same process as that of the two-terminal solid electrolytic capacitor 30a of Example 1, and the anode part 8 has a length of 0.8 mm and a width previously cut out by punching. A lead frame 9 made of copper foil with a thickness of 2.5 mm and a thickness of 50 μm was connected using an ultrasonic welding method to obtain a three-terminal solid electrolytic capacitor.

その後、実施例1と同様に、基板12の素子側陽極端子11aと素子側陰極端子11bに導電性接着剤10を厚さ40μmに塗布して、その上に、上記の三端子型固体電解コンデンサを載置し、150℃で熱硬化することにより電気的に接続し、図示しない外装樹脂でモールド成形することで、図4に示した三端子型固体電解コンデンサ102によるローパスフィルタを得た。   Thereafter, as in Example 1, the conductive adhesive 10 was applied to the element-side anode terminal 11a and the element-side cathode terminal 11b of the substrate 12 to a thickness of 40 μm, and the above three-terminal solid electrolytic capacitor was further formed thereon. Were electrically connected by thermosetting at 150 ° C., and molded with an exterior resin (not shown) to obtain a low-pass filter using the three-terminal solid electrolytic capacitor 102 shown in FIG.

上記の要領で作製した、実施例1、実施例2、比較例によるローパスフィルタについて、挿入損失の周波数特性をベクトルネットワークアナライザ(37247D:アンリツ製)にて測定し、その比較結果を図3に示す。   With respect to the low-pass filters according to Example 1, Example 2, and Comparative Example manufactured as described above, the frequency characteristics of insertion loss were measured with a vector network analyzer (37247D: manufactured by Anritsu), and the comparison result is shown in FIG. .

図3に示したように、本発明による実施例1、実施例2のローパスフィルタは、比較例のローパスフィルタに比べ、通過域の挿入損失が小さく、挿入損失の減衰域が狭く、減衰傾度が大きくなっていることがわかった。これは、細長い形状の二端子型固体電解コンデンサによって減衰傾度が大きくなり、太短い形状の二端子型固体電解コンデンサによって高周波数帯域での挿入損失の立ち上がりが抑えられているものと推測できる。また、陽極体同士を接続している陽極部と陰極部の間に誘電率の高い誘電体が介在していないため、従来のコンデンサとインダクタを複合したローパスフィルタより減衰傾度が大きいローパスフィルタの設計が容易に可能となることがわかった。   As shown in FIG. 3, the low-pass filters of the first and second embodiments according to the present invention have a smaller insertion loss in the pass band, a narrower attenuation region of the insertion loss, and a lower attenuation gradient than the low-pass filter of the comparative example. I found it getting bigger. It can be presumed that the slanted two-terminal solid electrolytic capacitor has a large attenuation gradient, and the thick and short two-terminal solid electrolytic capacitor suppresses the rise in insertion loss in the high frequency band. In addition, because there is no dielectric with a high dielectric constant between the anode part and the cathode part that connect the anode bodies, the design of the low-pass filter has a higher attenuation gradient than the conventional low-pass filter that combines a capacitor and inductor. It has been found that this is easily possible.

従来の固体電解コンデンサタイプのローパスフィルタは通過域が狭く、減衰傾度が小さいため電源ラインおよび低速信号ラインでのノイズ除去が主であったが、本発明によれば通過域を高周波帯域まで伸ばし、かつ減衰傾度が大きいため、高速ライン用のローパスフィルタとしても適用できる。   The conventional solid electrolytic capacitor type low-pass filter has a narrow passband and a small attenuation gradient, so noise removal in the power supply line and low-speed signal line was the main, but according to the present invention, the passband is extended to the high frequency band, In addition, since the attenuation gradient is large, it can be applied as a low-pass filter for high-speed lines.

1 陽極体
2 誘電体皮膜
3 絶縁体層
4 固体電解質層
5 グラファイト層
6 導電性ペースト層
7 陰極部
8 陽極部
9 リードフレーム
10 導電性接着剤
11a 素子側陽極端子
11b 素子側陰極端子
12 基板
13a 外部陽極端子
13b 外部陰極端子
30a、30b、30c 二端子型固体電解コンデンサ
100、101 ローパスフィルタ
102 三端子型固体電解コンデンサ
Wa、Wb、Wc 幅
L、La、Lb、Lc 長さ
DESCRIPTION OF SYMBOLS 1 Anode body 2 Dielectric film 3 Insulator layer 4 Solid electrolyte layer 5 Graphite layer 6 Conductive paste layer 7 Cathode part 8 Anode part 9 Lead frame 10 Conductive adhesive 11a Element side anode terminal 11b Element side cathode terminal 12 Substrate 13a External anode terminal 13b External cathode terminals 30a, 30b, 30c Two-terminal solid electrolytic capacitors 100, 101 Low-pass filter 102 Three-terminal solid electrolytic capacitors Wa, Wb, Wc Width L, La, Lb, Lc Length

Claims (2)

線状、板状または箔状の弁作用金属からなる陽極体の表面に、前記弁作用金属の酸化物から成る誘電体皮膜を形成し、前記誘電体皮膜の一部の上に、固体電解質層を含む陰極導体層が積層された陰極部を形成し、前記陰極部の隣に絶縁体層を形成し、前記絶縁体層を介して前記陰極部と分離された前記陽極体の部分を陽極部とした複数の二端子型固体電解コンデンサを並列接続した構造を有するローパスフィルタであって、前記複数の二端子型固体電解コンデンサは、カットオフ周波数から算出される電気長がそれぞれ異なり、前記複数の二端子型固体電解コンデンサの各々の前記陰極部の長さが各々の前記電気長の1/4で、かつ前記複数の二端子型固体電解コンデンサの各々の前記陽極体の表面は、共に拡面化処理を施していないことを特徴とするローパスフィルタ。   A dielectric film made of an oxide of the valve action metal is formed on a surface of an anode body made of a linear, plate-like or foil-like valve action metal, and a solid electrolyte layer is formed on a part of the dielectric film. A cathode portion laminated with a cathode conductor layer is formed, an insulator layer is formed next to the cathode portion, and a portion of the anode body separated from the cathode portion via the insulator layer is formed as an anode portion. A plurality of two-terminal solid electrolytic capacitors having a structure in which a plurality of two-terminal solid electrolytic capacitors are connected in parallel, wherein the plurality of two-terminal solid electrolytic capacitors have different electrical lengths calculated from a cutoff frequency, The length of the cathode part of each of the two-terminal solid electrolytic capacitors is 1/4 of the electric length of each, and the surfaces of the anode bodies of the plurality of two-terminal solid electrolytic capacitors are both expanded. That it has not been processed Low-pass filter for the butterflies. 前記複数の二端子型固体電解コンデンサの各々の前記陽極体は、それぞれ異なる弁作用金属からなることを特徴とする請求項1に記載のローパスフィルタ。   2. The low-pass filter according to claim 1, wherein each of the anode bodies of the plurality of two-terminal solid electrolytic capacitors is made of a different valve metal.
JP2009057269A 2009-03-11 2009-03-11 Low-pass filter Withdrawn JP2010213017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009057269A JP2010213017A (en) 2009-03-11 2009-03-11 Low-pass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009057269A JP2010213017A (en) 2009-03-11 2009-03-11 Low-pass filter

Publications (1)

Publication Number Publication Date
JP2010213017A true JP2010213017A (en) 2010-09-24

Family

ID=42972741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009057269A Withdrawn JP2010213017A (en) 2009-03-11 2009-03-11 Low-pass filter

Country Status (1)

Country Link
JP (1) JP2010213017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227433A (en) * 2011-04-21 2012-11-15 Nec Tokin Corp Solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227433A (en) * 2011-04-21 2012-11-15 Nec Tokin Corp Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US6721171B2 (en) Shielded strip line device and method of manufacture thereof
JP4479050B2 (en) Solid electrolytic capacitor
US20090116173A1 (en) Solid electrolytic capacitor
EP3226270B1 (en) Solid electrolytic capacitor
JP2004055699A (en) Solid electrolytic capacitor and its manufacturing method
JP2009099913A (en) Multi terminal type solid-state electrolytic capacitor
US20120281338A1 (en) Aluminum electrolytic capacitor and method of manfacturing the same
US8320106B2 (en) Lower-face electrode type solid electrolytic multilayer capacitor and mounting member having the same
JP2004087872A (en) Solid electrolytic capacitor
JP3674693B2 (en) Shield stripline type element and manufacturing method thereof
JP2010213017A (en) Low-pass filter
JP2004087713A (en) Aluminum solid electrolytic capacitor
JP5376134B2 (en) Solid electrolytic capacitor
JP2009253020A (en) Solid electrolytic capacitor
JP2010040960A (en) Solid-state electrolytic capacitor
KR102064017B1 (en) Solid electrolytic capacitor
JP5164213B2 (en) Solid electrolytic capacitor
JP2005033813A (en) Shielded strip line type element
JP5642508B2 (en) Surface mount thin capacitors
JP2011108843A (en) Surface mounting solid electrolytic capacitor
JP5326032B1 (en) Solid electrolytic capacitor
JP2009259993A (en) Solid-state electrolytic capacitor
JP2010219128A (en) Solid electrolytic capacitor
JP4264812B2 (en) Method for manufacturing feedthrough electrolytic capacitor
JP5346847B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120828