JP2011096746A - Surface-mounting thin capacitor - Google Patents

Surface-mounting thin capacitor Download PDF

Info

Publication number
JP2011096746A
JP2011096746A JP2009247183A JP2009247183A JP2011096746A JP 2011096746 A JP2011096746 A JP 2011096746A JP 2009247183 A JP2009247183 A JP 2009247183A JP 2009247183 A JP2009247183 A JP 2009247183A JP 2011096746 A JP2011096746 A JP 2011096746A
Authority
JP
Japan
Prior art keywords
layer
anode
cathode
thin capacitor
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009247183A
Other languages
Japanese (ja)
Inventor
Haruhiro Kawai
陽洋 川合
Kenji Araki
健二 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2009247183A priority Critical patent/JP2011096746A/en
Publication of JP2011096746A publication Critical patent/JP2011096746A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-mounting thin capacitor having a large capacity. <P>SOLUTION: In the surface-mounting thin capacitor, a metal core 12 and a metal foil consisting of etched layers 13 for covering both the faces of the metal core 12 are used as a base material, resist layers 5 formed, at a boundary between anodes at both ends of the metal foil; and the etched layers 13, formed on a surface of a center of the metal foil, are formed separated from the etched layers 13. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は表面実装薄型コンデンサに関する。   The present invention relates to a surface mount thin capacitor.

この種の表面実装薄型コンデンサは、アルミニウム箔のような金属箔を母材として用いている。金属箔は、金属芯部と、その金属芯部の両面を覆うエッチド層からなる。化成により、金属箔の表面は酸化皮膜で覆われている。   This type of surface mount thin capacitor uses a metal foil such as an aluminum foil as a base material. The metal foil includes a metal core part and an etched layer that covers both surfaces of the metal core part. Due to the chemical conversion, the surface of the metal foil is covered with an oxide film.

図2は従来の表面実装薄型コンデンサの断面図である。従来技術による表面実装薄型コンデンサ100の製造方法について図2を参照しながら説明する。   FIG. 2 is a cross-sectional view of a conventional surface mount thin capacitor. A method for manufacturing the surface mount thin capacitor 100 according to the prior art will be described with reference to FIG.

弁作用金属からなる金属芯部12の両端部が陽極部1cとして使用され、中央部分の表面上に陰極部1aが形成される。まず板状、または箔状のアルミニウムなどの弁作用金属を拡面化し弁作用金属からなる金属芯部12の両面に形成したエッチド層13からなる弁作用金属箔の陽極体の表面に酸化物誘電体層を形成する。酸化物誘電体層を形成後、陽極部1cと陰極部1aとの境界部のエッチド層を一部除去する。エッチド層を除去した部分にレジスト層5を形成し、陽極部1cと陰極部1aに分離する。次に弁作用金属箔の陽極体の酸化物誘電体層の表面を覆うように導電性高分子層2を形成した後、電解質溶液中に弁作用金属箔の陽極体を浸漬し、電圧を印加することで、酸化物誘電体層の欠陥部を修復する再化成を行う。   Both end portions of the metal core portion 12 made of the valve metal are used as the anode portion 1c, and the cathode portion 1a is formed on the surface of the central portion. First, an oxide dielectric is formed on the surface of the anode body of the valve action metal foil made of the etched layer 13 formed by enlarging the valve action metal such as plate-like or foil-like aluminum and forming on both surfaces of the metal core portion 12 made of the valve action metal. A body layer is formed. After forming the oxide dielectric layer, a portion of the etched layer at the boundary between the anode portion 1c and the cathode portion 1a is removed. A resist layer 5 is formed on the portion from which the etched layer has been removed, and separated into an anode portion 1c and a cathode portion 1a. Next, the conductive polymer layer 2 is formed so as to cover the surface of the oxide dielectric layer of the anode body of the valve metal foil, and then the anode body of the valve metal foil is immersed in the electrolyte solution and voltage is applied. By doing so, re-chemical conversion is performed to repair defects in the oxide dielectric layer.

その後、陰極部1aの導電性高分子層2の上にグラファイト層3、銀ペースト層4の陰極層を順次形成し、陽極部1c表面の酸化物誘電体層とレジスト層5、導電性高分子層2をレーザーなどで除去した後、陽極部1cに陽極導通片6を接合して固体電解コンデンサ素子とする。次に、平板状の陽極端子7および陰極端子8が、基板実装面と同一平面上に形成され、陽極端子7と陰極端子8の隙間を埋めるとともに機械的に連結する底面部を有し、上記平面に対して略直行する側壁を有するモールド樹脂ケース10の内側に露出した陽極端子7aおよび内側に露出した陰極端子8aに、コンデンサ素子の陽極部の陽極導通片6および陰極部の銀ペースト層4を導電ペ−スト9により接続し、モールド樹脂ケース10の上側周囲を蓋11で覆うことで表面実装薄型コンデンサ100としている。この様な表面実装薄型コンデンサの技術は特許文献1等に開示されている。   Thereafter, a cathode layer of a graphite layer 3 and a silver paste layer 4 is sequentially formed on the conductive polymer layer 2 of the cathode portion 1a, and an oxide dielectric layer and a resist layer 5 on the surface of the anode portion 1c, a conductive polymer. After removing the layer 2 with a laser or the like, the anode conductive piece 6 is joined to the anode portion 1c to obtain a solid electrolytic capacitor element. Next, the flat plate-like anode terminal 7 and cathode terminal 8 are formed on the same plane as the substrate mounting surface, and have a bottom surface portion that fills the gap between the anode terminal 7 and the cathode terminal 8 and mechanically connects them. The anode terminal 7a exposed on the inside of the mold resin case 10 having a side wall substantially perpendicular to the plane and the cathode terminal 8a exposed on the inside are connected to the anode conductive piece 6 of the anode part of the capacitor element and the silver paste layer 4 of the cathode part. Are connected by a conductive paste 9 and the upper periphery of the mold resin case 10 is covered with a lid 11 to form a surface mount thin capacitor 100. Such a surface-mount thin capacitor technology is disclosed in Patent Document 1 and the like.

特開2005―216929号公報JP 2005-216929 A

しかしながら、従来の技術においては、レジスト層がエッチド層に接触することからエッチド層にレジスト層を形成するレジスト樹脂が浸透していく。このことより、レジスト樹脂が浸透して形成された部分は固体電解質である導電性高分子層が形成され難くなり、静電容量の低減につながっていた。即ち本発明の課題は、大容量の表面実装薄型コンデンサを提供することにある。   However, in the conventional technique, since the resist layer is in contact with the etched layer, the resist resin that forms the resist layer penetrates into the etched layer. For this reason, it is difficult to form a conductive polymer layer that is a solid electrolyte in the portion formed by permeation of the resist resin, leading to a reduction in capacitance. That is, an object of the present invention is to provide a large-capacity surface-mount thin capacitor.

本発明は、陽極部と陰極部との分離を目的としたレジスト層を形成しつつ、エッチド層に接触しない構造として、エッチド層へのレジスト樹脂の浸透防止を図ることにより静電容量が増加することを見出したものである。即ち、本発明によれば、金属芯部と、前記金属芯部の両面を覆うエッチド層とから成る金属箔を母材として用いた表面実装薄型コンデンサであって、前記金属箔の両端部が陽極として使用され、前記金属箔の中央部分の表面上に陰極が形成され、前記表面実装薄型コンデンサは、前記陽極と前記陰極との境界部に前記エッチド層を除去して形成されたレジスト層と、前記金属箔の中央部にある前記エッチド層の内部および表面にモノマーの重合により形成された導電性高分子層とを備え、前記導電性高分子層の表面上に前記陰極が形成された前記表面実装薄型コンデンサにおいて、前記レジスト層が前記エッチド層から離間して形成されたことを特徴とする表面実装薄型コンデンサを得ることが出来る。   The present invention increases the capacitance by forming a resist layer for the purpose of separating the anode portion and the cathode portion and preventing the resist resin from penetrating into the etched layer as a structure that does not contact the etched layer. This is what we found. That is, according to the present invention, there is provided a surface mount thin capacitor using a metal foil comprising a metal core and an etched layer covering both surfaces of the metal core as a base material, wherein both ends of the metal foil are anodes. A cathode is formed on the surface of the central portion of the metal foil, the surface-mount thin capacitor has a resist layer formed by removing the etched layer at the boundary between the anode and the cathode; A conductive polymer layer formed by monomer polymerization inside and on the surface of the etched layer in the center of the metal foil, and the surface on which the cathode is formed on the surface of the conductive polymer layer In the mounted thin capacitor, a surface mounted thin capacitor can be obtained in which the resist layer is formed apart from the etched layer.

本発明によれば、陽極と陰極の分離を目的としたレジスト樹脂により形成されるレジスト層において、エッチド層への接触を防ぐ構造を持つことによりレジスト樹脂の浸透を防止出来、静電容量の増加、または、耐湿試験による静電容量変化特性の向上した表面実装薄型コンデンサを提供することが出来る。   According to the present invention, in a resist layer formed of a resist resin for the purpose of separating the anode and the cathode, the resist resin can be prevented from penetrating by having a structure for preventing contact with the etched layer, and the capacitance is increased. Alternatively, it is possible to provide a surface mount thin capacitor having improved capacitance change characteristics by a moisture resistance test.

本発明の実施の形態による表面実装薄型コンデンサの断面図。1 is a cross-sectional view of a surface mount thin capacitor according to an embodiment of the present invention. 従来の表面実装薄型コンデンサの断面図。Sectional drawing of the conventional surface mount thin capacitor.

本発明の実施の形態について図面を参照して説明する。図1に示すようにAl、Ti、Ta、Nb等の弁作用金属からなる金属箔を母材として用い、例えばAlを用いてエッチング等により拡面化された金属芯部12の両面にエッチド層13が形成された金属箔に電気化学的方法により、化成処理して酸化物誘電体層を形成する。酸化物誘電体層を形成後、両端部の陽極と中央部の陰極との境界部のエッチド層13をレーザー加工等により一部除去して金属芯部を露出させるまで除去する。しかる後、スクリーン印刷手法等により、エッチド層を除去した部分にアクリル樹脂、エポキシ樹脂、フェノール樹脂、ABS樹脂、シリコン樹脂などのレジスト樹脂をスクリーン印刷、インクジェット印刷などの方法を用いてレジスト層5をエッチド層13から離間して形成した後、乾燥硬化を行う。上記離間幅はレジスト層5の幅の1/2以上を目標とし、レジスト樹脂の粘度はあまりに低いと垂れが生じて形成後エッチド層に接触してしまうので、粘度は270±30dPa・sの範囲が好適である。尚、スクリーン印刷の場合は、レジスト層5がエッチド層13には接触しない様にスクリーン印刷版の寸法を考慮する。その後、中央部のエッチド層の内部及び表面の酸化物誘電体層上にモノマーの重合により導電性高分子層2を形成する。導電性高分子層2の形成後、再化成して酸化物誘電体層の修復を行う。導電性高分子層2の上にグラファイト層3、銀ペースト層4からなる陰極層を順次形成し、両端部の陽極部1cのエッチド層をレーザ加工等により除去した後、陽極部1cの金属芯部12に陽極導通片6を接合しコンデンサ素子とする。次に、平板状の陽極端子7および陰極端子8が、基板実装面と同一平面上に形成され、陽極端子7と陰極端子8の隙間を埋めるとともに機械的に連結する底面部を有し、上記平面に対して略直行する側壁を有するモールド樹脂ケース10の内側に露出した陽極端子7aおよび内側に露出した陰極端子8aに、コンデンサ素子の陽極部の陽極導通片6および陰極部の銀ペースト層4を導電ペ−スト9により接続し、モールド樹脂ケース10の上側周囲を蓋11で覆うことで表面実装薄型コンデンサ100とする。   Embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, a metal foil made of a valve action metal such as Al, Ti, Ta, or Nb is used as a base material. For example, an etched layer is formed on both surfaces of a metal core 12 that has been enlarged by etching or the like using Al. The metal foil on which 13 is formed is subjected to chemical conversion treatment by an electrochemical method to form an oxide dielectric layer. After the oxide dielectric layer is formed, the etched layer 13 at the boundary between the anode at both ends and the cathode at the center is partially removed by laser processing or the like until the metal core is exposed. Thereafter, the resist layer 5 is formed by applying a resist resin such as an acrylic resin, an epoxy resin, a phenol resin, an ABS resin, or a silicon resin to the portion from which the etched layer has been removed by a screen printing method or the like using a method such as screen printing or ink jet printing. After being formed away from the etched layer 13, drying and curing are performed. The separation width is targeted to be 1/2 or more of the width of the resist layer 5, and if the viscosity of the resist resin is too low, it will sag and contact the etched layer after formation, so the viscosity is in the range of 270 ± 30 dPa · s. Is preferred. In the case of screen printing, the dimensions of the screen printing plate are taken into consideration so that the resist layer 5 does not contact the etched layer 13. Thereafter, the conductive polymer layer 2 is formed by polymerization of the monomer inside the central etched layer and on the oxide dielectric layer on the surface. After the formation of the conductive polymer layer 2, the oxide dielectric layer is repaired by re-forming. A cathode layer composed of a graphite layer 3 and a silver paste layer 4 is sequentially formed on the conductive polymer layer 2, and the etched layer of the anode portion 1c at both ends is removed by laser processing or the like, and then the metal core of the anode portion 1c. The anode conducting piece 6 is joined to the portion 12 to form a capacitor element. Next, the flat plate-like anode terminal 7 and cathode terminal 8 are formed on the same plane as the substrate mounting surface, and have a bottom surface portion that fills the gap between the anode terminal 7 and the cathode terminal 8 and mechanically connects them. The anode terminal 7a exposed on the inside of the mold resin case 10 having a side wall substantially perpendicular to the plane and the cathode terminal 8a exposed on the inside are connected to the anode conductive piece 6 of the anode part of the capacitor element and the silver paste layer 4 of the cathode part. Are connected by a conductive paste 9 and the upper periphery of the mold resin case 10 is covered with a lid 11 to form a surface-mount thin capacitor 100.

以下に実施例について実施の形態の説明で用いた図1を参照しながら詳述する。表面実装薄型コンデンサは、アルミニウムからなる金属芯部12と、この金属芯部12の両面を覆うエッチド層13とから成るアルミニウムの金属箔を母材として用いた。金属箔の両端部を陽極部1cとして使用し、金属箔の中央部分を陰極部1aとして使用した。   Examples will be described in detail below with reference to FIG. 1 used in the description of the embodiment. The surface-mount thin capacitor used as a base material an aluminum metal foil composed of a metal core 12 made of aluminum and an etched layer 13 covering both surfaces of the metal core 12. Both end portions of the metal foil were used as the anode portion 1c, and the central portion of the metal foil was used as the cathode portion 1a.

陽極と陰極との境界部分のエッチド層の一部をレーザー加工により、0.5mm幅で除去し、そこに粘度が250dPa・Sに調整されたエポキシ樹脂をスクリーン印刷により充填することによりレジスト層5を形成した。その際には、スクリーン印刷版の幅を0.3mmとして、レジスト層5が図1の楕円内に示すようにエッチド層13に接触しない構造とした。しかる後、アルミニウム箔の中央部分にあるエッチド層13の内部および表面上にモノマーの重合により導電性高分子層2を形成した後、導電性高分子層2の表面上にグラファイト層3、銀ペースト層4からなる陰極を形成し、両端部の陽極部1cのエッチド層をレーザー加工により除去した後、陽極部1cの金属芯部12に陽極導通片6を接合してコンデンサ素子を製作した。コンデンサ素子を製作した後、平板状の陽極端子7および陰極端子8が、基板実装面と同一平面上に形成され、陽極端子7と陰極端子8の隙間を埋めるとともに機械的に連結する底面部を有し、上記平面に対して略直行する側壁を有するモールド樹脂ケース10の内側に露出した陽極端子7aおよび内側に露出した陰極端子8aに、コンデンサ素子の陽極部の陽極導通片6および陰極部の銀ペースト層4を導電ペ−スト9により接続し、モールド樹脂ケース10の上側周囲を蓋11で覆うことで表面実装薄型コンデンサ100を100個製作した。   A portion of the etched layer at the boundary between the anode and the cathode is removed by laser processing to a width of 0.5 mm, and an epoxy resin whose viscosity is adjusted to 250 dPa · S is filled therein by screen printing, thereby resist layer 5 Formed. At that time, the width of the screen printing plate was set to 0.3 mm, and the resist layer 5 was not in contact with the etched layer 13 as shown in the ellipse of FIG. Thereafter, after the conductive polymer layer 2 is formed by polymerization of the monomer inside and on the surface of the etched layer 13 in the central portion of the aluminum foil, the graphite layer 3 and the silver paste are formed on the surface of the conductive polymer layer 2. After forming the cathode composed of the layer 4 and removing the etched layer of the anode portion 1c at both ends by laser processing, the anode conductive piece 6 was joined to the metal core portion 12 of the anode portion 1c to manufacture a capacitor element. After the capacitor element is manufactured, the flat plate-like anode terminal 7 and cathode terminal 8 are formed on the same plane as the substrate mounting surface, and fills the gap between the anode terminal 7 and the cathode terminal 8 and mechanically connects the bottom surface portion. The anode terminal 7a exposed inside the mold resin case 10 and the cathode terminal 8a exposed inside the mold resin case 10 having a side wall substantially perpendicular to the plane, and the anode conductive piece 6 of the anode part of the capacitor element and the cathode part The silver paste layer 4 was connected by the conductive paste 9, and the upper periphery of the mold resin case 10 was covered with the lid 11, thereby manufacturing 100 surface mount thin capacitors 100.

(比較例)
比較例は、図2に示すように陽極と陰極との境界部分のエッチド層の一部をレーザー加工により0.5mm幅で除去し、そこに粘度が250dPa・Sに調整されたエポキシ樹脂をスクリーン印刷により充填することによりレジスト層5を形成した。その際には、スクリーン印刷版の幅をエッチド層の除去幅よりも大きく、0.8mmとして、レジスト層5が図2の楕円内に示すようにエッチド層13に接触する構造とした。レジスト層5がエッチド層13に接触していること以外は、前述の実施例と同様に表面実装薄型コンデンサ100を100個製作した。
(Comparative example)
In the comparative example, as shown in FIG. 2, a part of the etched layer at the boundary between the anode and the cathode is removed by laser processing to a width of 0.5 mm, and an epoxy resin whose viscosity is adjusted to 250 dPa · S is screened there. The resist layer 5 was formed by filling by printing. At that time, the width of the screen printing plate was larger than the removed width of the etched layer, 0.8 mm, and the resist layer 5 was in contact with the etched layer 13 as shown in the ellipse of FIG. 100 surface mount thin capacitors 100 were manufactured in the same manner as in the previous example except that the resist layer 5 was in contact with the etched layer 13.

ここで、実施例で製作した表面実装薄型コンデンサと従来例の工法で製作した比較例の表面実装薄型コンデンサ、各100個ずつの静電容量値と耐湿放置試験の静電容量変化率の平均値の比較を表1に示す。なお、静電容量値の測定条件は周波数120Hz、DC 1.5V、耐湿放置試験条件は65℃、95%RH、500時間で行った。   Here, the surface mount thin capacitor manufactured in the example and the surface mount thin capacitor of the comparative example manufactured by the conventional method, the capacitance value of each 100 pieces, and the average value of the capacitance change rate in the moisture resistance test Table 1 shows the comparison. The measurement conditions for the electrostatic capacitance value were 120 Hz, DC 1.5 V, and the moisture resistance test conditions were 65 ° C., 95% RH, and 500 hours.

Figure 2011096746
Figure 2011096746

表1より、実施例と比較例の比較において、実施例の方が静電容量は大きく、且つ、耐湿試験による静電容量変化が小さくなっていることが判る。これは、本発明により、レジスト樹脂のエッチド層への染み込みが抑えられたことにより、エッチド層内の導電性高分子形成量に差が認められたことを示している。   From Table 1, it can be seen that in the comparison between the example and the comparative example, the example has a larger capacitance, and the capacitance change by the moisture resistance test is smaller. This indicates that, according to the present invention, the penetration of the resist resin into the etched layer was suppressed, so that a difference was found in the amount of conductive polymer formed in the etched layer.

1a 陰極部
1c 陽極部
2 導電性高分子層
3 グラファイト層
4 銀ペースト層
5 レジスト層
6 陽極導通片
7 陽極端子
7a 内側に露出した陽極端子
8 陰極端子
8a 内側に露出した陰極端子
9 導電ペ−スト
10 モールド樹脂ケース
11 蓋
12 金属芯部
13 エッチド層
100 表面実装薄型コンデンサ
DESCRIPTION OF SYMBOLS 1a Cathode part 1c Anode part 2 Conductive polymer layer 3 Graphite layer 4 Silver paste layer 5 Resist layer 6 Anode conduction piece 7 Anode terminal 7a Anode terminal exposed inside 8 Cathode terminal 8a Cathode terminal exposed inside 9 Conductive page Stroke 10 Mold resin case 11 Lid 12 Metal core 13 Etched layer 100 Surface mount thin capacitor

Claims (1)

金属芯部と、前記金属芯部の両面を覆うエッチド層とから成る金属箔を母材として用いた表面実装薄型コンデンサであって、前記金属箔の両端部が陽極として使用され、前記金属箔の中央部分の表面上に陰極が形成され、前記表面実装薄型コンデンサは、前記陽極と前記陰極との境界部に前記エッチド層を除去して形成されたレジスト層と、前記金属箔の中央部にある前記エッチド層の内部および表面にモノマーの重合により形成された導電性高分子層とを備え、前記導電性高分子層の表面上に前記陰極が形成された前記表面実装薄型コンデンサにおいて、前記レジスト層が前記エッチド層から離間して形成されたことを特徴とする表面実装薄型コンデンサ。   A surface mount thin capacitor using a metal foil composed of a metal core portion and an etched layer covering both surfaces of the metal core portion as a base material, wherein both end portions of the metal foil are used as anodes, A cathode is formed on the surface of the central portion, and the surface-mount thin capacitor is in a central portion of the metal foil and a resist layer formed by removing the etched layer at the boundary between the anode and the cathode A conductive polymer layer formed by polymerization of a monomer inside and on the surface of the etched layer, and the negative electrode formed on the surface of the conductive polymer layer. A surface mount thin capacitor characterized in that is formed apart from the etched layer.
JP2009247183A 2009-10-28 2009-10-28 Surface-mounting thin capacitor Pending JP2011096746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009247183A JP2011096746A (en) 2009-10-28 2009-10-28 Surface-mounting thin capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009247183A JP2011096746A (en) 2009-10-28 2009-10-28 Surface-mounting thin capacitor

Publications (1)

Publication Number Publication Date
JP2011096746A true JP2011096746A (en) 2011-05-12

Family

ID=44113375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009247183A Pending JP2011096746A (en) 2009-10-28 2009-10-28 Surface-mounting thin capacitor

Country Status (1)

Country Link
JP (1) JP2011096746A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183555A (en) * 2016-03-31 2017-10-05 株式会社村田製作所 Solid-state electrolytic capacitor
JP2019075582A (en) * 2016-03-31 2019-05-16 株式会社村田製作所 Solid-state electrolytic capacitor
EP4030451A4 (en) * 2019-09-09 2023-10-04 Japan Capacitor Industrial Co., Ltd. Electrolytic capacitor and manufacturing method of electrolytic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216929A (en) * 2004-01-27 2005-08-11 Nec Tokin Corp Surface mounting thin-type capacitor and its manufacturing method
JP2006073638A (en) * 2004-08-31 2006-03-16 Tdk Corp Solid electrolytic capacitor
JP2007305661A (en) * 2006-05-09 2007-11-22 Nippon Chemicon Corp Electrolytic capacitor and its manufacturing process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005216929A (en) * 2004-01-27 2005-08-11 Nec Tokin Corp Surface mounting thin-type capacitor and its manufacturing method
JP2006073638A (en) * 2004-08-31 2006-03-16 Tdk Corp Solid electrolytic capacitor
JP2007305661A (en) * 2006-05-09 2007-11-22 Nippon Chemicon Corp Electrolytic capacitor and its manufacturing process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183555A (en) * 2016-03-31 2017-10-05 株式会社村田製作所 Solid-state electrolytic capacitor
JP2019075582A (en) * 2016-03-31 2019-05-16 株式会社村田製作所 Solid-state electrolytic capacitor
US10629383B2 (en) 2016-03-31 2020-04-21 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor
EP4030451A4 (en) * 2019-09-09 2023-10-04 Japan Capacitor Industrial Co., Ltd. Electrolytic capacitor and manufacturing method of electrolytic capacitor
US11908634B2 (en) 2019-09-09 2024-02-20 Japan Capacitor Industrial Co., Ltd. Electrolytic capacitor and manufacturing method of electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP5004232B2 (en) Solid electrolytic capacitor, solid electrolytic capacitor element and manufacturing method thereof
CN111724994B (en) Solid electrolytic capacitor
JP2007042932A (en) Solid-state electrolytic capacitor and distributed constant noise filter
CN111724993A (en) Solid electrolytic capacitor
CN114424308A (en) Electrolytic capacitor
JP4953091B2 (en) Capacitor chip and manufacturing method thereof
JP2015109329A (en) Method for forming solid electrolytic capacitor
JP2011096746A (en) Surface-mounting thin capacitor
WO2007069670A1 (en) Capacitor chip and method for manufacturing same
JP2011035406A (en) Dry powder stencil printing of solid electrolytic capacitor component
JP4383227B2 (en) Solid electrolytic capacitor and manufacturing method thereof
CN101329954B (en) Chip-shaped solid electrolytic capacitor
JP2012134389A (en) Solid electrolytic capacitor
JP2007012797A (en) Laminated solid electrolytic capacitor
JP2007273502A (en) Solid electrolytic capacitor
WO2011052156A1 (en) Electrode foil and capacitor using same
JP2005216953A (en) Electrolytic capacitor element, electrolytic capacitor and their production process
KR101116120B1 (en) Solid electrolytic capacitor element and solid electrolytic capacitor
JP5419546B2 (en) Surface mount thin capacitor and manufacturing method thereof
JP4756649B2 (en) Surface mount thin capacitors
JP2004281716A (en) Chip-like solid electrolytic capacitor
JP6475417B2 (en) Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor
JP2007227716A (en) Laminated solid electrolytic capacitor and manufacturing method therefor
JP5411047B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP2010141180A (en) Solid-state electrolytic capacitor, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130801