JPH0266922A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH0266922A
JPH0266922A JP21906388A JP21906388A JPH0266922A JP H0266922 A JPH0266922 A JP H0266922A JP 21906388 A JP21906388 A JP 21906388A JP 21906388 A JP21906388 A JP 21906388A JP H0266922 A JPH0266922 A JP H0266922A
Authority
JP
Japan
Prior art keywords
film
layer
anode
cathode
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21906388A
Other languages
Japanese (ja)
Inventor
Kenji Kuranuki
健司 倉貫
Yoichi Aoshima
青島 洋一
Junji Ozaki
尾崎 潤二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21906388A priority Critical patent/JPH0266922A/en
Publication of JPH0266922A publication Critical patent/JPH0266922A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes

Abstract

PURPOSE:To realize satisfactory frequency characteristic and wide temperature characteristic in a high frequency range by growing electrolytically polymerizable conductive polymer on a compounded film. CONSTITUTION:Semiconductor 4 made of metal oxide selected from lead dioxide, vanadium trioxide, triiron tetraoxide or mixture is insularly adhered uniformly to a layer on a whole for leading a cathode on a compounded film 3 as a dielectric of a capacitor. Then, polymer solution 5 is prepared by employing 0.5mol/l as monomer, 0.1mol/l of paratoluenesulfonic acid tetraethylammonium salt as supporting electrolyte and acetonitrile as solvent, and an auxiliary anode 6 made of an aluminum rod is brought into light contact with the semiconductor layer 4 in the solution 5. When 5V is applied between the anode 6 and an auxiliary cathode 7, a conductive polymer film 8 is also formed on the layer 4. Then, the film 8 is coated with a graphite layer 9, where silver paint is deposited as a conductive layer 10, and a cathode lead 11 is then extracted, and sheathed with epoxy resin 12 to form a capacitor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は小型大容量化に適した固体電解コンデンサの製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a solid electrolytic capacitor suitable for miniaturization and increase in capacity.

従来の技術 最近電子機器のデジタル化にともなって、そこに使用さ
れるコンデンサも高周波領域においてインピーダンスが
低く、小型大容量化したものへの要求が高まっている。
2. Description of the Related Art Recently, with the digitalization of electronic devices, there has been an increasing demand for capacitors used therein that have low impedance in the high frequency range and are smaller in size and larger in capacity.

従来、高周波領域用のコンデンサとしてはグラスチック
フィルムコンデンサ、マイカコンデンサ、積層セラミッ
クコンデンサなどが用いられている。またその他にアル
ミニウム乾式電解コンデンサやアルミニウムまたはタン
タル固体電解コンデンサなどがある。アルミニウム乾式
電解コンデンサでは、エツチングを施しだ陽・陰極アル
ミニウム箔をセパレータを介して巻取り、液状の電解質
を用いている。また、アルミニウムやメンタル固体電解
コンデンサでは前記アルεニウム乾式電解コンデンサの
特性改良のため電解質の固体化がなされている。この固
体電解質形成には硝酸マンガン液に陽極体を浸漬し、2
60〜360℃前後の高温炉中にて熱分解し、二酸化マ
ンガン層をつくる。このコンデンサの場合、電解質が固
体のために高温における電解質の流出、低温域での凝固
から生じる機能低下などの欠点がなく、液状電解質と比
べて良好な周波数特性、温度特性を示す。また、アルミ
電解コンデンサはタンタル電解コンデンサと同様誘電体
となる化成皮膜を非常に薄くできるために大容量を実現
できる。
Conventionally, glass film capacitors, mica capacitors, multilayer ceramic capacitors, and the like have been used as capacitors for high frequency regions. Other types include aluminum dry electrolytic capacitors and aluminum or tantalum solid electrolytic capacitors. In aluminum dry electrolytic capacitors, etched anode and cathode aluminum foils are wound up with a separator in between, and a liquid electrolyte is used. In addition, in aluminum and mental solid electrolytic capacitors, the electrolyte is solidified in order to improve the characteristics of the aluminum dry electrolytic capacitor. To form this solid electrolyte, the anode body is immersed in a manganese nitrate solution.
It is thermally decomposed in a high-temperature furnace at around 60 to 360°C to form a manganese dioxide layer. In the case of this capacitor, since the electrolyte is solid, there are no drawbacks such as electrolyte leakage at high temperatures or functional deterioration caused by solidification at low temperatures, and it exhibits better frequency and temperature characteristics than liquid electrolytes. Also, like tantalum electrolytic capacitors, aluminum electrolytic capacitors can achieve large capacitance because the chemical conversion film that serves as the dielectric can be made very thin.

まだ、近年では7.了、8,8−テトラシアノキノジメ
タン塩等の有機半導体を固体電解質として用いた固体電
解コンデンサが開発されている。
However, in recent years, 7. Solid electrolytic capacitors using organic semiconductors such as 8,8-tetracyanoquinodimethane salts as solid electrolytes have been developed.

さらに固体電解質の高電導度化のためにピロール、チオ
フェン、フランなどの?t 合性モ/ マー ラミ解重
合させて導電性高分子とし、これを固体電解質とする方
法が提案されている。
Furthermore, what about pyrrole, thiophene, furan, etc. to improve the conductivity of solid electrolytes? A method has been proposed in which a conductive polymer is produced by depolymerizing the conductive polymer and this is used as a solid electrolyte.

発明が解決しようとする課題 導電性高分子に関しては、その電導塵がおよそ1〜10
oS@cm  のものを用いてコンデンサを構成するこ
とが可能であり、固体のメリットを活かした高周波領域
で良好な周波数特性および広範囲での温度特性を実現す
ることが可能となる。電解重合反応では、モノマーの電
解酸化という反応過程により、誘電体となる化成皮膜上
へ皮膜を破壊せずに重合膜をつけることが必要である。
Problems to be Solved by the Invention Regarding conductive polymers, the conductive dust is approximately 1 to 10
It is possible to construct a capacitor using oS@cm, and it is possible to realize good frequency characteristics in a high frequency region and temperature characteristics over a wide range by taking advantage of the merits of a solid state. In the electrolytic polymerization reaction, it is necessary to apply a polymer film onto the chemical conversion film that serves as a dielectric without destroying the film through a reaction process called electrolytic oxidation of monomers.

この方法として、特開昭62−165313号公報で化
成皮膜の一部に導電性物質を重合の開始点として設け、
化成皮膜上に析出・生長させる方法が提案されている。
As a method for this, Japanese Patent Application Laid-Open No. 62-165313 discloses that a conductive substance is provided in a part of the chemical conversion film as a starting point for polymerization.
A method of depositing and growing on a chemical conversion film has been proposed.

特開昭62−165313号公報の実施例では、ポリエ
ステルフィルムの上に金属を蒸着した導電フィルムを化
成皮膜の外周部(化成皮膜の全面積の0.001〜50
%)に設け、そこを重合の開始点として電解重合を行う
という方法である。しかしながらこの方法では導電性物
質のごく近傍には電解重合膜が生長するが化成皮膜を大
面積にした場合には化成皮膜上全体に電解重合膜を生長
させることができないという欠点があった。まだ、化成
皮膜上全体に導電性物質として金属粉やグラファイトな
どの電導塵の高いものを直接使用した場合にはショート
してしまうなどの課題があった。
In the example of JP-A-62-165313, a conductive film in which metal is vapor-deposited on a polyester film is attached to the outer periphery of the chemical conversion film (0.001 to 50% of the total area of the chemical conversion film).
%) and conduct electrolytic polymerization using that point as the polymerization starting point. However, in this method, an electrolytic polymer film grows very close to the conductive substance, but when the chemical conversion film is made to have a large area, the electrolytic polymer film cannot be grown over the entire surface of the chemical conversion film, which is a drawback. However, there are still problems such as short circuits when a highly conductive material such as metal powder or graphite is directly used as a conductive material on the entire chemical conversion coating.

まだ、化成皮膜を形成する前に、電解重合膜を弁金属上
につけて、その後、化成液中で陽極化成により化成皮膜
を形成することができるが、この場合電解重合膜を介し
て化成反応を行うことになるので、電解重合膜の変質を
きたしたり、弁金属との付着性の低下を生じていた。従
ってこれらの方法によって大容量のコンデンサを提供す
ることは困難であった。
Before forming the chemical conversion film, it is possible to apply an electrolytic polymer film on the valve metal and then form the chemical film by anodic chemical formation in a chemical solution, but in this case, the chemical reaction is not carried out through the electrolytic polymer film. As a result, the quality of the electrolytically polymerized membrane deteriorates and its adhesion to the valve metal deteriorates. Therefore, it has been difficult to provide large capacity capacitors using these methods.

本発明はこのような課題を解決するもので、電解重合高
分子固体電解コンデンサの製造において、コンデンサの
誘電体となる化成皮膜上の陰極を取り出す部分全体に効
果的に電解重合導電性高分子を生長させることを可能と
し、高周波領域で良好な周波数特性および広範囲での温
度特性を実現する大容量電解コンデンサを提供するもの
である。
The present invention solves these problems, and in the production of electrolytic polymer solid electrolytic capacitors, an electrolytic polymer conductive polymer is effectively applied to the entire area from which the cathode is taken out on the chemical conversion film that serves as the dielectric of the capacitor. The object of the present invention is to provide a large-capacity electrolytic capacitor that can be grown and has good frequency characteristics in a high frequency region and temperature characteristics over a wide range.

課題を解決するための手段 このような課題を解決するために本発明は、弁金属より
なる陽極体の表面に陽極化成皮膜を形成し、その後、前
記陽極化成皮膜上の陰極を取り出す部分全体に、二酸化
鉛、三酸化バナジウム、四三酸化鉄のいずれかまたは混
合物から選ばれる金属酸化物の半導体を島状または層状
に均一に付着させ、さらに前記半導体に接触して配置さ
れた電極を少なくとも一つ以上用いて前記陽極化成皮膜
上に導電性高分子膜を電解重合によシ形成させるもので
ある。
Means for Solving the Problems In order to solve these problems, the present invention forms an anode chemical coating on the surface of an anode body made of a valve metal, and then applies an anode chemical coating to the entire portion of the anode chemical coating from which the cathode is taken out. , a metal oxide semiconductor selected from lead dioxide, vanadium trioxide, and triiron tetroxide, or a mixture thereof, is uniformly deposited in the form of an island or a layer, and furthermore, at least one electrode is placed in contact with the semiconductor. A conductive polymer film is formed on the anode chemical conversion film by electrolytic polymerization.

作用 本発明の作用は、このような本発明の方法によれば電解
重合高分子固体電解コンデンサの製造において、コンデ
ンサの誘電体となる化成皮膜上の陰極を取り出す部分全
体に、二酸化鉛、三酸化バナジウム、四三酸化鉄のいず
れかまたは混合物から選ばれる金属酸化物からなる半導
体を島状または層状に均一に付着させた後、前記半導体
層に接触して配置した電極から一旦電解重合反応を開始
すると、そこを起点に重合体が前記半導体上の表面全体
に生長することをみいだし、この現象を利用したもので
、この方法を用いて効果的に電解重合導電性高分子を化
成皮膜上に生長させることが可能となり、高周波領域で
良好な周波数特性および広範囲での温度特性を実現する
大容量電解コンデンサを提供することが可能となる。
Effect The effect of the present invention is that, according to the method of the present invention, lead dioxide, trioxide, etc. After uniformly depositing a semiconductor made of a metal oxide selected from vanadium, triiron tetroxide, or a mixture in the form of islands or layers, an electrolytic polymerization reaction is once initiated from an electrode placed in contact with the semiconductor layer. Then, they discovered that the polymer grows over the entire surface of the semiconductor from this point, and this phenomenon is utilized to effectively deposit electropolymerized conductive polymers onto chemical conversion coatings. This makes it possible to provide a large-capacity electrolytic capacitor that achieves good frequency characteristics in a high frequency region and temperature characteristics over a wide range.

実施例 以下、本発明の一実施例について図面を用いて説明する
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

塩酸などで電解エツチングされたアルミニウム箔からな
る陽極体1の一部に陽極引出しリード線2を溶接し、ア
ジピン酸アンモニウム等の水溶液中で化成反応を行った
後、以下に述べるような方法で金属酸化物の半導体層4
を形成した。
An anode lead wire 2 is welded to a part of an anode body 1 made of aluminum foil that has been electrolytically etched with hydrochloric acid or the like, and after a chemical conversion reaction is performed in an aqueous solution of ammonium adipate or the like, metal is formed by the method described below. Oxide semiconductor layer 4
was formed.

(1)二酸化鉛の形成方法 二酸化鉛の形成は、陽極体を鉛イオンを含む反応母液に
浸漬し、200〜300℃の高温下で熱分解して形成す
る方法(特公昭58−21414号公報)、触媒として
銀イオンを用いて二酸化鉛を化学的に析出させる方法(
特公昭49−29374号公報)、鉛酸ナトリウムの水
溶液に浸漬し減圧下、60℃で30時間放置して分解さ
せ二酸化鉛層を形成する方法(特開昭62−12662
5号公報)などで形成した。
(1) Method of forming lead dioxide Lead dioxide is formed by immersing the anode body in a reaction mother liquor containing lead ions and thermally decomposing it at a high temperature of 200 to 300°C (Japanese Patent Publication No. 58-21414). ), a method of chemically precipitating lead dioxide using silver ions as a catalyst (
(Japanese Patent Publication No. 49-29374), a method of immersing it in an aqueous solution of sodium leadate and leaving it at 60°C under reduced pressure for 30 hours to decompose and form a lead dioxide layer (Japanese Patent Publication No. 62-12662).
No. 5).

(2)三酸化バナジウムの形成方法 三酸化バナジウムの形成は、メタバナジン酸アンモニウ
ムに還元剤としてナトリウムボロノ・イドライドを用い
た水溶液中に陽極体を浸漬し、減圧下で3時間放置して
三酸化バナジウム層を形成する方法(特開昭62−12
6624号公報)で行った。
(2) Formation method of vanadium trioxide To form vanadium trioxide, the anode body is immersed in an aqueous solution of ammonium metavanadate and sodium borono-hydride as a reducing agent, and left under reduced pressure for 3 hours to form vanadium trioxide. Method for forming a vanadium layer (Japanese Unexamined Patent Publication No. 62-12
No. 6624).

(3)四三酸化鉄の形成方法 四三酸化鉄の形成は、鉄イオンを含む反応母液、例えば
硫酸アンモニウムでpHを4.5に調製した飽和の硫酸
第二鉄水溶液に陽極体を浸漬し100℃で3時間放置し
て四三酸化鉄を形成する方法(特開昭62−12662
3号公報)で行った。
(3) Formation method of triiron tetroxide To form triiron tetroxide, the anode body is immersed in a reaction mother liquor containing iron ions, for example, a saturated ferric sulfate aqueous solution whose pH has been adjusted to 4.5 with ammonium sulfate. Method of forming triiron tetroxide by leaving it for 3 hours at
Publication No. 3).

電解重合は第1図に示すような電解重合槽を使用し、重
合液6として、モノマーにビロール0、F; mol/
l、支持電解質にパラトルエンスルホン酸テトラエチル
アンモニウム塩01 mol/l、溶媒としてアセトニ
トリルを用いて調製し、φ0.2のアルミニウム棒から
なる補助陽極6を重合液5中で半導体層4に軽く接触さ
せる。このアルミニウム棒の先端は丸くて半導体層4と
の接触面積は0.2−以下である。このアルミニウム棒
を補助陽極6とするのに対し補助陰極7には厚さ100
μmのアルξニウム箔を使用した。この様な構成で補助
陽極6と補助陰極70間に5vの定電圧を印加すると、
すぐに重合液6中にある補助陽極6であるアルミニウム
棒の表面全体に導電性高分子膜が形成する。その後も電
圧を印加し続けると導電性高分子膜8が半導体層4上に
も形成し次第に生長し、10〜30分後KFi112a
fの導電性高分子膜が形成した。次に第2図に示すよう
に導電性高分子膜8上にグラファイト層9を塗シ、その
上に導電層10として銀ペイントを塗り陰極リード11
゜を取り出す。そしてエポキシ樹脂12で外装すること
によりコンデンサを作成した。
For electrolytic polymerization, an electrolytic polymerization tank as shown in FIG.
l. Prepared using paratoluenesulfonic acid tetraethylammonium salt 01 mol/l as a supporting electrolyte and acetonitrile as a solvent, and lightly contacting the auxiliary anode 6 made of an aluminum rod with a diameter of 0.2 with the semiconductor layer 4 in the polymerization solution 5. . The tip of this aluminum rod is round and the contact area with the semiconductor layer 4 is 0.2- or less. This aluminum rod is used as the auxiliary anode 6, while the auxiliary cathode 7 has a thickness of 100 mm.
μm aluminum ξ foil was used. When a constant voltage of 5V is applied between the auxiliary anode 6 and the auxiliary cathode 70 in this configuration,
A conductive polymer film is immediately formed on the entire surface of the aluminum rod, which is the auxiliary anode 6, in the polymerization solution 6. If the voltage continues to be applied after that, a conductive polymer film 8 is also formed on the semiconductor layer 4 and gradually grows, and after 10 to 30 minutes, the KFi 112a
A conductive polymer film of f was formed. Next, as shown in FIG. 2, a graphite layer 9 is coated on the conductive polymer film 8, and silver paint is coated on top of it as a conductive layer 10.
Take out ゜. A capacitor was then produced by covering the cap with epoxy resin 12.

以上のような方法で試作した固体電解コンデンサの緒特
性を測定し第1表に示した。
The characteristics of the solid electrolytic capacitor prototyped using the method described above were measured and are shown in Table 1.

第   1   表 今回使用したアルミニウム陽極箔の液中容量は16.1
μFであったので容量達成率は662〜83.9 %に
なる。さらに高周波の1MHzでのインピーダンスが非
常に低い比較的大容量の高性能コンデンサを得ることが
できた。
Table 1 The liquid capacity of the aluminum anode foil used this time is 16.1
Since it was μF, the capacity achievement rate was 662 to 83.9%. Furthermore, we were able to obtain a relatively large-capacity, high-performance capacitor with extremely low impedance at a high frequency of 1 MHz.

本実施例では、導電性高分子のモノマーとしてピロール
、チオフェン、支持電解質としてパラトルエンスルホン
酸テトラエチルアンモニウム塩ヲ用いて電解重合膜を形
成する例で示したが、この他にフランやアニリンまたは
それらの誘導体をモノマーに用い他の支持電解質を使用
した重合液を用いて電解重合膜を形成してもかまわない
。また電解重合槽の補助陽極および補助陰極はアルミニ
ウムを使用した例で示したがステンレス、鉄、ニッケル
等の金属であってもその効果は変わしない。
In this example, an electrolytically polymerized membrane is formed using pyrrole and thiophene as conductive polymer monomers and paratoluenesulfonic acid tetraethylammonium salt as a supporting electrolyte. An electrolytically polymerized membrane may be formed using a polymerization solution using a derivative as a monomer and another supporting electrolyte. Further, although aluminum is used as the auxiliary anode and auxiliary cathode of the electrolytic polymerization tank in the example shown, the effect remains the same even if metals such as stainless steel, iron, nickel, etc. are used.

発明の効果 本発明によれば、電解重合高分子固体電解コンデンサの
製造において、コンデンサの誘電体となる化成皮膜上の
陰極を取り出す部分全体に、二酸化鉛、三酸化バナジウ
ム、四三酸化鉄のいずれかまたは混合物から選ばれる金
属酸化物の半導体を島状または層状に均一に付着させた
のち、前記半導体層に接触して配置した電極から一旦電
解重合反応を開始すると、そこを起点に重合体が表面全
体に生長することを利用したもので、この方法を用いて
効果的に電解重合導電性高分子を化成皮膜上に生長させ
ることが可能となり、高周波領域で良好な周波数特性お
よび広範囲での温度特性を実現する大容景電解コンデン
サを提供することが可能となりその効果は大きい。
Effects of the Invention According to the present invention, in the production of electropolymerized polymer solid electrolytic capacitors, any of lead dioxide, vanadium trioxide, and triiron tetroxide is added to the entire portion from which the cathode is taken out on the chemical conversion film that serves as the dielectric of the capacitor. After uniformly depositing a metal oxide semiconductor in the form of an island or a layer, an electrolytic polymerization reaction is initiated from an electrode placed in contact with the semiconductor layer. Using this method, it is possible to effectively grow electropolymerized conductive polymers on chemical conversion coatings, and it has good frequency characteristics in the high frequency range and a wide temperature range. It becomes possible to provide a large-capacity electrolytic capacitor that achieves these characteristics, and the effect is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における電解重合槽の構成を
示す断面図、第2図は同実施例により得られた固体電解
Cンデンサの概観図である。 1・・・・・・陽極体、2・・・・・・陽極引出しリー
ド線、3・・・・・化成皮膜、4・・・・・・半導体層
、6・・・・・・重合液、6・・・・・・補助陽極、7
・・・・・・補助陰極、8・・・・・・導電性高分子膜
、9・・・・・・グラファイト層、1o・・・・・・導
電層、11・・・・・・陰極リード線、12・・・・・
・エポキシ樹脂。 ″$g肋葭楊
FIG. 1 is a sectional view showing the structure of an electrolytic polymerization tank in one embodiment of the present invention, and FIG. 2 is a general view of a solid electrolytic C capacitor obtained in the same embodiment. DESCRIPTION OF SYMBOLS 1... Anode body, 2... Anode lead wire, 3... Chemical conversion film, 4... Semiconductor layer, 6... Polymerization liquid , 6... Auxiliary anode, 7
..... Auxiliary cathode, 8 .... Conductive polymer film, 9 .... Graphite layer, 1o .... Conductive layer, 11 .... Cathode Lead wire, 12...
·Epoxy resin. ″$g rib yang yang

Claims (1)

【特許請求の範囲】[Claims] 弁金属よりなる陽極体の表面に陽極化成皮膜を形成し、
その後前記陽極化成皮膜上の陰極を取り出す部分全体に
、二酸化鉛、三酸化バナジウム、四三酸化鉄のいずれか
または混合物から選ばれる金属酸化物の半導体を島状ま
たは層状に均一に付着させ、さらに前記半導体に接触し
て配置された電極を少なくとも一つ以上用いて前記陽極
化成皮膜上に導電性高分子膜を電解重合により形成させ
ることを特徴とする固体電解コンデンサの製造方法。
An anode chemical coating is formed on the surface of the anode body made of valve metal,
Thereafter, a metal oxide semiconductor selected from lead dioxide, vanadium trioxide, triiron tetroxide, or a mixture thereof is uniformly adhered to the entire portion of the anode chemical conversion coating from which the cathode is to be taken out, in the form of islands or layers; A method for manufacturing a solid electrolytic capacitor, comprising forming a conductive polymer film on the anode chemical film by electrolytic polymerization using at least one electrode placed in contact with the semiconductor.
JP21906388A 1988-09-01 1988-09-01 Manufacture of solid electrolytic capacitor Pending JPH0266922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21906388A JPH0266922A (en) 1988-09-01 1988-09-01 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21906388A JPH0266922A (en) 1988-09-01 1988-09-01 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0266922A true JPH0266922A (en) 1990-03-07

Family

ID=16729691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21906388A Pending JPH0266922A (en) 1988-09-01 1988-09-01 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0266922A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080953A (en) * 1996-07-24 2000-06-27 Mitsubishi Denki Kabushiki Kaisha Power supply device for electrical discharge machining
WO2005031772A1 (en) * 2003-09-26 2005-04-07 Showa Denko K.K. Production method of a capacitor
JP2005123605A (en) * 2003-09-26 2005-05-12 Showa Denko Kk Method for manufacturing capacitor
CN111032568A (en) * 2017-08-11 2020-04-17 徐海波 Method and device for electrochemically preparing graphene oxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126625A (en) * 1985-11-27 1987-06-08 昭和電工株式会社 Solid electrolyte capacitor
JPS62126623A (en) * 1985-11-27 1987-06-08 昭和電工株式会社 Solid electrolytic capacitor
JPS62165313A (en) * 1986-01-17 1987-07-21 昭和電工株式会社 Manufacture of solid electrolyte capacitor
JPS63158829A (en) * 1986-12-23 1988-07-01 日本カ−リツト株式会社 Solid electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126625A (en) * 1985-11-27 1987-06-08 昭和電工株式会社 Solid electrolyte capacitor
JPS62126623A (en) * 1985-11-27 1987-06-08 昭和電工株式会社 Solid electrolytic capacitor
JPS62165313A (en) * 1986-01-17 1987-07-21 昭和電工株式会社 Manufacture of solid electrolyte capacitor
JPS63158829A (en) * 1986-12-23 1988-07-01 日本カ−リツト株式会社 Solid electrolytic capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080953A (en) * 1996-07-24 2000-06-27 Mitsubishi Denki Kabushiki Kaisha Power supply device for electrical discharge machining
WO2005031772A1 (en) * 2003-09-26 2005-04-07 Showa Denko K.K. Production method of a capacitor
JP2005123605A (en) * 2003-09-26 2005-05-12 Showa Denko Kk Method for manufacturing capacitor
JP4488303B2 (en) * 2003-09-26 2010-06-23 昭和電工株式会社 Capacitor manufacturing method
US8349683B2 (en) 2003-09-26 2013-01-08 Showa Denko K.K. Production method of a capacitor
CN111032568A (en) * 2017-08-11 2020-04-17 徐海波 Method and device for electrochemically preparing graphene oxide

Similar Documents

Publication Publication Date Title
JPH0831400B2 (en) Solid electrolytic capacitor
JPH0266922A (en) Manufacture of solid electrolytic capacitor
JPS61240625A (en) Solid electrolytic capacitor
JPH0267708A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JP2668975B2 (en) Method for manufacturing solid electrolytic capacitor
JP2764938B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0669082A (en) Manufacture of solid electrolytic capacitor
JPH01253226A (en) Solid electrolytic capacitor and manufacture thereof
JPH02224316A (en) Manufacture of solid electrolytic capacitor
JP3104241B2 (en) Method for manufacturing solid electrolytic capacitor
JP2811915B2 (en) Method for manufacturing solid electrolytic capacitor
JP4126746B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2741072B2 (en) Method for manufacturing solid electrolytic capacitor
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JPH02132815A (en) Solid electrolytic capacitor and manufacture thereof
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JPH0419688B2 (en)
JPH04137517A (en) Manufacture of solid electrolytic capacitor
JP2814585B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0444205A (en) Solid electrolytic capacitor
JPH0274020A (en) Manufacture of solid electrolytic condenser
JPH0393214A (en) Manufacture of solid-state electrolytic capacitor
JPH0393218A (en) Solid-state electrolytic capacitor and its manufacture
JPH10321474A (en) Solid electrolytic capacitor and its manufacture
JPH0693420B2 (en) Method for manufacturing solid electrolytic capacitor