JP2728001B2 - Solid electrolytic capacitors - Google Patents

Solid electrolytic capacitors

Info

Publication number
JP2728001B2
JP2728001B2 JP2143195A JP2143195A JP2728001B2 JP 2728001 B2 JP2728001 B2 JP 2728001B2 JP 2143195 A JP2143195 A JP 2143195A JP 2143195 A JP2143195 A JP 2143195A JP 2728001 B2 JP2728001 B2 JP 2728001B2
Authority
JP
Japan
Prior art keywords
conductive polymer
conductivity
conductive
polymer
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2143195A
Other languages
Japanese (ja)
Other versions
JPH08222483A (en
Inventor
正春 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP2143195A priority Critical patent/JP2728001B2/en
Publication of JPH08222483A publication Critical patent/JPH08222483A/en
Application granted granted Critical
Publication of JP2728001B2 publication Critical patent/JP2728001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は導電性高分子を電解質と
する固体電解コンデンサに関し、特に、導電率の異なる
少なくとも2種類の導電性高分子を電解質とする容量制
御が可能な固体電解コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor using a conductive polymer as an electrolyte and, more particularly, to a capacity controllable solid electrolytic capacitor using at least two kinds of conductive polymers having different conductivity as electrolytes. .

【0002】[0002]

【従来の技術】固体電解コンデンサはタンタルやアルミ
ニウムなどの皮膜形成金属の多孔質成形体を第1の電極
(陽極)とし、その表面酸化皮膜を誘電体、二酸化マン
ガンや7,7,8,8−テトラシアノキノジメタン錯
塩、導電性高分子等を第2の電極(陰極)、すなわち固
体電解質とする構造を有している。この中で、固体電解
質の導電率はコンデンサの内部抵抗や漏れ電流、高周波
数領域における損失等に大きな影響を及ぼすため、高導
電性の材料である導電性高分子を電解質とするコンデン
サの開発が進んでいる。例えば特公平4−56445号
公報にはドープしたポリピロールもしくはそのアルキル
置換体を電解質とする固体電解コンデンサが開示されて
おり、ピロールの電解重合および誘電体皮膜を形成した
金属のポリピロール溶液への浸漬による電解質形成方法
が記載されている。一般に、ポリピロールの導電率は、
二酸化マンガン(0.16S/cm)や7,7,8,8−
テトラシアノキノジメタン錯塩(1S/cm)に比べて著
しく高く、例えば本発明者らによるシンセティック・メ
タルズ(Synth.Met.,14,289(198
6))に示されているように、条件を選んで合成したも
のでは500S/cmにも達する。しかしながら、電気的
に絶縁性である誘電体表面に導電性高分子を形成するこ
とは難しく、前記特公平4−56445号公報に示され
ているような電解重合は誘電体皮膜に欠陥がないような
理想的な場合には原理的に実施不可能である。また、導
電性高分子は一般に溶媒に不溶で、融解もしないため高
分子量で高導電性のポリピロール溶液を用いた電解質層
の形成もできない。このため、導電性高分子からなる電
解質形成に関して、種々の方法が提案されている。例え
ば、誘電体表面に導電性のプレコート層を形成し、それ
を電極として電解重合を実施し、導電性高分子を積層す
る方法が提案されている。特開昭63−173313号
公報には化学重合法で合成した導電性高分子をプレコー
ト層とする方法が、特開平1−253226号公報には
導電性または半導電性の金属酸化物をプレコート層とす
る方法が開示されている。また、特開平2−22431
6号公報には誘電体に接触して設けた電極より網目状の
導電性高分子を形成し、これを核として誘電体全面を被
覆する方法が開示されている。
2. Description of the Related Art A solid electrolytic capacitor uses a porous molded body of a film-forming metal such as tantalum or aluminum as a first electrode (anode), and uses a surface oxide film as a dielectric, manganese dioxide, 7,7,8,8. -Has a structure in which a tetracyanoquinodimethane complex salt, a conductive polymer, or the like is used as the second electrode (cathode), that is, a solid electrolyte. Among them, since the conductivity of the solid electrolyte has a large effect on the internal resistance and leakage current of the capacitor, loss in the high frequency region, etc., the development of a capacitor using a conductive polymer, which is a highly conductive material, as the electrolyte has been developed. I'm advancing. For example, Japanese Patent Publication No. 4-56445 discloses a solid electrolytic capacitor in which doped polypyrrole or an alkyl-substituted product thereof is used as an electrolyte. The solid electrolytic capacitor is formed by electrolytic polymerization of pyrrole and immersion of a metal having a dielectric film formed in a polypyrrole solution. An electrolyte formation method is described. In general, the conductivity of polypyrrole is
Manganese dioxide (0.16 S / cm), 7, 7, 8, 8-
It is significantly higher than the tetracyanoquinodimethane complex salt (1 S / cm), for example, Synthetic Metals (Synth. Met., 14, 289 (198) by the present inventors.
As shown in 6)), the value obtained by synthesizing under selected conditions reaches 500 S / cm. However, it is difficult to form a conductive polymer on the surface of a dielectric material that is electrically insulative, and the electrolytic polymerization as disclosed in Japanese Patent Publication No. 4-56445 does not have any defect in the dielectric film. In an ideal case, it cannot be implemented in principle. In addition, a conductive polymer is generally insoluble in a solvent and does not melt, so that an electrolyte layer cannot be formed using a polypyrrole solution having a high molecular weight and high conductivity. For this reason, various methods have been proposed for forming an electrolyte made of a conductive polymer. For example, a method has been proposed in which a conductive precoat layer is formed on a dielectric surface, electrolytic polymerization is performed using the precoat layer as an electrode, and a conductive polymer is laminated. JP-A-63-173313 discloses a method in which a conductive polymer synthesized by a chemical polymerization method is used as a precoat layer. JP-A-1-253226 discloses a method in which a conductive or semiconductive metal oxide is used as a precoat layer. Is disclosed. Further, Japanese Patent Application Laid-Open No. H2-222431
No. 6 discloses a method in which a mesh-like conductive polymer is formed from an electrode provided in contact with a dielectric, and this is used as a nucleus to cover the entire surface of the dielectric.

【0003】これらの公報に記載された電解コンデンサ
は容量が一定の固定コンデンサであり、容量を任意に制
御できる可変コンデンサではない。
The electrolytic capacitors described in these publications are fixed capacitors having a fixed capacity, and are not variable capacitors whose capacity can be arbitrarily controlled.

【0004】また、特開平2−74019号公報には誘
電体表面を重合用酸化剤を分散させた高分子膜で被覆
し、次いで重合性モノマーを接触させて導電性高分子複
合膜を形成する方法が開示されている。この場合には電
解質は導電性高分子と非導電性高分子の均一な複合膜で
ある。
Japanese Patent Laid-Open Publication No. 2-74019 discloses that a conductive polymer composite film is formed by coating a dielectric surface with a polymer film in which an oxidizing agent for polymerization is dispersed, and then contacting the polymerizable monomer. A method is disclosed. In this case, the electrolyte is a uniform composite membrane of a conductive polymer and a non-conductive polymer.

【0005】[0005]

【発明が解決しようとする課題】前記のような従来技術
で開示されている導電性高分子を電解質とする固体電解
コンデンサは、高周波数領域まで容量が高く、低インピ
ーダンスの良好な性質を示すが、容量を制御することが
できないという問題があった。
The solid electrolytic capacitor using a conductive polymer as an electrolyte disclosed in the prior art as described above has high capacitance up to a high frequency region and exhibits good characteristics of low impedance. However, there is a problem that the capacity cannot be controlled.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記課題
を解決するため種々の検討を行った。その結果、導電性
高分子を電解質とする固体電解コンデンサにおいて、誘
電体に密着する電解質層が導電率の異なる少なくとも2
種類以上の導電性高分子の領域からなり、導電率の高い
導電性高分子を連続相として、その中に導電率の低い導
電性高分子の領域を島状に分散したものである場合に上
記課題が達成できることを見いだし、本発明に至った。
Means for Solving the Problems The present inventors have conducted various studies to solve the above-mentioned problems. As a result, in a solid electrolytic capacitor using a conductive polymer as an electrolyte, the electrolyte layer in close contact with the dielectric has at least two layers having different conductivity.
When the conductive polymer region having high conductivity is made of a continuous phase, and the region of the conductive polymer having low conductivity is dispersed in an island shape, The inventors have found that the object can be achieved, and have reached the present invention.

【0007】本発明において導電性高分子とは共役系高
分子化合物であり、ポリピロール、ポリアニリン、ポリ
チオフェン、ポリフラン、ポリパラフェニレン、ポリア
セチレン、ポリパラフェニレンビニレン、ポリアズレン
等やこれらの誘導体が挙げられる。一般に、共役系高分
子化合物はそれ自体は絶縁性であり、電子受容性化合物
や電子供与性化合物(ドーパント)をドーピングすると
導電率が半導体領域から金属領域まで大きく増大する。
本発明では導電率にかかわりなく共役系高分子化合物を
導電性高分子とする。
In the present invention, the conductive polymer is a conjugated polymer compound, and examples thereof include polypyrrole, polyaniline, polythiophene, polyfuran, polyparaphenylene, polyacetylene, polyparaphenylenevinylene, polyazulene, and derivatives thereof. In general, a conjugated polymer compound itself is insulative, and when doped with an electron-accepting compound or an electron-donating compound (dopant), the conductivity increases greatly from the semiconductor region to the metal region.
In the present invention, a conjugated polymer compound is used as a conductive polymer regardless of the conductivity.

【0008】本発明の固体電解コンデンサは電解質が導
電率の異なる少なくとも2種類の導電性高分子からな
り、高導電性の導電性高分子からなる連続相中に低導電
性の導電性高分子が島状に分散しているが、発明の効果
の点から、高導電性の導電性高分子がドーピング状態、
低導電性の導電性高分子が低濃度ドーピング状態、もし
くは脱ドーピング状態の共役系高分子であることが好ま
しい。これらの条件を満足するものとしては、例えば高
導電性の導電性高分子が芳香族スルホン酸化合物をドー
パントとするポリピロール、もしくはポリアニリンであ
り、低導電性の導電性高分子化合物が脱ドーピングした
ポリアルキルチオフェンなどが挙げられる。一般に共役
系高分子化合物はドーパント濃度が高分子の繰り返し単
位当たり6モル%以上になると導電率が急激に数桁以上
も増大することが知られている。従って、本発明では高
分子の繰り返し単位当たり6モル%を越えるドーパント
濃度のものをドーピング状態、それ以下のものを低濃度
ドーピング状態もしくは脱ドーピング状態とする。
In the solid electrolytic capacitor of the present invention, the electrolyte is composed of at least two kinds of conductive polymers having different electric conductivity, and the low conductive polymer is contained in the continuous phase composed of the high conductive polymer. Although dispersed in an island shape, from the viewpoint of the effect of the invention, a highly conductive conductive polymer is doped,
It is preferable that the low-conductivity conductive polymer is a conjugated polymer in a low-concentration doping state or a undoped state. As a material satisfying these conditions, for example, the highly conductive conductive polymer is polypyrrole or polyaniline using an aromatic sulfonic acid compound as a dopant, and the low-conductive conductive polymer compound is undoped poly. Alkylthiophene and the like. In general, it is known that the conductivity of a conjugated polymer compound rapidly increases by several orders of magnitude or more when the dopant concentration becomes 6 mol% or more per repeating unit of the polymer. Therefore, in the present invention, those having a dopant concentration exceeding 6 mol% per repeating unit of the polymer are in a doping state, and those having a dopant concentration of less than 6 mol% are in a low concentration doping state or an undoping state.

【0009】本発明の高導電性の導電性高分子からなる
連続相中に低導電性の導電性高分子の領域が島状に分散
した電解質の作成方法は、特に限定されず、例えば網目
状の導電性高分子化合物を形成した後、可溶性の脱ドー
ピングした共役系高分子化合物溶液を導入する方法や、
初めに誘電体表面で酸化剤等を用いて島状の導電性高分
子を形成し、次いでこれを脱ドーピングし、さらに別の
ドーピング状態の導電性高分子を形成したりしておこな
われる。また、2種類の導電性高分子の形成順序も特に
限定されず、高導電性の導電性高分子と低導電性の導電
性高分子のどちらが先でも、あるいは同時であっても良
い。本発明では導電性高分子の形成方法もに限定され
ず、モノマーを電気化学的あるいは酸化剤を用いて酸化
重合する方法や、導電性高分子溶液を塗布する等の導電
性高分子の形成方法として従来公知の方法が使用でき
る。
The method for producing an electrolyte of the present invention in which a region of a conductive polymer having a low conductivity is dispersed in an island shape in a continuous phase made of a conductive polymer having a high conductivity is not particularly limited. After forming the conductive polymer compound of, a method of introducing a soluble undoped conjugated polymer compound solution,
First, an island-shaped conductive polymer is formed on the surface of the dielectric using an oxidizing agent or the like, and the island-shaped conductive polymer is then de-doped to form a conductive polymer in another doping state. Further, the order of forming the two types of conductive polymers is not particularly limited, and either the conductive polymer having high conductivity or the conductive polymer having low conductivity may be used first or simultaneously. In the present invention, the method of forming the conductive polymer is not limited, either. The method of electrochemically or oxidatively polymerizing the monomer using an oxidizing agent, or the method of forming a conductive polymer such as applying a conductive polymer solution. A conventionally known method can be used.

【0010】本発明の電解コンデンサは高導電性の導電
性高分子からなる連続相中に低導電性の導電性高分子の
領域が島状に分散した電解質を有するため、連続相を形
成する高導電性の導電性高分子の面積に応じた高周波数
域まで低損失で一定容量のコンデンサと、低導電性の導
電性高分子の面積に応じた比較的内部抵抗が大きなコン
デンサが並列に接続された構造となる。さらに、本発明
の電解コンデンサでは低導電性の導電性高分子が電界下
で電荷の分離が起こり導電性となるために、直流バイア
スをかけると高導電性領域の容量に低導電性の導電性高
分子領域の容量が加算される。このため、本発明の電解
コンデンサは直流バイアスにより容量を制御できる。こ
のような効果は低濃度ドーピングもしくは脱ドーピング
した導電性高分子に特有なもので、通常の非導電性高分
子には見られないものである。本発明では低導電性の導
電性高分子の導電性が増大する直流バイアス、すなわち
容量を増大させる直流バイアスは低導電性の導電性高分
子の分子構造や分子量、ドーパント濃度等で制御でき
る。
The electrolytic capacitor of the present invention has an electrolyte in which regions of a conductive polymer having a low conductivity are dispersed in an island shape in a continuous phase formed of a conductive polymer having a high conductivity. A capacitor with low loss and constant capacity up to a high frequency range according to the area of the conductive polymer and a capacitor with a relatively large internal resistance according to the area of the conductive polymer are connected in parallel. Structure. Furthermore, in the electrolytic capacitor of the present invention, since the low-conductive conductive polymer separates charges under an electric field and becomes conductive, when a DC bias is applied, the low-conductive conductive polymer is added to the capacity of the high-conductive region. The capacity of the polymer region is added. For this reason, the capacity of the electrolytic capacitor of the present invention can be controlled by the DC bias. Such an effect is peculiar to a lightly doped or undoped conductive polymer, and is not found in ordinary non-conductive polymers. In the present invention, the DC bias that increases the conductivity of the low-conductive conductive polymer, that is, the DC bias that increases the capacity, can be controlled by the molecular structure, molecular weight, dopant concentration, and the like of the low-conductive conductive polymer.

【0011】ところで、直流バイアスで容量の変化する
コンデンサとしてはセラミックコンデンサも知られてい
るが、このコンデンサでは容量は直流バイアスに対応し
て連続的に変化し、本発明の電解コンデンサのような非
連続的な変化を示さない。また、温度等によっても容量
が変化するなどの点で本発明の電解コンデンサとは異な
る。
As a capacitor whose capacitance changes with a DC bias, a ceramic capacitor is also known. However, in this capacitor, the capacitance changes continuously in response to the DC bias, and the capacitance changes as in the electrolytic capacitor of the present invention. Does not show a continuous change. Further, the electrolytic capacitor of the present invention is different from the electrolytic capacitor of the present invention in that the capacitance changes depending on the temperature and the like.

【0012】本発明の電解コンデンサは電解質が高導電
性の導電性高分子からなる連続相中に低導電性の領域が
島状に分散したものであることを特徴とするので、皮膜
形成金属の種類は限定されず、タンタルやアルミニウム
などの電解コンデンサの母体金属として従来公知のもの
が使用できる。また、その形状や誘電体皮膜の形成方法
も特に限定されず微粉焼結体ペレットやエッチング箔な
どの従来公知のものが使用できる。
The electrolytic capacitor of the present invention is characterized in that the low-conductivity region is dispersed in an island shape in a continuous phase in which the electrolyte is made of a high-conductivity conductive polymer. The type is not limited, and a conventionally known base metal of an electrolytic capacitor such as tantalum or aluminum can be used. The shape and the method of forming the dielectric film are not particularly limited, and conventionally known materials such as fine powder sintered pellets and etching foil can be used.

【0013】本発明の電解コンデンサは通常の固体電解
コンデンサと同様にカーボンペーストや銀ペーストなど
の導電性ペーストを用いてリード電極を引き出し、樹脂
や金属ケース等で封止し、コンデンサとして完成する。
[0013] The electrolytic capacitor of the present invention is completed as a conventional solid electrolytic capacitor by using a conductive paste such as a carbon paste or a silver paste to draw out lead electrodes and sealing it with a resin or metal case.

【0014】[0014]

【実施例】以下、実施例を挙げて本発明を具体的に説明
するが、本発明はこれら実施例にのみ限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples.

【0015】(実施例1)陽極リードを備えた直径2m
m、高さ2mmの円柱状のタンタル微粉焼結体ペレットを
0.05重量%のリン酸水溶液中に浸漬し、ステンレス
板を対極として48Vで陽極酸化し、洗浄および乾燥し
て金属酸化皮膜からなる誘電体皮膜を有するタンタル焼
結体ペレットを得た。このペレットを0.1N硫酸水溶
液中に浸漬し、静電容量を測定したところ10μFであ
った。
(Example 1) 2 m in diameter with anode lead
m, a columnar tantalum fine powder pellet having a height of 2 mm is immersed in a 0.05% by weight aqueous solution of phosphoric acid, anodized at 48 V with a stainless steel plate as a counter electrode, washed and dried to remove the metal oxide film. A sintered tantalum pellet having a dielectric film was obtained. The pellet was immersed in a 0.1 N aqueous sulfuric acid solution, and the capacitance was measured.

【0016】次にガラス製容器に濃度26.7重量%の
ドデシルベンゼンスルホン酸第2鉄のメチルアルコール
溶液75gを入れ、蒸留水5gを滴下して攪拌した後、
−70℃に冷却した。これにピロール1.92gを1
6.16gのメチルアルコールに溶解した溶液を滴下
し、十分に攪拌してピロールとドデシルベンゼンスルホ
ン酸第2鉄塩が均一に溶解した重合溶液を作成した。こ
の溶液に前記の誘電体皮膜を形成したペレットを浸漬
し、60秒後に引き上げて室温で30分間保持してポリ
ピロールの重合を行った。さらに、このペレットをメチ
ルアルコールに浸漬して洗浄し、85℃で乾燥して誘電
体皮膜表面の80%がポリピロール連続相で被覆された
ペレットを得た。
Next, 75 g of a methyl alcohol solution of ferric dodecylbenzenesulfonate having a concentration of 26.7% by weight was placed in a glass container, 5 g of distilled water was added dropwise, and the mixture was stirred.
Cooled to -70 ° C. Add 1.92 g of pyrrole to this
A solution dissolved in 6.16 g of methyl alcohol was added dropwise, and the mixture was sufficiently stirred to prepare a polymerization solution in which pyrrole and ferric dodecylbenzenesulfonate were uniformly dissolved. The pellet on which the dielectric film was formed was immersed in this solution, pulled up after 60 seconds, and kept at room temperature for 30 minutes to polymerize polypyrrole. Furthermore, the pellet was immersed in methyl alcohol for washing, and dried at 85 ° C. to obtain a pellet in which 80% of the dielectric film surface was covered with a polypyrrole continuous phase.

【0017】以上の操作で得られたペレットを濃度3重
量%のポリオクチルチオフェンのキシレン溶液に減圧下
で浸漬し、常圧に戻して80℃で乾燥したところ、誘電
体表面の80%が高導電性のポリピロール連続相で、ま
た20%が脱ドーピング状態のポリオクチルチオフェン
で被覆されたコンデンサ素子が得られた。
The pellets obtained by the above operation were immersed in a 3% by weight polyoctylthiophene xylene solution under reduced pressure, then returned to normal pressure and dried at 80 ° C., and 80% of the dielectric surface was high. A capacitor element was obtained which was coated with a conductive polypyrrole continuous phase and 20% of undoped polyoctylthiophene.

【0018】このペレットに銀ペーストを用いて陰極リ
ードを取り付けてコンデンサを完成した。得られたコン
デンサは直流バイアス0〜25Vでは120Hzで測定
した容量が8μFであり、共振周波数域まで容量変化の
少ない良好な性質を示し、直流バイアス25V以上では
容量が10μFとなって、直流バイアスによる容量制御
が可能なものであった。
A cathode lead was attached to the pellet using silver paste to complete a capacitor. The obtained capacitor has a capacitance of 8 μF measured at 120 Hz at a DC bias of 0 to 25 V, and exhibits a good property of little change in capacitance up to the resonance frequency range. The capacity could be controlled.

【0019】(実施例2)実施例1で得られた誘電体皮
膜を有するタンタル焼結体ペレットの上面に金線を接触
させ、1.25Mのピロールと0.25Mのパラトルエ
ンスルホン酸テトラエチルアンモニウムを含むアセトニ
トリル溶液からなる電解重合溶液に一度浸漬して引き上
げ、下部の一部を同溶液中に浸漬したままにした。この
状態で金線および陰極としてペレット下方に配置したニ
ッケル板との間に5.8Vの電圧を引火したところ、金
線より直ちにポリピロールが成長し、ペレット上面で樹
上のポリピロールが生成し、約2分後にペレットの側
面、および下面に達した。次に、金線を含めて全体を電
解重合溶液に浸漬し1.8Vの電圧を印加して30分反
応した。このペレットをメチルアルコールに浸漬して洗
浄し、85℃で乾燥して誘電体皮膜表面の70%がポリ
ピロール連続相で被覆されたペレットを得た。以上の操
作で得られたペレットを濃度3重量%のポリオクチルチ
オフェンのキシレン溶液に減圧下で浸漬し、常圧に戻し
て80℃で乾燥したところ、誘電体表面の70%が高導
電性のポリピロール連続相で、また30%が脱ドーピン
グ状態のポリオクチルチオフェンで被覆されたコンデン
サ素子が得られた。
Example 2 A gold wire was brought into contact with the upper surface of the tantalum sintered compact having a dielectric film obtained in Example 1, and 1.25M pyrrole and 0.25M tetraethylammonium paratoluenesulfonate were used. Was once immersed in an electropolymerization solution consisting of an acetonitrile solution containing and lifted up, and a part of the lower portion was kept immersed in the same solution. In this state, when a voltage of 5.8 V was ignited between the gold wire and the nickel plate disposed below the pellet as the cathode, polypyrrole grew immediately from the gold wire, and polypyrrole on the tree was formed on the upper surface of the pellet. After 2 minutes, the side and bottom surfaces of the pellet were reached. Next, the whole including the gold wire was immersed in the electrolytic polymerization solution, and a voltage of 1.8 V was applied to react for 30 minutes. The pellet was immersed in methyl alcohol, washed, and dried at 85 ° C. to obtain a pellet in which 70% of the surface of the dielectric film was coated with a polypyrrole continuous phase. The pellets obtained by the above operation were immersed in a 3 wt% polyoctylthiophene xylene solution under reduced pressure, returned to normal pressure and dried at 80 ° C., and 70% of the dielectric surface was highly conductive. A capacitor element was obtained which was coated with the polypyrrole continuous phase and with 30% of the undoped polyoctylthiophene.

【0020】このペレットに銀ペーストを用いて陰極リ
ードを取り付けてコンデンサを完成した。得られたコン
デンサは直流バイアス0〜25Vでは120Hzで測定
した容量が7μFであり、共振周波数域まで容量変化の
少ない良好な性質を示し、直流バイアス25V以上では
容量が10μFとなって、直流バイアスによる容量制御
が可能なものであった。
A cathode lead was attached to the pellet using a silver paste to complete a capacitor. The obtained capacitor has a capacitance of 7 μF measured at 120 Hz at a DC bias of 0 to 25 V, and exhibits a good property of a small capacitance change up to the resonance frequency range. The capacity could be controlled.

【0021】(実施例3)実施例1で得られた誘電体皮
膜を有するタンタル焼結体ペレットを、0.53Mのア
ニリンと0.53Mのパラトルエンスルホン酸の水溶液
に浸漬し、30秒後に引き上げて5分間乾燥した。次に
0.8Mの重クロム酸アンモニウムと2.4Mのパラト
ルエンスルホン酸の0℃に保持した水溶液に浸漬し直ち
に引き上げて空気中で10分間アニリンの重合を行っ
た。さらに、このペレットをメチルアルコールに浸漬し
て洗浄し、85℃で乾燥して誘電体皮膜表面の80%が
ポリアニリン連続相で被覆されたペレットを得た。
Example 3 The tantalum sintered body pellet having a dielectric film obtained in Example 1 was immersed in an aqueous solution of 0.53 M aniline and 0.53 M paratoluenesulfonic acid, and after 30 seconds, Pulled up and dried for 5 minutes. Next, it was immersed in an aqueous solution of 0.8 M ammonium bichromate and 2.4 M paratoluenesulfonic acid maintained at 0 ° C., immediately pulled up, and polymerized for aniline in air for 10 minutes. Further, the pellet was immersed in methyl alcohol for washing and dried at 85 ° C. to obtain a pellet in which 80% of the surface of the dielectric film was coated with a polyaniline continuous phase.

【0022】以上の操作で得られたペレットを濃度3重
量%のポリオクチルチオフェンのキシレン溶液に減圧下
で浸漬し、常圧に戻して80℃で乾燥したところ、誘電
体表面の80%が高導電性のポリアニリン連続相で、ま
た20%が脱ドーピング状態のポリオクチルチオフェン
で被覆されたコンデンサ素子が得られた。
The pellets obtained by the above operation were immersed in a 3% by weight polyoctylthiophene xylene solution under reduced pressure, then returned to normal pressure and dried at 80 ° C., and 80% of the dielectric surface was high. A capacitor element coated with a conductive polyaniline continuous phase and with 20% of undoped polyoctylthiophene was obtained.

【0023】このペレットに銀ペーストを用いて陰極リ
ードを取り付けてコンデンサを完成した。得られたコン
デンサは直流バイアス0〜25Vでは120Hzで測定
した容量が8μFであり、共振周波数域まで容量変化の
少ない良好な性質を示し、直流バイアス25V以上では
容量が10μFとなって、直流バイアスによる容量制御
が可能なものであった。
A cathode lead was attached to the pellet using a silver paste to complete a capacitor. The obtained capacitor has a capacitance of 8 μF measured at 120 Hz at a DC bias of 0 to 25 V, and exhibits a good property of little change in capacitance up to the resonance frequency range. The capacity could be controlled.

【0024】(実施例4)実施例1で得られた誘電体皮
膜を有するタンタル焼結体ペレットを濃度2重量%のポ
リヘキシルチオフェンを含むクロロホルム溶液に浸漬
し、80℃で乾燥したところ誘電体表面の40%に島状
のポリヘキシルチオフェンが形成された。
Example 4 The tantalum sintered body pellet having a dielectric film obtained in Example 1 was immersed in a chloroform solution containing 2% by weight of polyhexylthiophene and dried at 80 ° C. Island-like polyhexylthiophene was formed on 40% of the surface.

【0025】次にガラス製容器に濃度26.7重量%の
ドデシルベンゼンスルホン酸第2鉄のメチルアルコール
溶液75gを入れ、蒸留水5gを滴下して攪拌した後、
−70℃に冷却した。これにピロール1.92gを1
6.16gのメチルアルコールに溶解した溶液を滴下
し、十分に攪拌してピロールとドデシルベンゼンスルホ
ン酸第2鉄塩が均一に溶解した重合溶液を作成した。こ
の溶液に前記の島状のポリヘキシルチオフェンを形成し
たペレットを浸漬し、60秒後に引き上げて室温で30
分間保持してポリピロールの重合を行った。さらに、こ
のペレットをメチルアルコールに浸漬して洗浄し、85
℃で乾燥して誘電体皮膜表面の40%が脱ドーピング状
態のポリヘキシルチオフェンで、また、60%がポリピ
ロール連続相で被覆されたペレットを得た。
Next, 75 g of a methyl alcohol solution of ferric dodecylbenzenesulfonate having a concentration of 26.7% by weight was placed in a glass container, and 5 g of distilled water was added dropwise and stirred.
Cooled to -70 ° C. Add 1.92 g of pyrrole to this
A solution dissolved in 6.16 g of methyl alcohol was added dropwise, and the mixture was sufficiently stirred to prepare a polymerization solution in which pyrrole and ferric dodecylbenzenesulfonate were uniformly dissolved. The pellet in which the island-shaped polyhexylthiophene was formed was immersed in this solution, pulled up after 60 seconds, and raised at room temperature for 30 minutes.
The polymerization was carried out by holding for one minute. Further, the pellet was washed by immersing it in methyl alcohol.
After drying at ℃, pellets were obtained in which 40% of the dielectric film surface was coated with polyhexylthiophene in the undoped state and 60% with the continuous phase of polypyrrole.

【0026】このペレットに銀ペーストを用いて陰極リ
ードを取り付けてコンデンサを完成した。得られたコン
デンサは直流バイアス0〜25Vでは120Hzで測定
した容量が6μFであり、共振周波数域まで容量変化の
少ない良好な性質を示し、直流バイアス25V以上では
容量が10μFとなって、直流バイアスによる容量制御
が可能なものであった。
A cathode lead was attached to the pellet using a silver paste to complete a capacitor. The obtained capacitor has a capacity of 6 μF measured at 120 Hz at a DC bias of 0 to 25 V, and exhibits a good property of little change in capacitance up to the resonance frequency range. The capacity could be controlled.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば電
解質が高導電性の導電性高分子からなる連続相中に低導
電性の導電性高分子の領域が島状に分散したものとする
ことにより、導電性高分子を電解質とする固体電解コン
デンサの良好な性能、すなわち高周波数領域まで容量が
高く、低インピーダンスであるという性能を保持したま
ま、使用時に容量を制御できる固体電解コンデンサを提
供することができ、その効果は大である。
As described above, according to the present invention, the electrolyte is formed by dispersing the regions of the conductive polymer having low conductivity in the continuous phase comprising the conductive polymer having high conductivity in an island shape. By doing so, a solid electrolytic capacitor that can control the capacity during use while maintaining the good performance of a solid electrolytic capacitor using a conductive polymer as an electrolyte, that is, the capacity of high capacity up to the high frequency region and low impedance is maintained. Can be provided, the effect is great.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】導電性高分子を電解質とする固体電解コン
デンサにおいて、誘電体に密着する電解質層が導電率の
異なる少なくとも2種類以上の導電性高分子の領域から
なり、導電率の高い導電性高分子を連続相として、その
中に導電率の低い導電性高分子の領域を島状に分散した
ものであることを特徴とする固体電解コンデンサ。
In a solid electrolytic capacitor using a conductive polymer as an electrolyte, an electrolyte layer in close contact with a dielectric comprises at least two or more types of conductive polymer regions having different conductivity, and a conductive material having a high conductivity. A solid electrolytic capacitor comprising a polymer as a continuous phase in which regions of a conductive polymer having a low conductivity are dispersed in an island shape.
【請求項2】高導電性の導電性高分子がドーピング状
態、低導電性の導電性高分子が低濃度ドーピング状態も
しくは脱ドーピング状態の共役系高分子であることを特
徴とする請求項1記載の固体電解コンデンサ。
2. The high-conductivity conductive polymer is a conjugated polymer in a doping state, and the low-conductivity conductive polymer is a conjugated polymer in a low-concentration doping state or an undoped state. Solid electrolytic capacitors.
JP2143195A 1995-02-09 1995-02-09 Solid electrolytic capacitors Expired - Fee Related JP2728001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2143195A JP2728001B2 (en) 1995-02-09 1995-02-09 Solid electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2143195A JP2728001B2 (en) 1995-02-09 1995-02-09 Solid electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH08222483A JPH08222483A (en) 1996-08-30
JP2728001B2 true JP2728001B2 (en) 1998-03-18

Family

ID=12054806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2143195A Expired - Fee Related JP2728001B2 (en) 1995-02-09 1995-02-09 Solid electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP2728001B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942673B2 (en) * 2007-03-20 2012-05-30 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JPH08222483A (en) 1996-08-30

Similar Documents

Publication Publication Date Title
JP2765462B2 (en) Solid electrolytic capacitor and method of manufacturing the same
US6136176A (en) Capacitor with conductive polymer
JP3157748B2 (en) Solid electrolytic capacitor using conductive polymer and method for manufacturing the same
JPH07135126A (en) Solid electrolytic capacitor and its manufacture
KR100279098B1 (en) Manufacturing method of solid electrolytic capacitor
JP2765453B2 (en) Method for manufacturing solid electrolytic capacitor
JP3478987B2 (en) Method for manufacturing solid electrolytic capacitor
Yamamoto et al. Solid electrolytic capacitors using an aluminum alloy electrode and conducting polymers
JP3515938B2 (en) Solid electrolytic capacitor and method of manufacturing the same
Yamamoto et al. Characteristics of aluminium solid electrolytic capacitors using a conducting polymer
KR20000053593A (en) Method for producing a solid electrolytic capacitor
JP3671828B2 (en) Manufacturing method of solid electrolytic capacitor
JP4236719B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2728001B2 (en) Solid electrolytic capacitors
JPH0362298B2 (en)
JP3846760B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0494110A (en) Manufacture of solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JP2696982B2 (en) Solid electrolytic capacitors
JP2764938B2 (en) Method for manufacturing solid electrolytic capacitor
JP3568382B2 (en) Organic solid electrolytic capacitor and method of manufacturing the same
JPH02224316A (en) Manufacture of solid electrolytic capacitor
JP3104241B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0346214A (en) Manufacture of solid electrolytic capacitor
JP2522986B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971111

LAPS Cancellation because of no payment of annual fees