JP2010219128A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor Download PDF

Info

Publication number
JP2010219128A
JP2010219128A JP2009061371A JP2009061371A JP2010219128A JP 2010219128 A JP2010219128 A JP 2010219128A JP 2009061371 A JP2009061371 A JP 2009061371A JP 2009061371 A JP2009061371 A JP 2009061371A JP 2010219128 A JP2010219128 A JP 2010219128A
Authority
JP
Japan
Prior art keywords
anode
insulating layer
solid electrolytic
external
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009061371A
Other languages
Japanese (ja)
Inventor
Masanori Takahashi
雅典 高橋
Tetsuya Yoshinari
哲也 吉成
Shinya Tokashiki
真哉 渡嘉敷
Katsuhiro Yoshida
勝洋 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2009061371A priority Critical patent/JP2010219128A/en
Publication of JP2010219128A publication Critical patent/JP2010219128A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thinned solid electrolytic capacitor of low self inductance and excellent reliability in moisture resistance. <P>SOLUTION: A capacitor element 14 and an electrode substrate 15 are electrically connected together through a conductive bond 16. A sealing layer 13 is formed in the exposed portion of an insulating layer 10 on the outside terminal side of the electrode substrate 15. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は電解コンデンサに関し、特にチップ形状を有する、三端子型および二端子型の固体電解コンデンサに関するものである。   The present invention relates to an electrolytic capacitor, and more particularly to a three-terminal type and a two-terminal type solid electrolytic capacitor having a chip shape.

近年、デジタル機器に搭載される回路基板に流れる電気信号の動作周波数が高速化される傾向にあり、その動作周波数の高速化に伴い、電気信号を駆動するための電源回路における供給電流が増加する傾向にある。一方で、回路基板に搭載されるIC(集積回路)やLSI(大規模集積回路)の高集積化により、電源回路の出力電圧は低下する傾向にある。これにより電源回路から供給される駆動電力などのノイズ(電源ノイズ)に対する回路基板側のマージンが小さくなってきており、このためノイズ対策が重視されるようになった。一般に電源ノイズなどを除去するためにはコンデンサを用いることが有効であり、ノイズ除去デバイスとしてコンデンサを用いる方法が知られている。   In recent years, there has been a tendency to increase the operating frequency of electric signals flowing in circuit boards mounted on digital devices, and with the increase in operating frequency, the supply current in power supply circuits for driving electric signals increases. There is a tendency. On the other hand, output voltages of power supply circuits tend to decrease due to high integration of ICs (integrated circuits) and LSIs (large scale integrated circuits) mounted on circuit boards. As a result, the margin on the circuit board side with respect to noise (power supply noise) such as drive power supplied from the power supply circuit has been reduced, and therefore noise countermeasures have been emphasized. In general, it is effective to use a capacitor to remove power supply noise and the like, and a method using a capacitor as a noise removing device is known.

動作周波数の高速化に対応するため、高周波領域において低インピーダンスのコンデンサが要望されているが、一般に固体電解コンデンサは高周波領域においてインピーダンスが大きく上昇する傾向にある。高周波領域での固体電解コンデンサのインピーダンスは大部分がその自己インダクタンスによるものであり、このインピーダンスの上昇は、そのほとんどが固体電解コンデンサの端子部分の、自己インダクタンスに起因するものである。この高周波領域における自己インダクタンスは等価直列インダクタンス(以降、ESLと記載)として表され、ESLの値が小さいほど高周波領域におけるインピーダンスは小さくなる。   In order to cope with an increase in operating frequency, a low impedance capacitor is desired in the high frequency region, but in general, a solid electrolytic capacitor tends to have a large increase in impedance in the high frequency region. The impedance of the solid electrolytic capacitor in the high frequency region is mostly due to its self-inductance, and this increase in impedance is mostly due to the self-inductance of the terminal portion of the solid electrolytic capacitor. This self-inductance in the high frequency region is expressed as an equivalent series inductance (hereinafter referred to as ESL), and the impedance in the high frequency region decreases as the value of ESL decreases.

そのような状況の中で、コンデンサ素子−外部端子間の距離を短縮することで自己インダクタンスを小さくする方法として特許文献1や特許文献2に記載のコンデンサが提案されている。   Under such circumstances, the capacitors described in Patent Document 1 and Patent Document 2 have been proposed as methods for reducing the self-inductance by shortening the distance between the capacitor element and the external terminal.

特許文献1では両面銅張板を使用しており、素子側陽陰極端子と外部陽陰極端子とを電気的に接続するためにスルーホールを形成してメッキを施している。その結果、両面のメッキ層及び銅箔の厚みによる制約が加わり、自己インダクタンスの低減には限界がある。   In Patent Document 1, a double-sided copper-clad plate is used, and plating is performed by forming a through hole in order to electrically connect the element-side cathode terminal and the external cathode terminal. As a result, restrictions due to the thickness of the plating layers on both sides and the copper foil are added, and there is a limit in reducing self-inductance.

一方で、特許文献2の例では、コンデンサ素子が第2絶縁層の貫通孔を通じて外部端子と直接接合しているため、コンデンサ素子と外部端子との接続距離が短くなり、より自己インダクタンスの低減を可能にしている。しかし、構造上、第1絶縁層が外部端子よりも外側に形成されており、実装の際にはハンダを厚くする必要があるため実装性に難があり、薄型化も困難である。   On the other hand, in the example of Patent Document 2, since the capacitor element is directly joined to the external terminal through the through hole of the second insulating layer, the connection distance between the capacitor element and the external terminal is shortened, and the self-inductance is further reduced. It is possible. However, because of the structure, the first insulating layer is formed outside the external terminal, and it is necessary to make the solder thicker when mounting, so that it is difficult to mount and thinning is also difficult.

特開2002−134359号公報JP 2002-134359 A 特開2003−158042号公報JP 2003-158042 A

高周波領域での自己インダクタンスの低減および実装性、薄型化を改善するために本発明者等は先に特願2008−106367号において図7の固体電解コンデンサの断面図に示すような、電極基板の絶縁層および金属層を1層ずつとし、絶縁層の開口部を通じてコンデンサ素子と外部陽陰極端子とを直接導電接着することでコンデンサ素子−外部端子間の距離が短くなり、自己インダクタンスの低い、実装性に優れた薄型の固体電解コンデンサを提案している。   In order to reduce the self-inductance in the high-frequency region and improve the mountability and thinning, the present inventors previously described an electrode substrate as shown in the sectional view of the solid electrolytic capacitor in FIG. 7 in Japanese Patent Application No. 2008-106367. The insulation layer and the metal layer are made one layer at a time, and the capacitor element and the external cathode terminal are directly conductively bonded through the opening of the insulation layer, so that the distance between the capacitor element and the external terminal is shortened, and the self-inductance is low. We have proposed a thin solid electrolytic capacitor with excellent properties.

ここで、図7に示す固体電解コンデンサは絶縁層が薄いほどコンデンサ素子−外部端子間の距離が短くなり、且つ薄型化も可能となる。しかし、絶縁層を薄くすることで酸素、水蒸気等が透過しやすくなり、特に耐湿信頼性が低下しやすくなるおそれがある。   Here, in the solid electrolytic capacitor shown in FIG. 7, the thinner the insulating layer, the shorter the distance between the capacitor element and the external terminal, and the thinner the capacitor becomes. However, by making the insulating layer thin, oxygen, water vapor, and the like are likely to permeate, and in particular, moisture resistance reliability may be easily lowered.

本発明の課題は、高周波領域での自己インダクタンスが低く、より高い耐湿信頼性を持つ薄型の固体電解コンデンサを提供することにある。   An object of the present invention is to provide a thin solid electrolytic capacitor having a low self-inductance in a high frequency region and higher moisture resistance reliability.

本発明は、下面のみに金属層を貼り付けた電極基板の金属層を外部電極端子とし、外部電極端子側の絶縁層が露出している部分に封止層を形成することにより、絶縁層部分からの水分の浸入を抑制し、耐湿信頼性に優れた固体電解コンデンサが得られることを見出したものである。   In the present invention, the metal layer of the electrode substrate with the metal layer attached only to the lower surface is used as the external electrode terminal, and the insulating layer portion is formed by forming the sealing layer in the portion where the insulating layer on the external electrode terminal side is exposed. It was found that a solid electrolytic capacitor excellent in moisture resistance reliability can be obtained by suppressing the intrusion of moisture from water.

即ち本発明の固体電解コンデンサは、表面が拡面化された板状もしくは箔状の弁作用金属からなる母材と、前記母材の拡面化された表面に形成された酸化物からなる誘電体層とよりなる陽極体と、前記陽極体の中央部に接続して陰極導体部が形成され、また前記陽極体の両端部にそれぞれ陽極リードが接続したコンデンサ素子と、中央部と両端部に開口部が設けられた絶縁層と、前記絶縁層の下面の中央部に形成され、前記開口部の下面を覆う金属層からなる外部陰極端子と、前記絶縁層の下面の両端部にそれぞれ形成され、前記開口部の下面を覆う金属層からなる外部陽極端子とを有する電極基板とが、前記開口部に形成された導電性接着剤を介して、前記陰極導体部と前記外部陰極端子、および前記陽極リードと前記外部陽極端子と、それぞれ電気的に接続され、前記絶縁層の下面の露出部に封止層を有することを特徴とする。   That is, the solid electrolytic capacitor of the present invention comprises a base material made of a plate-like or foil-like valve action metal having an enlarged surface, and a dielectric made of an oxide formed on the enlarged surface of the base material. An anode body composed of a body layer, a cathode conductor portion connected to the central portion of the anode body, and a capacitor element having anode leads connected to both end portions of the anode body, and a central portion and both end portions An insulating layer provided with an opening, an external cathode terminal formed of a metal layer covering the lower surface of the opening, formed at the center of the lower surface of the insulating layer, and formed at both ends of the lower surface of the insulating layer. And an electrode substrate having an external anode terminal made of a metal layer covering the lower surface of the opening, via the conductive adhesive formed in the opening, the cathode conductor portion, the external cathode terminal, and the Anode lead, external anode terminal, and Each is electrically connected, and having a sealing layer on the exposed portion of the lower surface of the insulating layer.

また、本発明の固体電解コンデンサは、表面が拡面化された板状もしくは箔状の弁作用金属からなる母材と、前記母材の拡面化された表面に形成された酸化物からなる誘電体層とよりなる陽極体と、前記陽極体の一端側に接続して陰極導体部が形成され、また前記陽極体の他端側に接続して陽極リードが形成されたコンデンサ素子と、一端部と他端部に開口部が設けられた絶縁層と、前記絶縁層の下面の一端部に形成され、前記開口部の下面を覆う金属層からなる外部陰極端子と、前記絶縁層の下面の他端部に形成され、前記開口部の下面を覆う金属層からなる外部陽極端子とを有する電極基板とが、前記開口部に形成された導電性接着剤を介して、前記陰極導体部と前記外部陰極端子、および前記陽極リードと前記外部陽極端子と、それぞれ電気的に接続され、前記絶縁層の下面の露出部に封止層を有することを特徴とする。   The solid electrolytic capacitor of the present invention comprises a base material made of a plate-like or foil-like valve action metal having an enlarged surface, and an oxide formed on the surface of the base material that has been enlarged. An anode body composed of a dielectric layer; a capacitor element connected to one end of the anode body to form a cathode conductor portion; and a capacitor element connected to the other end of the anode body to form an anode lead; and one end An insulating layer having openings at the first and second ends, an external cathode terminal formed at one end of the lower surface of the insulating layer and covering the lower surface of the opening, and a lower surface of the insulating layer. An electrode substrate having an external anode terminal formed of a metal layer covering the lower surface of the opening is formed on the other end portion, and the cathode conductor portion and the electrode substrate via a conductive adhesive formed on the opening An external cathode terminal, and the anode lead and the external anode terminal, respectively It is electrically connected, and having a sealing layer on the exposed portion of the lower surface of the insulating layer.

また、前記絶縁層がポリイミドよりなることを特徴とする。さらに、前記開口部がケミカルエッチングにより形成されてなることを特徴とする。   Further, the insulating layer is made of polyimide. Further, the opening is formed by chemical etching.

本発明によれば、電極基板の絶縁層および金属層を1層ずつとし、絶縁層の開口部を通じてコンデンサ素子と外部陽陰極端子とを直接導電接着することでコンデンサ素子−外部端子間の距離が短くなり、自己インダクタンスを低減することが可能である。また、外部端子側の絶縁層が露出している部分に封止層を形成することで、製品厚みを増大させることなく、絶縁層部分からの水分の浸入を抑制し、耐湿信頼性に優れた構造とすることができる。   According to the present invention, the insulating layer and the metal layer of the electrode substrate are formed one layer at a time, and the capacitor element and the external cathode terminal are directly conductively bonded through the opening of the insulating layer, thereby reducing the distance between the capacitor element and the external terminal. Shortening and self-inductance can be reduced. In addition, by forming a sealing layer in the part where the insulating layer on the external terminal side is exposed, moisture intrusion from the insulating layer part is suppressed without increasing the product thickness, and the moisture resistance reliability is excellent. It can be a structure.

本発明の第1の実施の形態における三端子型の固体電解コンデンサの断面図。1 is a cross-sectional view of a three-terminal solid electrolytic capacitor according to a first embodiment of the present invention. 本発明の第1の実施の形態における三端子型の固体電解コンデンサのコンデンサ素子を示す図、図2(a)は平面図、図2(b)は図2(a)におけるA−A線断面図。The figure which shows the capacitor | condenser element of the three terminal type solid electrolytic capacitor in the 1st Embodiment of this invention, Fig.2 (a) is a top view, FIG.2 (b) is the sectional view on the AA line in Fig.2 (a). Figure. 本発明の第1の実施の形態における三端子型の固体電解コンデンサに用いる電極基板の断面図。Sectional drawing of the electrode substrate used for the three-terminal type solid electrolytic capacitor in the 1st Embodiment of this invention. 本発明の第2の実施の形態における二端子型の固体電解コンデンサの断面図。Sectional drawing of the two-terminal type solid electrolytic capacitor in the 2nd Embodiment of this invention. 本発明の第2の実施の形態における二端子型の固体電解コンデンサのコンデンサ素子を示す図、図5(a)は平面図、図5(b)は図5(a)におけるA−A線断面図。The figure which shows the capacitor | condenser element of the two-terminal type solid electrolytic capacitor in the 2nd Embodiment of this invention, Fig.5 (a) is a top view, FIG.5 (b) is the sectional view on the AA line in Fig.5 (a). Figure. 本発明の第2の実施の形態における二端子型の固体電解コンデンサに用いる電極基板の断面図。Sectional drawing of the electrode substrate used for the two-terminal type solid electrolytic capacitor in the 2nd Embodiment of this invention. 固体電解コンデンサの断面図。Sectional drawing of a solid electrolytic capacitor.

以下、本発明の固体電解コンデンサの実施の形態について、図面を用いて詳細に説明する。   Hereinafter, embodiments of the solid electrolytic capacitor of the present invention will be described in detail with reference to the drawings.

図2を参照して本発明の固体電解コンデンサに用いるコンデンサ素子の作製方法について説明する。まず、両面がエッチング処理で拡面化され、表面に陽極酸化による酸化物からなる誘電体層2が形成されたアルミ箔からなる母材1を目的とする素子サイズに切り出す。次に、誘電体層2上の所定の位置にエポキシ樹脂等の絶縁性樹脂を塗布し、絶縁部3を形成し、アルミ箔からなる母材1を複数の領域に区分する。その後、再度陽極酸化を行い、切断面等アルミの芯が露出している部分に誘電体層を再形成する。続いて、複数の領域に区分したうちの中央部の陰極導体部を形成する領域に、導電性高分子からなる固体電解質層4、グラファイト層5、導電性ペースト等による金属電極層6を形成し、陰極導体部9とする。次に、前記複数の領域のうち、陰極導体部9以外の端部の領域に関して、誘電体層2及び拡面化層を排除してアルミの母材1を露出させる。さらに、Ni、Cu、Ag等のメッキが施されたCu箔を陽極リード7として超音波溶接等で接続し、陽極部8とする。   A method for producing a capacitor element used in the solid electrolytic capacitor of the present invention will be described with reference to FIG. First, a base material 1 made of an aluminum foil having both surfaces enlarged by an etching process and having a dielectric layer 2 made of an anodized oxide formed on the surface is cut into a target element size. Next, an insulating resin such as an epoxy resin is applied to a predetermined position on the dielectric layer 2 to form an insulating portion 3, and the base material 1 made of aluminum foil is divided into a plurality of regions. Thereafter, anodic oxidation is performed again, and a dielectric layer is re-formed at a portion where the aluminum core is exposed, such as a cut surface. Subsequently, a solid electrolyte layer 4 made of a conductive polymer, a graphite layer 5 and a metal electrode layer 6 made of a conductive paste or the like are formed in a region where the central cathode conductor portion of the plurality of regions is formed. The cathode conductor portion 9 is used. Next, of the plurality of regions, the aluminum base material 1 is exposed by excluding the dielectric layer 2 and the surface-enlarging layer in the end region other than the cathode conductor portion 9. Furthermore, Cu foil plated with Ni, Cu, Ag, or the like is connected as an anode lead 7 by ultrasonic welding or the like to form an anode portion 8.

次に、図3を参照して本発明の固体電解コンデンサの電極基板について説明する。ポリイミド樹脂、ガラスエポキシ、液晶ポリマー等の絶縁層10に銅箔を貼り付けた片面銅貼板を使用し、この銅箔をエッチングすることで両端部に外部陽極端子11および中央部に外部陰極端子12を形成している。絶縁層10としては、薄膜化が容易でありケミカルエッチングによる処理が可能という点でポリイミド樹脂を用いる事が好ましい。一方で絶縁層10には複数の開口部が設けられており、その開口部に導電性接着剤16を充填することでコンデンサ素子14と外部端子とを電気的に接続することができる。開口部の形成方法としてはレーザー加工やドリルによる穴あけ、またはエッチング等が挙げられる。中でも、外部端子に影響を及ぼすことなく絶縁層10のみを広範囲に処理できるという点でケミカルエッチングが好ましい。また、下面の外部端子側で絶縁層10が露出している部分には封止層13が形成されている。封止層13は、エポキシ樹脂、アクリル樹脂、フェノール樹脂、ポリアミドイミド樹脂等からなり、シリカ等のフィラーを混合してもよい。実装性の確保のため、封止層13は外部端子よりも薄い構造とし、絶縁層10の露出および外部陽陰極端子へのはみ出しが無いように注意する。   Next, the electrode substrate of the solid electrolytic capacitor of the present invention will be described with reference to FIG. Using a single-sided copper-clad plate with copper foil affixed to an insulating layer 10 such as polyimide resin, glass epoxy, or liquid crystal polymer, and etching the copper foil, external anode terminals 11 at both ends and external cathode terminals at the center 12 is formed. As the insulating layer 10, it is preferable to use a polyimide resin because it can be easily thinned and can be processed by chemical etching. On the other hand, the insulating layer 10 is provided with a plurality of openings, and the capacitor element 14 and the external terminal can be electrically connected by filling the openings with the conductive adhesive 16. Examples of the method of forming the opening include laser processing, drilling with a drill, etching, and the like. Among these, chemical etching is preferable in that only the insulating layer 10 can be processed over a wide range without affecting the external terminals. Further, a sealing layer 13 is formed in a portion where the insulating layer 10 is exposed on the external terminal side on the lower surface. The sealing layer 13 is made of an epoxy resin, an acrylic resin, a phenol resin, a polyamideimide resin, or the like, and may be mixed with a filler such as silica. In order to ensure mountability, the sealing layer 13 is made thinner than the external terminal, and care is taken so that the insulating layer 10 is not exposed and does not protrude to the external cathode terminal.

次に、図1を参照して本発明の固体電解コンデンサの作製方法について説明する。電極基板15の開口部に銀等を含有する導電性接着剤16を充填し、上述のように作製したコンデンサ素子14と電極基板15の外部陽極端子11および外部陰極端子12とを電気的に接続し、しかる後にエポキシ樹脂等の外装樹脂17を用いて外装し、固体電解コンデンサを得る。なお、ここでは三端子型の固体電解コンデンサについて説明したが、後述の実施例で記載するように、二端子型の固体電解コンデンサについても同様に作製することができる。   Next, a method for producing a solid electrolytic capacitor of the present invention will be described with reference to FIG. The opening of the electrode substrate 15 is filled with a conductive adhesive 16 containing silver or the like, and the capacitor element 14 manufactured as described above is electrically connected to the external anode terminal 11 and the external cathode terminal 12 of the electrode substrate 15. After that, it is packaged with an exterior resin 17 such as an epoxy resin to obtain a solid electrolytic capacitor. Although a three-terminal solid electrolytic capacitor has been described here, a two-terminal solid electrolytic capacitor can be similarly manufactured as described in the following examples.

本発明の三端子型の固体電解コンデンサに用いるコンデンサ素子について、図2を参照して具体的に説明する。まず、両側の表面が拡面化されたアルミ箔を用意し、陽極酸化することで両面に誘電体層2を形成した。このアルミ箔はアルミ電解コンデンサの電極用途として市販されているもので、公称化成電圧が5V、厚みが105μmである。このアルミ箔を幅2.5mm、長さ6.0mmの長方形の形状に裁断して母材1とした。次いで作製した母材1の長さ方向の両端面からそれぞれ1.3mmの領域を残して母材1の表裏に計4箇所の絶縁部3を形成した。この絶縁部3は、母材の両表面にエポキシ樹脂を主成分とする絶縁樹脂を幅方向にそれぞれ太さ0.5mm、高さ100μmの線状に塗布し、母材1に含浸、硬化させることにより形成したものである。   A capacitor element used in the three-terminal solid electrolytic capacitor of the present invention will be specifically described with reference to FIG. First, an aluminum foil whose surfaces on both sides were enlarged was prepared and anodized to form the dielectric layer 2 on both sides. This aluminum foil is commercially available as an electrode for an aluminum electrolytic capacitor, and has a nominal formation voltage of 5 V and a thickness of 105 μm. This aluminum foil was cut into a rectangular shape having a width of 2.5 mm and a length of 6.0 mm to obtain a base material 1. Next, a total of four insulating portions 3 were formed on the front and back of the base material 1, leaving regions of 1.3 mm from the both end surfaces in the length direction of the base material 1 produced. The insulating part 3 is formed by applying an insulating resin mainly composed of an epoxy resin on both surfaces of the base material in a width direction in a linear shape having a thickness of 0.5 mm and a height of 100 μm, and impregnating and curing the base material 1. It is formed by.

ここで、両側を絶縁部3で囲まれた母材の中央部を陰極領域とし、この領域の両面に、導電性高分子であるポリピロールからなる固体電解質層4を形成した。次に、スクリーン印刷でグラファイト層5を15μmの厚さで塗布、乾燥固化し、さらに、グラファイト層5の上に銀含有の導電性ペーストを25μmの厚さで塗布、乾燥固化させることで金属電極層6を形成し、陰極導体部9とした。この陰極導体部の大きさは母材の幅方向が2.5mm、長さ方向が2.4mmである。   Here, the central part of the base material surrounded on both sides by the insulating part 3 is a cathode region, and the solid electrolyte layer 4 made of polypyrrole, which is a conductive polymer, is formed on both sides of this region. Next, the graphite layer 5 is applied by screen printing to a thickness of 15 μm and dried and solidified. Further, a conductive paste containing silver is applied to the graphite layer 5 to a thickness of 25 μm and dried and solidified to form a metal electrode. Layer 6 was formed as cathode conductor portion 9. The size of the cathode conductor is 2.5 mm in the width direction of the base material and 2.4 mm in the length direction.

一方、絶縁部3の両外側のそれぞれの陽極領域では、誘電体層を除去し、Ni、Cu、Agメッキを施された幅2.5mm,長さ1.0mm,厚さ80μmのCu箔を陽極リード7として陽極領域の片面に超音波溶接し、陽極部8とした。以上の方法により、三端子型のコンデンサ素子14の作製を行った。   On the other hand, in the respective anode regions on both outer sides of the insulating portion 3, the dielectric layer is removed, and a Ni foil, a Cu foil having a width of 2.5 mm, a length of 1.0 mm, and a thickness of 80 μm is plated. As an anode lead 7, ultrasonic welding was performed on one surface of the anode region to form an anode portion 8. The three-terminal capacitor element 14 was manufactured by the above method.

次に、本発明の三端子型の固体電解コンデンサに用いる電極基板15について、図3を参照して説明する。ポリイミド樹脂からなる厚み30μmの樹脂板を用意し、その片面のみに厚み30μmの銅箔を貼り合わせた片面銅貼板とした。この片面銅貼板の銅箔部分にケミカルエッチングを施して外部陰極端子12、外部陽極端子11である外部端子を形成し、これらの外部端子が形成された各領域のポリイミド樹脂をケミカルエッチングにより除去することで陰極導体部9、陽極部8に対応するそれぞれの領域に、計3箇所の開口部を形成した。この開口部の形状は、陰極領域では幅2.5mm、長さ2.4mm、2箇所の陽極領域ではそれぞれ幅2.5mm、長さ1.3mmである。続いて、外部端子側でポリイミド樹脂が露出している部分に、フィラーを含有したエポキシ樹脂を塗布し、乾燥固化することで封止層13を形成した。ここでは、封止層13が外部端子よりも盛り上がらないよう、厚みは25μmとした。   Next, the electrode substrate 15 used for the three-terminal solid electrolytic capacitor of the present invention will be described with reference to FIG. A resin plate made of polyimide resin having a thickness of 30 μm was prepared, and a single-sided copper-clad plate in which a copper foil having a thickness of 30 μm was bonded only to one side thereof. The copper foil portion of this single-sided copper-coated plate is chemically etched to form external terminals that are the external cathode terminal 12 and the external anode terminal 11, and the polyimide resin in each region where these external terminals are formed is removed by chemical etching. As a result, a total of three openings were formed in the respective regions corresponding to the cathode conductor portion 9 and the anode portion 8. The shape of this opening is 2.5 mm in width and 2.4 mm in length in the cathode region, and 2.5 mm in width and 1.3 mm in length in the two anode regions, respectively. Subsequently, an epoxy resin containing a filler was applied to a portion where the polyimide resin was exposed on the external terminal side, and the sealing layer 13 was formed by drying and solidifying. Here, the thickness is set to 25 μm so that the sealing layer 13 does not rise above the external terminals.

次いで、開口部に銀を含有する導電性接着剤16を充填し、コンデンサ素子14を熱圧着した。この際に、導電性接着剤16はポリイミド樹脂の開口部の縁から数十μm程度盛り上がるように充填し、本体部分の陰極導体部9の銀ペースト層、および陽極部8の銅箔が、これらの導電性接着剤16に確実に接着されて電気的接続が行われるようにした。   Next, the opening was filled with a conductive adhesive 16 containing silver, and the capacitor element 14 was thermocompression bonded. At this time, the conductive adhesive 16 is filled so as to swell about several tens of μm from the edge of the opening of the polyimide resin, and the silver paste layer of the cathode conductor 9 of the main body and the copper foil of the anode 8 are The conductive adhesive 16 was securely bonded to make electrical connection.

その後、エポキシ樹脂を主成分としたモールド樹脂を使用してトランスファモールドにより外装を行い、本実施の形態の三端子型固体電解コンデンサを得た。作製した固体電解コンデンサの外形寸法は、幅2.8mm、長さ6.3mm、高さ0.46mmのチップ状である。   Then, the exterior was carried out by transfer molding using a mold resin containing epoxy resin as a main component, and the three-terminal solid electrolytic capacitor of the present embodiment was obtained. The external dimensions of the manufactured solid electrolytic capacitor are a chip shape having a width of 2.8 mm, a length of 6.3 mm, and a height of 0.46 mm.

本発明の二端子型の固体電解コンデンサについて、図4〜6を参照して説明する。使用した母材の材質、寸法、表面処理の方法、銅箔の寸法、および形成した固体電解質層4、グラファイト層5、金属電極層6の構成などは、実施例1の場合と同一である。二端子型の固体電解コンデンサであるため本体部分の陽極部8は1箇所のみであり、絶縁部3は母材の長さ方向の一方の端面から1.3mmの位置の両面に設けられているのみである。絶縁部3が絶縁樹脂を太さ0.5mm、高さ100μmの線状に母材に塗布したものである点は、実施例1の場合と同じである。母材の長さ6.0mmのうち、陽極部8の長さは1.3mmで実施例1の場合と同じであるが、陰極導体部9の長さは4.2mmである。またプリント配線板が片面銅貼板であること、その樹脂の材質、外部端子側のポリイミド樹脂が露出している部分に、フィラーを含有したエポキシ樹脂を塗布・乾燥固化する点なども、実施例1の場合と同じである。ただし開口部はコンデンサ素子14の陰極導体部9、陽極部8にそれぞれ対応する各1箇所ずつであり、その寸法は、陰極導体部9では幅2.5mm、長さ4.2mm、陽極部8では幅2.5mm、長さ1.3mmである。次いで、これらの開口部に銀を含有する導電性接着剤16を充填し、コンデンサ素子14を熱圧着した後、トランスファモールド外装を行い、二端子型の固体電解コンデンサを得た。作製した固体電解コンデンサの外形寸法は幅2.8mm、長さ6.3mm、高さ0.46mmのチップ状で、実施例1の場合と同じであるが、外部端子は2箇所のみである。   The two-terminal solid electrolytic capacitor of the present invention will be described with reference to FIGS. The material, dimensions, surface treatment method, dimensions of the copper foil, and the structures of the solid electrolyte layer 4, the graphite layer 5, and the metal electrode layer 6 formed are the same as in the case of Example 1. Since it is a two-terminal type solid electrolytic capacitor, there is only one anode portion 8 of the main body portion, and the insulating portion 3 is provided on both surfaces at a position of 1.3 mm from one end surface in the length direction of the base material. Only. The insulating part 3 is the same as the case of Example 1 in that the insulating resin is applied to the base material in a linear shape having a thickness of 0.5 mm and a height of 100 μm. Of the length of the base material of 6.0 mm, the length of the anode portion 8 is 1.3 mm, which is the same as in the first embodiment, but the length of the cathode conductor portion 9 is 4.2 mm. Also, the printed wiring board is a single-sided copper-clad board, the material of the resin, the point that the epoxy resin containing filler is applied to the exposed part of the polyimide resin on the external terminal side, and solidified, etc. The same as the case of 1. However, the opening is one each corresponding to the cathode conductor portion 9 and the anode portion 8 of the capacitor element 14, and the dimensions of the cathode conductor portion 9 are 2.5 mm in width, 4.2 mm in length, and the anode portion 8. Then, the width is 2.5 mm and the length is 1.3 mm. Next, the conductive adhesive 16 containing silver was filled in these openings and the capacitor element 14 was thermocompression bonded, and then a transfer mold was applied to obtain a two-terminal solid electrolytic capacitor. The outer dimensions of the manufactured solid electrolytic capacitor are the same as in the case of Example 1 in the form of a chip having a width of 2.8 mm, a length of 6.3 mm, and a height of 0.46 mm, but there are only two external terminals.

(比較例1)
本発明を適用した実施例1の三端子型の固体電解コンデンサとの比較用に、外部端子側のポリイミド樹脂が露出している部分に、フィラーを含有したエポキシ樹脂等の封止層を設けない電極基板15を使用して固体電解コンデンサを作製した(図7参照)。
(Comparative Example 1)
For comparison with the three-terminal type solid electrolytic capacitor of Example 1 to which the present invention is applied, a sealing layer such as an epoxy resin containing a filler is not provided in a portion where the polyimide resin on the external terminal side is exposed. A solid electrolytic capacitor was produced using the electrode substrate 15 (see FIG. 7).

比較例1で用いたコンデンサ素子14は、各部分の寸法及び作製方法等全てが実施例1の場合と同様である。電極基板15の接着、トランスファモールドによる外装を実施例1の場合と同様に行い、比較例1の三端子型の固体電解コンデンサを得た。   The capacitor element 14 used in Comparative Example 1 is the same as that in Example 1 in terms of the dimensions and manufacturing method of each part. The adhesion of the electrode substrate 15 and the exterior by transfer molding were performed in the same manner as in Example 1 to obtain a three-terminal solid electrolytic capacitor of Comparative Example 1.

(比較例2)
本発明を適用した実施例2の二端子型の固体電解コンデンサとの比較用に、外部端子側のポリイミド樹脂が露出している部分に、フィラーを含有したエポキシ樹脂等の封止層を設けない電極基板を使用して固体電解コンデンサを作製した。
(Comparative Example 2)
For comparison with the two-terminal solid electrolytic capacitor of Example 2 to which the present invention is applied, a sealing layer such as an epoxy resin containing a filler is not provided on the portion where the polyimide resin on the external terminal side is exposed. A solid electrolytic capacitor was produced using the electrode substrate.

比較例2で用いたコンデンサ素子14は、各部分の寸法及び作製方法等全てが実施例2の場合と同様である。電極基板の接着、トランスファモールドによる外装を実施例2の場合と同様に行い、比較例2の二端子型の固体電解コンデンサを得た。   The capacitor element 14 used in Comparative Example 2 is the same as that of Example 2 in all dimensions and manufacturing methods. The adhesion of the electrode substrate and the exterior by transfer molding were performed in the same manner as in Example 2 to obtain a two-terminal solid electrolytic capacitor of Comparative Example 2.

(評価)
以上の方法にて作製した実施例1、2および比較例1、2の固体電解コンデンサをそれぞれ10pずつ用意し、65℃−95%RHの恒温恒湿槽に投入し、500時間放置試験を行い、耐湿信頼性の比較を行った。その結果を表1に示す。ここでは、放置試験前の100kHzにおける等価直列抵抗(ESR)の平均値を1.00とし、500時間後のESRを相対評価で表してある。ESRは、LCRメーター(アジレントテクノロジー株式会社製)を使用し、四端子法にて測定を行った。
(Evaluation)
Prepare 10p each of the solid electrolytic capacitors of Examples 1 and 2 and Comparative Examples 1 and 2 prepared by the above method, put them in a constant temperature and humidity chamber of 65 ° C-95% RH, and conduct a standing test for 500 hours. The humidity resistance reliability was compared. The results are shown in Table 1. Here, the average value of the equivalent series resistance (ESR) at 100 kHz before the standing test is 1.00, and the ESR after 500 hours is expressed by relative evaluation. ESR was measured by a four-terminal method using an LCR meter (manufactured by Agilent Technologies).

Figure 2010219128
Figure 2010219128

本発明を適用した実施例1、2の固体電解コンデンサでは比較例1、2の固体電解コンデンサと比較して、放置試験前後のESR変化が小さく、耐湿信頼性が改善されていることが判る。   It can be seen that in the solid electrolytic capacitors of Examples 1 and 2 to which the present invention is applied, the ESR change before and after the standing test is small and the moisture resistance reliability is improved as compared with the solid electrolytic capacitors of Comparative Examples 1 and 2.

1 母材
2 誘電体層
3 絶縁部
4 固体電解質層
5 グラファイト層
6 金属電極層
7 陽極リード
8 陽極部
9 陰極導体部
10 絶縁層
11 外部陽極端子
12 外部陰極端子
13 封止層
14 コンデンサ素子
15 電極基板
16 導電性接着剤
17 外装樹脂
DESCRIPTION OF SYMBOLS 1 Base material 2 Dielectric layer 3 Insulating part 4 Solid electrolyte layer 5 Graphite layer 6 Metal electrode layer 7 Anode lead 8 Anode part 9 Cathode conductor part 10 Insulating layer 11 External anode terminal 12 External cathode terminal 13 Sealing layer 14 Capacitor element 15 Electrode substrate 16 Conductive adhesive 17 Exterior resin

Claims (4)

表面が拡面化された板状もしくは箔状の弁作用金属からなる母材と、前記母材の拡面化された表面に形成された酸化物からなる誘電体層とよりなる陽極体と、前記陽極体の中央部に接続して陰極導体部が形成され、また前記陽極体の両端部にそれぞれ陽極リードが接続したコンデンサ素子と、
中央部と両端部に開口部が設けられた絶縁層と、前記絶縁層の下面の中央部に形成され、前記開口部の下面を覆う金属層からなる外部陰極端子と、前記絶縁層の下面の両端部にそれぞれ形成され、前記開口部の下面を覆う金属層からなる外部陽極端子とを有する電極基板とが、
前記開口部に形成された導電性接着剤を介して、前記陰極導体部と前記外部陰極端子、および前記陽極リードと前記外部陽極端子と、それぞれ電気的に接続され、前記絶縁層の下面の露出部に封止層を有することを特徴とする固体電解コンデンサ。
An anode body comprising a base material made of a plate-like or foil-like valve action metal having an enlarged surface, and a dielectric layer made of an oxide formed on the surface of the base material that has been enlarged, A cathode conductor portion is formed by connecting to the central portion of the anode body, and a capacitor element having anode leads connected to both ends of the anode body, and
An insulating layer having openings at the center and both ends, an external cathode terminal formed at the center of the lower surface of the insulating layer and covering a lower surface of the opening, and a lower surface of the insulating layer An electrode substrate having an external anode terminal formed of a metal layer that is formed on both ends and covers the lower surface of the opening,
Via the conductive adhesive formed in the opening, the cathode conductor portion and the external cathode terminal, and the anode lead and the external anode terminal are electrically connected, respectively, and the lower surface of the insulating layer is exposed. A solid electrolytic capacitor having a sealing layer in the part.
表面が拡面化された板状もしくは箔状の弁作用金属からなる母材と、前記母材の拡面化された表面に形成された酸化物からなる誘電体層とよりなる陽極体と、前記陽極体の一端側に接続して陰極導体部が形成され、また前記陽極体の他端側に接続して陽極リードが形成されたコンデンサ素子と、
一端部と他端部に開口部が設けられた絶縁層と、前記絶縁層の下面の一端部に形成され、前記開口部の下面を覆う金属層からなる外部陰極端子と、前記絶縁層の下面の他端部に形成され、前記開口部の下面を覆う金属層からなる外部陽極端子とを有する電極基板とが、
前記開口部に形成された導電性接着剤を介して、前記陰極導体部と前記外部陰極端子、および前記陽極リードと前記外部陽極端子と、それぞれ電気的に接続され、前記絶縁層の下面の露出部に封止層を有することを特徴とする固体電解コンデンサ。
An anode body comprising a base material made of a plate-like or foil-like valve action metal having an enlarged surface, and a dielectric layer made of an oxide formed on the surface of the base material that has been enlarged, A capacitor element in which a cathode conductor portion is formed connected to one end side of the anode body, and an anode lead is formed connected to the other end side of the anode body;
An insulating layer provided with an opening at one end and the other end; an external cathode terminal formed at one end of the lower surface of the insulating layer and covering the lower surface of the opening; and a lower surface of the insulating layer An electrode substrate having an external anode terminal formed of a metal layer that covers the lower surface of the opening,
Via the conductive adhesive formed in the opening, the cathode conductor portion and the external cathode terminal, and the anode lead and the external anode terminal are electrically connected, respectively, and the lower surface of the insulating layer is exposed. A solid electrolytic capacitor having a sealing layer in the part.
前記絶縁層がポリイミド樹脂よりなることを特徴とする、請求項1または2に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the insulating layer is made of a polyimide resin. 前記開口部がケミカルエッチングにより形成されてなることを特徴とする、請求項1または2に記載の固体電解コンデンサ。   The solid electrolytic capacitor according to claim 1, wherein the opening is formed by chemical etching.
JP2009061371A 2009-03-13 2009-03-13 Solid electrolytic capacitor Pending JP2010219128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061371A JP2010219128A (en) 2009-03-13 2009-03-13 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061371A JP2010219128A (en) 2009-03-13 2009-03-13 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2010219128A true JP2010219128A (en) 2010-09-30

Family

ID=42977675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061371A Pending JP2010219128A (en) 2009-03-13 2009-03-13 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2010219128A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144316A1 (en) * 2011-04-20 2012-10-26 株式会社村田製作所 Solid-state electrolyte capacitor manufacturing method and solid-state electrolyte capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158042A (en) * 2001-11-21 2003-05-30 Japan Carlit Co Ltd:The Three-terminal thin aluminium solid electrolytic capacitor
JP2006228953A (en) * 2005-02-17 2006-08-31 Three M Innovative Properties Co Surface mounted package
JP2007073935A (en) * 2005-08-10 2007-03-22 Seiko Instruments Inc Circuit board and its manufacturing method, and semiconductor device
JP2007258496A (en) * 2006-03-24 2007-10-04 Nichicon Corp Chip-like solid electrolytic capacitor
JP2008028383A (en) * 2006-07-18 2008-02-07 Samsung Electro Mech Co Ltd Chip type solid electrolytic capacitor
JP2008098394A (en) * 2006-10-12 2008-04-24 Nec Tokin Corp Solid-state electrolytic capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158042A (en) * 2001-11-21 2003-05-30 Japan Carlit Co Ltd:The Three-terminal thin aluminium solid electrolytic capacitor
JP2006228953A (en) * 2005-02-17 2006-08-31 Three M Innovative Properties Co Surface mounted package
JP2007073935A (en) * 2005-08-10 2007-03-22 Seiko Instruments Inc Circuit board and its manufacturing method, and semiconductor device
JP2007258496A (en) * 2006-03-24 2007-10-04 Nichicon Corp Chip-like solid electrolytic capacitor
JP2008028383A (en) * 2006-07-18 2008-02-07 Samsung Electro Mech Co Ltd Chip type solid electrolytic capacitor
JP2008098394A (en) * 2006-10-12 2008-04-24 Nec Tokin Corp Solid-state electrolytic capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144316A1 (en) * 2011-04-20 2012-10-26 株式会社村田製作所 Solid-state electrolyte capacitor manufacturing method and solid-state electrolyte capacitor
CN103430261A (en) * 2011-04-20 2013-12-04 株式会社村田制作所 Solid-state electrolyte capacitor manufacturing method and solid-state electrolyte capacitor
JP5534106B2 (en) * 2011-04-20 2014-06-25 株式会社村田製作所 Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
CN103430261B (en) * 2011-04-20 2016-08-17 株式会社村田制作所 The manufacture method of solid electrolytic capacitor and solid electrolytic capacitor
US9552928B2 (en) 2011-04-20 2017-01-24 Murata Manufacturing Co., Ltd. Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor
US10032567B2 (en) 2011-04-20 2018-07-24 Murata Manufacturing Co., Ltd. Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor

Similar Documents

Publication Publication Date Title
KR100984535B1 (en) Solid electrolytic capacitor and a method of producing the same
US7898795B2 (en) Solid-state electrolytic capacitor
JP2009099913A (en) Multi terminal type solid-state electrolytic capacitor
JP5007677B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006237520A (en) Thin-shaped multi-terminal capacitor, and manufacturing method therefor
JP5120026B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2003332173A (en) Capacitor element, solid electrolytic capacitor, and substrate with built-in capacitor
JP2002237431A (en) Solid-state electrolytic capacitor and method of manufacturing the same
JP2012038873A (en) Semiconductor device
JP2009260235A (en) Solid electrolytic capacitor device and method of manufacturing the same
JP2010219128A (en) Solid electrolytic capacitor
JP5017164B2 (en) Solid electrolytic capacitor
JP2011176067A (en) Solid-state electrolytic capacitor
JP5376134B2 (en) Solid electrolytic capacitor
JP2009295634A (en) Solid electrolytic capacitor
JP2005158903A (en) Solid electrolytic capacitor
JP5164213B2 (en) Solid electrolytic capacitor
JP2010212600A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2010040960A (en) Solid-state electrolytic capacitor
JP2005012084A (en) Circuit module
JP5201688B2 (en) Semiconductor device
JP5326032B1 (en) Solid electrolytic capacitor
JP5428471B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2009295604A (en) Solid electrolytic capacitor
JP2009252763A (en) Electronic component built-in wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121114

A02 Decision of refusal

Effective date: 20130306

Free format text: JAPANESE INTERMEDIATE CODE: A02