JPH0677093A - Solid-state electrolytic capacitor and manufacture thereof - Google Patents

Solid-state electrolytic capacitor and manufacture thereof

Info

Publication number
JPH0677093A
JPH0677093A JP4227235A JP22723592A JPH0677093A JP H0677093 A JPH0677093 A JP H0677093A JP 4227235 A JP4227235 A JP 4227235A JP 22723592 A JP22723592 A JP 22723592A JP H0677093 A JPH0677093 A JP H0677093A
Authority
JP
Japan
Prior art keywords
layer
acid
polyaniline
sulfonic acid
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4227235A
Other languages
Japanese (ja)
Inventor
Fumio Takei
文雄 武井
Hironori Shirato
博紀 白戸
Kazuji Kikuchi
一二 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4227235A priority Critical patent/JPH0677093A/en
Publication of JPH0677093A publication Critical patent/JPH0677093A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein

Abstract

PURPOSE:To produce a solid-state electrolytic capacitor excellent in characteristics by a method wherein conductive high molecular material soluble in solvent is used as a pre-electrode layer and doped with dopant, and a conductive layer of polypyrrole or the like is made to grow making the doped high molecular material serve as seed. CONSTITUTION:The surface of a valve metal 1 is anodized to form an oxide film 2, polyaniline is applied thereon and dried up for the formation of a pre- electrode layer 3, and the electrode layer 3 is enhanced in conductivity by doping. Thereafter, a conductive high molecular material (polypyrrole, polythiophene) film 4 is formed on the pre-electrode layer 3 through electrolytic polymerization making the pre-electrode layer 3 serve as an anode, and the high molecular material film 4 is made to serve as a cathode of a capacitor. By this setup, a pre-electrode layer can be easily and surely obtained as compared with a conventional process. As the pre-electrode layer is low in resistance, a capacitor of this design can be enhanced in characteristics and performance and lessened in size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解コンデンサとそ
の製造方法に係り、とりわけ従来の電解コンデンサにお
ける電解質部分に相当する導電性高分子層を容易に形成
可能とすることを目的とした、小型大容量固体電解コン
デンサとその製造方法に関する。近年、マイクロエレク
トロニクス、とりわけ半導体素子製造技術の顕著な進歩
により、大規模集積回路(VLSI)に代表される、高
度に集積化された高機能デバイスが実現されている。こ
れを種々の装置の制御系に採用することにより、電子機
器は飛躍的な小型化を達成し、各種産業のみならず、一
般家庭における家電製品の小型化・多機能化にも大きく
貢献している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor and a method of manufacturing the same, and more particularly to a small-sized solid electrolytic capacitor capable of easily forming a conductive polymer layer corresponding to an electrolyte portion in a conventional electrolytic capacitor. The present invention relates to a large capacity solid electrolytic capacitor and a method for manufacturing the same. 2. Description of the Related Art In recent years, highly advanced highly integrated devices represented by large scale integrated circuits (VLSI) have been realized due to remarkable progress in microelectronics, especially semiconductor element manufacturing technology. By adopting this in the control system of various devices, electronic devices have achieved dramatic miniaturization, and contributed greatly not only to various industries but also to miniaturization and multifunctionality of home appliances in general households. There is.

【0002】しかしながら、実際の電子回路においては
半導体素子のみでなく、種々の受動素子、すなわち抵
抗、コンデンサ、インダクタなどが必要不可欠である。
このため、電子回路全体の小型化には、半導体デバイス
のみではなく、その周辺回路の素子についても小型化が
要求される。特に、コンデンサについては、数マイクロ
ファラッド以上の比較的大きな容量の素子が、スイッチ
ングレギュレータや伝送回路・ビデオ周波数帯域におけ
るフィルタ回路等に必要になり、これらの装置の小型化
にはコンデンサの小型化がポイントとなる。
However, in an actual electronic circuit, not only semiconductor elements but also various passive elements, that is, resistors, capacitors, inductors and the like are indispensable.
Therefore, in order to reduce the size of the entire electronic circuit, not only the semiconductor device but also the elements of the peripheral circuits are required to be downsized. In particular, for capacitors, elements with a relatively large capacitance of several microfarads or more are required for switching regulators, transmission circuits, filter circuits in the video frequency band, etc. Becomes

【0003】数マイクロファラッド以上の比較的大きな
容量を実現可能なコンデンサは、電解コンデンサと呼ば
れる種類のコンデンサである。これは、弁金属、(すな
わちアルミニウム、タンタル、チタンなど、表面に電気
化学的に不動態膜を形成する金属)の表面に、陽極酸化
法などにより、絶縁性が高く極めて薄い酸化物層を形成
するもので、弁金属は、エッチングや粉体の焼結法によ
り、実質表面積を見掛けの表面積の数倍に高めておく。
コンデンサの単位面積当たりの容量Cは、 C=ε0 εr S/d ……………………(1) ただし、ε0 :真空中の誘電率、 εr :誘電体の比誘
電率 S :電極の実質面積、 d :誘電体の厚み により与えられ、dが数百Åと小さく、Sが数cm2 と大
きい場合、わずか数cm3で数〜数百マイクロファラッド
の大容量を電解コンデンサは実現することができる。実
質表面積Sを大きくするために、従来の電解コンデンサ
は陰極の導電層として、塩化アンモニウムなどの電解質
を水と有機溶媒の混合溶媒に溶かした電解質溶液を使用
していた。しかし、電解質溶液においては、その導電性
を担うキャリアーはイオンであり、その質量の大きさは
長い誘電緩和時間を与えるため、コンデンサとして見た
場合、高周波における周波数特性が良くない、とりわけ
等価直列抵抗(ESR)が十分に低くできないという問
題点があった。また、電解液は基本的には液体であるた
め、高温においてその蒸気圧が上昇し、長い使用時間の
間には、徐々に電解質溶液が蒸発(ドライアップ)する
ため、高温下での使用には耐えられない、あるいは、室
温においても限られた寿命が存在するといった問題も生
じていた。
A capacitor capable of realizing a relatively large capacity of several microfarads or more is a type of capacitor called an electrolytic capacitor. This is an extremely thin oxide layer with high insulating property formed by anodic oxidation etc. on the surface of valve metal (that is, metal such as aluminum, tantalum, titanium, etc. which electrochemically forms a passive film on the surface). Therefore, the valve metal is made to have a substantial surface area several times as large as the apparent surface area by etching or powder sintering.
The capacitance C per unit area of the capacitor is C = ε 0 ε r S / d ……………… (1) where ε 0 is the dielectric constant in vacuum, ε r is the relative dielectric constant of the dielectric S: real electrode area, d: given by the thickness of the dielectric, d is small hundreds Å, if S is as large as several cm 2, electrolytic capacitors large capacity of several to several hundred microfarads at a few cm 3 Can be realized. In order to increase the substantial surface area S, a conventional electrolytic capacitor uses an electrolyte solution in which an electrolyte such as ammonium chloride is dissolved in a mixed solvent of water and an organic solvent as a conductive layer of a cathode. However, in the electrolyte solution, the carrier responsible for its conductivity is ions, and its mass gives a long dielectric relaxation time, so when viewed as a capacitor, the frequency characteristics at high frequencies are not good, especially the equivalent series resistance. There is a problem that the (ESR) cannot be lowered sufficiently. In addition, since the electrolyte is basically a liquid, its vapor pressure rises at high temperatures, and the electrolyte solution gradually evaporates (drys up) during a long use time, so it is suitable for use at high temperatures. There is also a problem that it cannot withstand, or has a limited life even at room temperature.

【0004】これらの背景から、高周波帯域でのESR
を低下して実質的な小型化を達成するとともに、従来の
電解コンデンサの弱点であった高温下における寿命の延
長を図るため、電解質部分の固体化が要請されている。
From these backgrounds, ESR in a high frequency band
The solidification of the electrolyte portion is required in order to achieve a substantial miniaturization by lowering the temperature and extend the life at high temperature, which is a weak point of the conventional electrolytic capacitor.

【0005】[0005]

【従来の技術】従来の固体電解コンデンサにおいては、
その陰極層として、二酸化マンガンなどの金属酸化物に
よる固体電解質が使用されていた。ところが、金属酸化
物による陰極層は導電率が比較的低い(10-6〜10-3
S/cm)ため、高周波帯域におけるESRを低下するこ
とが難しい。このため、数S/cm程度と比較的高い導電
率を有する有機導電材料を陰極層として用いることが有
効であることが知られている。この有機導電材料として
は、アルキルキノリニウム−テトラシアノキノジメタン
(TCNQ)錯体などの電荷移動錯体系物質が使用でき
る。しかしながら、有機電荷移動錯体は一般的に融点が
低いため、ハンダ付け耐性が低く、装置の小型化に対し
て有効な、いわゆるチップ部品化することが困難であっ
た。また、製造面においても溶融含浸により素子の陰極
層として形成されるため、溶融工程において錯体一部が
分解して高抵抗層部を形成し、ESRの低減が困難であ
った。
2. Description of the Related Art In conventional solid electrolytic capacitors,
As the cathode layer, a solid electrolyte made of a metal oxide such as manganese dioxide was used. However, the cathode layer made of a metal oxide has a relatively low electrical conductivity (10 −6 to 10 −3).
S / cm), it is difficult to reduce the ESR in the high frequency band. Therefore, it is known that it is effective to use an organic conductive material having a relatively high conductivity of about several S / cm as the cathode layer. As the organic conductive material, a charge transfer complex material such as an alkylquinolinium-tetracyanoquinodimethane (TCNQ) complex can be used. However, since the organic charge transfer complex generally has a low melting point, it has low soldering resistance, and it is difficult to form a so-called chip component effective for downsizing the device. Also in terms of manufacturing, since it is formed as a cathode layer of the element by melt impregnation, a part of the complex is decomposed in the melting step to form a high resistance layer portion, and it is difficult to reduce ESR.

【0006】そこで、この有機導電材料として、耐熱性
の高い導電高分子材料を適用する試みが行われている。
例えば、ポリピロール、ポリチオフェンなどの安定な導
電性高分子物質をタンタルやアルミニウムなどの弁金属
の酸化物層上に形成することにより、小型で耐熱性の高
いコンデンサが得られることが知られている。
Therefore, attempts have been made to apply a conductive polymer material having high heat resistance as the organic conductive material.
For example, it is known that a stable capacitor having high heat resistance can be obtained by forming a stable conductive polymer substance such as polypyrrole or polythiophene on an oxide layer of a valve metal such as tantalum or aluminum.

【0007】このポリピロールやポリチオフェンなどは
高い導電性フィルムを形成するには電解重合法を用いる
必要があるので、アルミニウムやタンタルなどの弁金属
の上に陽極酸化法により薄い酸化物層を成長させた後、
先ずその表面に二酸化マンガンや化学重合により薄い導
電層(予備電極層)を形成してから、これを起点として
前述の導電性高分子層の電解重合法による成長を可能に
させている。
Since polypyrrole, polythiophene and the like need to use an electrolytic polymerization method to form a highly conductive film, a thin oxide layer is grown on a valve metal such as aluminum or tantalum by an anodic oxidation method. rear,
First, a thin conductive layer (preliminary electrode layer) is formed on the surface by manganese dioxide or chemical polymerization, and the conductive polymer layer described above is allowed to grow by the electrolytic polymerization method starting from this.

【0008】この二酸化マンガン層は、硝酸マンガンの
水溶液に陽極酸化した弁金属(素子)を溶浸後、200
〜300℃で焼成して形成している。また、化学重合法
による予備電極層は、酸化剤の溶液と製膜材料(モノマ
ーとしてのピロールやチオフェンを含む)の溶液に素子
を繰り返して浸漬する作業を行なって、ポリピロールや
ポリチオフェンを酸化重合させている。
This manganese dioxide layer is formed by infiltrating an anodized valve metal (element) into an aqueous solution of manganese nitrate, and then 200
It is formed by firing at ~ 300 ° C. For the preliminary electrode layer formed by the chemical polymerization method, the element is repeatedly immersed in a solution of an oxidizing agent and a solution of a film forming material (including pyrrole and thiophene as monomers) to oxidatively polymerize polypyrrole and polythiophene. ing.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、導電性
高分子膜の電解重合のための予備電極層として上記の二
酸化マンガン層を用いる場合、二酸化マンガンは比抵抗
が10kΩcm程度と比較的に高く、そのため高周波領域
におけるESRを低下させることは難しく、高周波帯域
で使用する上での実効体積の小型化が困難であるといっ
た問題を生じていた。さらに、二酸化マンガン層を形成
する際に加えられる熱により、電気的に緻密性が要求さ
れる弁金属の酸化物層において、熱による歪みなどから
欠陥が生じやすく、容量低下やリーク電流の増加とい
う、電解コンデンサの特性上好ましくない現象が発生す
るおそれがあるといった問題がある。
However, when the above manganese dioxide layer is used as a preliminary electrode layer for electropolymerization of a conductive polymer film, manganese dioxide has a relatively high specific resistance of about 10 kΩcm. It has been difficult to reduce the ESR in the high frequency region, and it has been difficult to reduce the effective volume when used in the high frequency band. In addition, the heat applied during the formation of the manganese dioxide layer is liable to cause defects in the oxide layer of the valve metal, which is required to be electrically dense, due to thermal strain, which leads to a decrease in capacity and an increase in leakage current. However, there is a problem that an undesirable phenomenon may occur due to the characteristics of the electrolytic capacitor.

【0010】また、予備電極層形成工程に化学重合を利
用する場合においては、酸化剤溶液および製膜物質溶液
への繰り返し浸漬工程という時間のかかる工程数が多く
なり、製造性の向上は見込めず、ひいては製造コストの
低減において大きな障害となるといった問題を抱えてい
た。さらに、化学的反応性の高い酸化剤溶液に、高度な
品質の酸化膜が形成された弁金属の素子を浸漬すること
により、コンデンサ特性を担う酸化膜が劣化し、製品の
コンデンサ特性、例えば漏れ電流特性や損失正接(ta
nδ)などが悪化するといった問題点も生じていた。
Further, when chemical polymerization is used in the preliminary electrode layer forming step, the number of time-consuming steps of repeated dipping in the oxidant solution and the film-forming substance solution increases, and improvement in productivity cannot be expected. As a result, there is a problem that it becomes a major obstacle in reducing the manufacturing cost. Furthermore, by immersing a valve metal element on which an oxide film of high quality is formed in a highly chemically reactive oxidant solution, the oxide film responsible for the capacitor characteristics deteriorates, and the capacitor characteristics of the product, such as leakage, are reduced. Current characteristics and loss tangent (ta
There was also a problem that nδ) and the like deteriorate.

【0011】そこで、本発明は、上記の二酸化マンガン
や化学重合膜といった材料を使用せず、簡便な工程によ
り、低ESRの予備電極層を弁金属の酸化物層の上に形
成し、高品質の固体電解コンデンサを得ることを目的と
する。
Therefore, according to the present invention, a low ESR preliminary electrode layer is formed on a valve metal oxide layer by a simple process without using the above-mentioned materials such as manganese dioxide and a chemically polymerized film, and a high quality is obtained. The purpose is to obtain the solid electrolytic capacitor of.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記目的
を達成するべく、予備電極層の材料および予備電極層に
高い導電性を付与するための、いわゆるドーピングの方
法について鋭意検討した結果、溶媒に可溶な導電性高分
子材料を予備電極層に使用し、これにドーパントをドー
プすることにより、高い導電率を有する予備電極層を形
成可能であり、これを起点としてポリピロール等のより
高い導電率を有する導電層を成長させることにより、良
好な特性を有する固体電解コンデンサを作製することが
できること、およびその製造過程においては、良好な製
造性を有することを見い出した。特に、本発明ではこの
ような溶媒可溶性導電性高分子材料としてポリアニリン
を使用する。
In order to achieve the above-mentioned object, the inventors of the present invention have made extensive studies as to the material of the preliminary electrode layer and a so-called doping method for imparting high conductivity to the preliminary electrode layer. , A conductive polymer material soluble in a solvent is used for the preliminary electrode layer, and by doping this with a dopant, a preliminary electrode layer having a high conductivity can be formed. It has been found that by growing a conductive layer having a high conductivity, a solid electrolytic capacitor having good characteristics can be manufactured, and in the manufacturing process thereof, it has good manufacturability. Particularly, in the present invention, polyaniline is used as such a solvent-soluble conductive polymer material.

【0013】ポリアニリンは、アニリンを特定の酸化条
件下で酸化重合した重合体であり、汎用の溶媒(例え
ば、N−メチル−2−ピロリドン、ジメチルホルムアミ
ド、ピリジン、ジメチルスルホキシドなど)に可溶であ
る。ポリアニリンの分子構造は明確ではないが下記の如
くであると推測される。
Polyaniline is a polymer obtained by oxidatively polymerizing aniline under specific oxidizing conditions, and is soluble in a general-purpose solvent (for example, N-methyl-2-pyrrolidone, dimethylformamide, pyridine, dimethylsulfoxide, etc.). . Although the molecular structure of polyaniline is not clear, it is presumed to be as follows.

【0014】[0014]

【化1】 [Chemical 1]

【0015】用いるポリアニリンの分子量は3万〜10
万(重量平均分子量)、またmとnの比はm:n=1:
1〜2:1であるものが望ましい。ポリアニリンは溶媒
可溶なので、ポリアニリン溶液を調整し、素子(酸化
物)表面に塗布し、乾燥させるだけで素子(酸化物)表
面のポリアニリン層を形成することができる。ポリアニ
リン溶液の濃度は2〜5%程度が好ましい。塗布法は限
定されず、浸漬でもよい。乾燥は200℃以下の低温で
行なうことができる。
The polyaniline used has a molecular weight of 30,000 to 10
10,000 (weight average molecular weight), and the ratio of m to n is m: n = 1:
It is preferably 1 to 2: 1. Since polyaniline is soluble in a solvent, it is possible to form a polyaniline layer on the surface of an element (oxide) simply by adjusting a polyaniline solution, applying the solution on the surface of the element (oxide), and drying. The concentration of the polyaniline solution is preferably about 2-5%. The coating method is not limited and may be dipping. Drying can be performed at a low temperature of 200 ° C. or lower.

【0016】こうして形成されたポリアニリン層はこの
ままでも予備電極層として使用できるが、導電性をさら
に高めるためにドーパントをドーピングすることが望ま
しい。ドーパントとしては芳香族スルホン酸、脂肪族ス
ルホン酸、側鎖にスルホン酸基を有する高分子酸、リン
酸などが好適である。芳香族スルホン酸としては、ベン
ゼンスルホン酸、p−トルエンスルホン酸、ナフタレン
スルホン酸、アルキルナフタレンスルホン酸、スチレン
スルホン酸、ドデシルベンゼンスルホン酸などのn−ア
ルキルベンゼンスルホン酸など、脂肪族スルホン酸とし
てはビニルスルホン酸、メタクリルスルホン酸、ドデシ
ルスルホン酸などのアルキルスルホン酸、トリフロロメ
タンスルホン酸など、また側鎖にスルホン酸基を有する
高分子酸としてはポリスチレンスルホン酸などを挙げる
ことができる。
The polyaniline layer thus formed can be used as it is as a preliminary electrode layer, but it is preferable to dope it with a dopant in order to further enhance the conductivity. As the dopant, aromatic sulfonic acid, aliphatic sulfonic acid, polymeric acid having a sulfonic acid group in the side chain, phosphoric acid and the like are suitable. Aromatic sulfonic acids include benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, alkylnaphthalenesulfonic acid, n-alkylbenzenesulfonic acid such as styrenesulfonic acid, dodecylbenzenesulfonic acid, and the like, and vinyl as an aliphatic sulfonic acid. Alkyl sulfonic acids such as sulfonic acid, methacryl sulfonic acid and dodecyl sulfonic acid, trifluoromethane sulfonic acid and the like, and polystyrene sulfonic acid and the like can be mentioned as the polymeric acid having a sulfonic acid group in the side chain.

【0017】ドーピング法としては、ドーパントを含む
溶液にポリアニリン層を浸漬し、液相から膜中への拡散
を利用することができる。また、ポリアニリン層の形成
時に、ポリアニリン溶液中にドーパントを同時に溶解さ
せておく方法も採用できる。導電性高分子層の電解重合
のための予備電極層としては、比抵抗が1×103〜1
4 Ωcm以下、さらには1×102 Ωcm以下であること
が望まれる。また、膜厚は500Å〜10000Å、さ
らには1000Å〜5000Åの範囲が好ましい。予備
電極層の膜厚が不足すると抵抗値が増大して電解重合の
電極として使用できず、一方膜厚が厚くなると固体電解
コンデンサのESRが大きくなり望ましくない。
As the doping method, the polyaniline layer may be dipped in a solution containing a dopant, and diffusion from the liquid phase into the film may be used. Further, a method of simultaneously dissolving the dopant in the polyaniline solution at the time of forming the polyaniline layer can also be adopted. The preliminary electrode layer for electrolytic polymerization of the conductive polymer layer has a specific resistance of 1 × 10 3 to 1
It is desired to be 0 4 Ωcm or less, and further 1 × 10 2 Ωcm or less. The film thickness is preferably in the range of 500Å to 10000Å, more preferably 1000Å to 5000Å. If the film thickness of the preliminary electrode layer is insufficient, the resistance value increases and it cannot be used as an electrode for electrolytic polymerization. On the other hand, if the film thickness increases, the ESR of the solid electrolytic capacitor increases, which is not desirable.

【0018】次に、本発明の固体電解コンデンサの構成
について説明する。図1を参照すると、1は弁金属、2
は弁金属の酸化物層(陽極酸化膜)、3は可溶性導電材
料(ポリアニリン)による予備電極層、4は陰極導電層
(導電性高分子物質)、5はカーボン導電層、6は銀ペ
ースト層、7は陰極取り出しリード、8はモールド樹脂
である。
Next, the structure of the solid electrolytic capacitor of the present invention will be described. Referring to FIG. 1, 1 is a valve metal, 2
Is a valve metal oxide layer (anodic oxide film), 3 is a preliminary electrode layer made of a soluble conductive material (polyaniline), 4 is a cathode conductive layer (conductive polymer substance), 5 is a carbon conductive layer, and 6 is a silver paste layer. , 7 is a cathode extraction lead, and 8 is a molding resin.

【0019】弁金属1においては、アルミニウム、タン
タル、チタン、ジルコニウム、バナジウム、ニオブ、イ
ンジウム、タングステンなど、金属酸化物層と溶液層の
間で電流の整流作用を有する金属が用いられる。可溶性
高分子材料3は前記のポリアニリン層でドーパントがド
ープされている。
As the valve metal 1, a metal such as aluminum, tantalum, titanium, zirconium, vanadium, niobium, indium, or tungsten which has a current rectifying action between the metal oxide layer and the solution layer is used. The soluble polymer material 3 is doped with a dopant in the polyaniline layer.

【0020】陰極導電層4は、前記の可溶性高分子材料
(ポリピロール、ポリチオフェンなど)による予備電極
層の上に電解重合法により形成された導電性の高い導電
性高分子物質層であり、これが実質的なコンデンサの陰
極電極として作用する。カーボン導電層5および銀ペー
スト層6は、陰極取り出しリード7による配線を引き出
す際に、陰極電極層4と良好な接触を行うために形成す
る。
The cathode conductive layer 4 is a conductive polymer layer having a high conductivity, which is formed by an electrolytic polymerization method on a preliminary electrode layer made of the above-mentioned soluble polymer material (polypyrrole, polythiophene, etc.). Acts as the cathode electrode of a conventional capacitor. The carbon conductive layer 5 and the silver paste layer 6 are formed to make good contact with the cathode electrode layer 4 when the wiring by the cathode lead 7 is drawn.

【0021】この構造の固体電解コンデンサを製造する
ための工程を次に示す。まず、弁金属の焼結体にリード
を接着した後、焼結体を電解液に浸漬し、弁金属焼結体
側を陽極として定電流電解を行い、金属表面に酸化物層
を生成させる。次に、可溶性導電材料3の溶液に弁金属
焼結体を浸漬せしめ、溶媒を乾燥させることにより、酸
化物表面に予備電極層を形成する。この予備電極層とな
る可溶性導電材料にドーパントをドーピングし、導電性
を向上させる。ドーピングは、前記の如く、可溶性導電
材料の層を形成した後、ドーパントを含む溶液中に浸漬
して行なうことができる。
The steps for manufacturing the solid electrolytic capacitor having this structure will be described below. First, after bonding the lead to the sintered body of the valve metal, the sintered body is immersed in an electrolytic solution and constant current electrolysis is performed with the side of the sintered body of the valve metal as an anode to form an oxide layer on the metal surface. Next, the valve metal sintered body is immersed in the solution of the soluble conductive material 3 and the solvent is dried to form a preliminary electrode layer on the oxide surface. The soluble conductive material to be the preliminary electrode layer is doped with a dopant to improve conductivity. As described above, the doping can be performed by forming a layer of the soluble conductive material and then immersing it in a solution containing a dopant.

【0022】予備電極層3を形成後、導電性高分子物質
の電解重合材料(モノマーとしてのピロール、チオフェ
ンなど)の溶液を電解液とし、これに予備電極層を形成
した素子を浸漬し、予備電極層を電解用陽極とし、白金
板、銅板、ステンレス板、カーボン棒などを陰極として
用い、電解重合して予備電極表面に導電性高分子物質膜
4を形成する。この導電性高分子物質4の表面にコロイ
ダルグラファイト及び銀ペーストを順次塗布して陰極を
形成すると同時に陰極リードを取り付ける。
After forming the preliminary electrode layer 3, a solution of an electropolymerized material of a conductive polymer substance (pyrrole as a monomer, thiophene, etc.) is used as an electrolytic solution, and the element having the preliminary electrode layer is immersed in the electrolytic solution to prepare a preliminary electrode layer. The electrode layer is used as an anode for electrolysis, and a platinum plate, a copper plate, a stainless plate, a carbon rod or the like is used as a cathode, and electrolytic polymerization is performed to form the conductive polymer substance film 4 on the surface of the preliminary electrode. Colloidal graphite and silver paste are sequentially applied to the surface of the conductive polymer substance 4 to form a cathode, and at the same time, a cathode lead is attached.

【0023】[0023]

【作用】本発明では、前述のように、弁金属表面に形成
された薄い酸化物層の上に、陰極導電層を形成する際の
予備電極層として、有機溶媒に可溶な可溶性導電材料で
あるポリアニリンを使用している。可溶性導電材料によ
る予備電極層の形成は、単にその溶液に浸漬し、乾燥す
るのみで完了するため、従来行われてきた化学重合法に
よる導電性薄膜の形成法に比べ、容易であり、かつ生産
性が良い。さらに、化学重合法においては、硫酸等の強
力な酸化剤により、酸化物層に悪影響を与えるおそれも
あったが、本発明においてはそのような強力な試薬を使
わずに済むため、製品が安定に製造できる。
In the present invention, as described above, a soluble conductive material soluble in an organic solvent is used as a preliminary electrode layer when forming a cathode conductive layer on the thin oxide layer formed on the valve metal surface. I am using some polyaniline. The formation of the preliminary electrode layer of the soluble conductive material is completed simply by immersing it in the solution and drying it. Therefore, it is easier and more efficient than the conventional method of forming a conductive thin film by the chemical polymerization method. Good nature. Further, in the chemical polymerization method, a strong oxidizing agent such as sulfuric acid may adversely affect the oxide layer, but in the present invention, since such a strong reagent is not used, the product is stable. Can be manufactured.

【0024】また、予備電極層を形成する際の乾燥も通
常200℃以下の比較的低温で行えるため、二酸化マン
ガンなどによる予備電極層の形成法に比して、酸化物層
による誘電体膜の欠陥を発生させることも無く、コンデ
ンサとしての特性を損なうことが無い。従って、従来の
方法に依るよりも、より工程を簡略化するとともに、特
性の良い製品を供することができる。
Further, since the drying at the time of forming the preliminary electrode layer can be performed at a relatively low temperature of usually 200 ° C. or lower, compared with the method of forming the preliminary electrode layer using manganese dioxide or the like, the dielectric film formed of the oxide layer can be formed. It does not cause defects and does not impair the characteristics of the capacitor. Therefore, it is possible to further simplify the process and provide a product with excellent characteristics, as compared with the conventional method.

【0025】[0025]

【実施例】本発明に基づく実施例を以下に示す。 〔実施例1〕タンタル焼結体(実質面積10cm2 )を
0.05%リン酸電解液中41Vで陽極化成処理し、コ
ンデンサ素子とした。このコンデンサ素子を構造式1で
示すポリアニリンの5%N−メチル−2−ピロリドン溶
液中に1回浸漬し、減圧下80℃で30分乾燥した。
EXAMPLES Examples according to the present invention are shown below. Example 1 A tantalum sintered body (substantial area 10 cm 2 ) was anodized at 41 V in a 0.05% phosphoric acid electrolyte solution to obtain a capacitor element. This capacitor element was immersed once in a 5% N-methyl-2-pyrrolidone solution of polyaniline represented by Structural Formula 1 and dried at 80 ° C. for 30 minutes under reduced pressure.

【0026】次に、p−トルエンスルホン酸(pTS)
またはナフタレンスルホン酸(NS)またはアルキルナ
フタレンスルホン酸(ANS)またはベンゼンスルホン
酸(BS)またはn−アルキルベンゼンスルホン酸(n
ABS)、またはスチレンスルホン酸(SS)の1%水
溶液にこの素子を10分間浸漬してドーピング処理を行
った後、150℃で乾燥した。
Next, p-toluenesulfonic acid (pTS)
Or naphthalenesulfonic acid (NS) or alkylnaphthalenesulfonic acid (ANS) or benzenesulfonic acid (BS) or n-alkylbenzenesulfonic acid (n
This element was immersed in a 1% aqueous solution of ABS) or styrene sulfonic acid (SS) for 10 minutes for doping treatment, and then dried at 150 ° C.

【0027】この上に陰極導電層を形成するため、以下
の条件で電解重合を行った。電解液は、0.06モル/
lピロールと等モルのドーパント、p−トルエンスルホ
ン酸ナトリウムから成る水溶液である。この溶液中、1
素子あたり0.4mAの電流を与えて1時間定電流電解を
行った。陰極導電層の形成後、カーボンペーストおよび
銀ペーストを塗布し、120℃で20分乾燥し、全体を
エポキシモールド成形して素子を完成した。
In order to form a cathode conductive layer on this, electrolytic polymerization was carried out under the following conditions. Electrolyte solution is 0.06 mol /
It is an aqueous solution of 1-pyrrole and an equimolar dopant, sodium p-toluenesulfonate. In this solution, 1
A constant current electrolysis was performed for 1 hour by applying a current of 0.4 mA per device. After forming the cathode conductive layer, a carbon paste and a silver paste were applied and dried at 120 ° C. for 20 minutes, and the whole was epoxy-molded to complete a device.

【0028】このコンデンサ素子の特性として容量、t
anδ及びESRを測定した。これらの特性は以下の実
施例、比較例すべてにおいて下記の方法で測定した。な
お、Hewlett Packard 社製インピーダンスアナライザH
P6194Aにより、周波数をスイープしながら容量、
tanδ、ESRの各パラメータを順次測定した。結果
を表1に示す。 〔実施例2〕タンタル焼結体(実質面積10cm2 )を
0.05%リン酸電解液中41Vで陽極化成処理し、コ
ンデンサ素子とした。このコンデンサ素子を構造式1で
示すポリアニリンの5%N−メチル−2−ピロリドン溶
液中に1回浸漬し、減圧下80℃で30分乾燥した。
The characteristic of this capacitor element is the capacitance, t
An δ and ESR were measured. These characteristics were measured by the following methods in all of the following examples and comparative examples. In addition, Hewlett Packard impedance analyzer H
With P6194A, the capacity while sweeping the frequency,
Each parameter of tan δ and ESR was sequentially measured. The results are shown in Table 1. Example 2 A tantalum sintered body (substantial area 10 cm 2 ) was anodized in 0.05% phosphoric acid electrolyte at 41 V to obtain a capacitor element. This capacitor element was immersed once in a 5% N-methyl-2-pyrrolidone solution of polyaniline represented by Structural Formula 1 and dried at 80 ° C. for 30 minutes under reduced pressure.

【0029】次に、ビニルスルホン酸(VS)またはメ
タクリルスルホン酸(MS)またはドデシルスルホン酸
(DDS)、またはトリフロロスルホン酸の1%水溶液
にこの素子を10分間浸漬してドーピング処理を行った
後、150℃で乾燥した。この上に陰極導電層を形成す
るため、以下の条件で電解重合を行った。電解液は、
0.06モル/lピロールと等モルのドーパント、p−
トルエンスルホン酸ナトリウムから成る水溶液である。
この溶液中、1素子あたり0.4mAの電流を与えて1時
間定電流電解を行った。
Next, this element was immersed in a 1% aqueous solution of vinyl sulfonic acid (VS), methacryl sulfonic acid (MS), dodecyl sulfonic acid (DDS), or trifluorosulfonic acid for 10 minutes for doping treatment. Then, it was dried at 150 ° C. In order to form a cathode conductive layer on this, electrolytic polymerization was performed under the following conditions. The electrolyte is
0.06 mol / l Pyrrole and equimolar dopant, p-
An aqueous solution of sodium toluene sulfonate.
In this solution, a constant current electrolysis was performed for 1 hour by applying a current of 0.4 mA per device.

【0030】陰極導電層の形成後、カーボンペーストお
よび銀ペーストを塗布し、120℃で20分乾燥し、全
体をエポキシモールド成形して素子を完成した。得られ
たコンデンサ素子の特性を測定し、結果を表1に示す。 〔実施例3〕タンタル焼結体(実質面積10cm2 )を
0.05%リン酸電解液中41Vで陽極化成処理し、コ
ンデンサ素子とした。このコンデンサ素子を構造式1で
示すポリアニリンの5%N−メチル−2−ピロリドン溶
液中に1回浸漬し、減圧下80℃で30分乾燥した。
After forming the cathode conductive layer, carbon paste and silver paste were applied and dried at 120 ° C. for 20 minutes, and the whole was epoxy-molded to complete the device. The characteristics of the obtained capacitor element were measured, and the results are shown in Table 1. Example 3 A tantalum sintered body (substantial area 10 cm 2 ) was subjected to anodization treatment at 41 V in a 0.05% phosphoric acid electrolytic solution to obtain a capacitor element. This capacitor element was immersed once in a 5% N-methyl-2-pyrrolidone solution of polyaniline represented by Structural Formula 1 and dried at 80 ° C. for 30 minutes under reduced pressure.

【0031】次に、ポリビニルスルホン酸(PVS)ま
たはポリスチレンスルホン酸(PSS)、またはポリリ
ン酸(PPA)の1%水溶液にこの素子を10分間浸漬
してドーピング処理を行った後、150℃で乾燥した。
この上に陰極導電層を形成するため、以下の条件で電解
重合を行った。電解液は、0.06モル/lピロールと
等モルのドーパント、p−トルエンスルホン酸ナトリウ
ムから成る水溶液である。この溶液中、1素子あたり
0.4mAの電流を与えて1時間定電流電解を行った。
Next, this element was immersed in a 1% aqueous solution of polyvinyl sulfonic acid (PVS), polystyrene sulfonic acid (PSS), or polyphosphoric acid (PPA) for 10 minutes for doping treatment, and then dried at 150 ° C. did.
In order to form a cathode conductive layer on this, electrolytic polymerization was performed under the following conditions. The electrolytic solution is an aqueous solution containing 0.06 mol / l of pyrrole and an equimolar dopant of sodium p-toluenesulfonate. In this solution, a constant current electrolysis was performed for 1 hour by applying a current of 0.4 mA per device.

【0032】陰極導電層の形成後、カーボンペーストお
よび銀ペーストを塗布し、120℃で20分乾燥し、全
体をエポキシモールド成形して素子を完成した。このコ
ンデンサ素子の特性を測定した結果を表1に示す。 〔比較例1〕前記実施例1に用いた素子と同様のタンタ
ル焼結体素子を、30%硝酸マンガン水溶液中に浸漬
後、290℃で20分間乾燥し、二酸化マンガンによる
予備電極層を形成した。
After forming the cathode conductive layer, carbon paste and silver paste were applied and dried at 120 ° C. for 20 minutes, and the whole was epoxy-molded to complete the device. The results of measuring the characteristics of this capacitor element are shown in Table 1. [Comparative Example 1] A tantalum sintered body element similar to the element used in Example 1 was dipped in a 30% aqueous solution of manganese nitrate and then dried at 290 ° C for 20 minutes to form a preliminary electrode layer of manganese dioxide. .

【0033】次に、0.06モル/lピロールと等モル
のドーパント、p−トルエンスルホン酸テトラエチルア
ンモニウムから成るアセトニトリル溶液を電解液とし
て、1素子あたり0.5mAの電流を与えて1時間定電流
電解を行った。陰極導電層の形成後、カーボンペースト
および銀ペーストを塗布し、120℃で20分乾燥し、
全体をエポキシモールド成形して素子を完成した。
Next, using an acetonitrile solution containing 0.06 mol / l pyrrole and an equimolar dopant, tetraethylammonium p-toluenesulfonate as an electrolytic solution, a current of 0.5 mA was applied to each element and a constant current was applied for 1 hour. Electrolysis was performed. After forming the cathode conductive layer, a carbon paste and a silver paste are applied and dried at 120 ° C. for 20 minutes,
The whole was epoxy-molded to complete the device.

【0034】このコンデンサ素子の特性を測定した結果
を表1に示す。 〔比較例2〕前記実施例1に用いた素子と同様のタンタ
ル焼結体素子に、以下の方法によりピロールの酸化重合
を行い、予備電極層を形成した。まず、2%硫酸と2%
過酸化水素を含む酸化剤水溶液に素子を浸漬後、ただち
にピロールの0.1モル/lアセトニトリル溶液に浸漬
する。100℃で30分乾燥したのち、再び酸化剤溶液
とピロール溶液への浸漬を行い、全部で4回繰り返す。
The results of measuring the characteristics of this capacitor element are shown in Table 1. Comparative Example 2 The same tantalum sintered body element as that used in Example 1 was subjected to oxidative polymerization of pyrrole by the following method to form a preliminary electrode layer. First, 2% sulfuric acid and 2%
After immersing the element in an oxidizing agent aqueous solution containing hydrogen peroxide, it is immediately immersed in a 0.1 mol / l acetonitrile solution of pyrrole. After drying at 100 ° C. for 30 minutes, it is immersed again in the oxidant solution and the pyrrole solution, and this is repeated 4 times in total.

【0035】この後、0.06モル/lピロールと等モ
ルのドーパント、p−トルエンスルホン酸テトラエチル
アンモニウムから成るアセトニトリル溶液を電解液とし
て、1素子あたり0.5mAの電流を与えて1時間定電流
電解を行った。陰極導電層の形成後、カーボンペースト
および銀ペーストを塗布し、120℃で20分乾燥し、
全体をエポキシモールド成形して素子を完成した。
After that, an acetonitrile solution containing 0.06 mol / l pyrrole and equimolar dopant and tetraethylammonium p-toluenesulfonate was used as an electrolytic solution, and a current of 0.5 mA was applied to each element for a constant current for 1 hour. Electrolysis was performed. After forming the cathode conductive layer, a carbon paste and a silver paste are applied and dried at 120 ° C. for 20 minutes,
The whole was epoxy-molded to complete the device.

【0036】このコンデンサ素子の特性を測定した結果
を表1に示す。
The results of measuring the characteristics of this capacitor element are shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】この表から明らかなように、周波数120
Hzにおける容量Cは、比較例1,2による固体電解コン
デンサが4.5〜4.6μFであるのに対し、実施例1
〜3による固体電解コンデンサが4.1〜4.7μF
と、実質的に同等である。また、発熱の度合を表すta
nδ(損失正接)は、比較例1,2による固体電解コン
デンサが2.0〜3.5%であるのに対し、実施例1〜
3による固体電解コンデンサが1.1〜1.4%と、減
少している。
As is apparent from this table, the frequency 120
The capacitance C at Hz is 4.5 to 4.6 μF in the solid electrolytic capacitors according to Comparative Examples 1 and 2, whereas that of Example 1 is different.
3 to 4.1 are solid electrolytic capacitors 4.1 to 4.7 μF
And is substantially equivalent. Also, ta representing the degree of heat generation
nδ (loss tangent) is 2.0 to 3.5% for the solid electrolytic capacitors according to Comparative Examples 1 and 2, while Example 1 to
The solid electrolytic capacitor according to No. 3 decreased to 1.1 to 1.4%.

【0039】また、周波数1MHz におけるESRは、比
較例1,2による固体電解コンデンサが0.4〜0.6
Ωであるのに対し、実施例1〜3による固体電解コンデ
ンサが0.1〜0.3Ωと、減少している。更に、固体
電解コンデンサの製造に要する全工程時間は、比較例
1,2の場合が7〜8H(時間)であるのに対し、実施
例1〜3の場合が4Hと短縮されている。
The ESR at a frequency of 1 MHz is 0.4 to 0.6 for the solid electrolytic capacitors according to Comparative Examples 1 and 2.
In contrast to Ω, the solid electrolytic capacitors according to Examples 1 to 3 have decreased to 0.1 to 0.3Ω. Further, the total process time required for manufacturing the solid electrolytic capacitor is 7 to 8 H (hours) in Comparative Examples 1 and 2, whereas it is shortened to 4 H in Examples 1 to 3.

【0040】[0040]

【発明の効果】以上示したように、本発明によれば固体
電解コンデンサの製造において、その陰極導電層を形成
するための予備電極層の作製にあたり、溶媒に可溶性の
導電材料であるポリアニリンを使用することにより、短
時間で予備電極層を形成できるという効果を奏し、従来
法に比してより簡便且つ確実に予備電極層が得られる。
また、その予備電極層の抵抗も低いため、良好なコンデ
ンサ特性が得られ、コンデンサの小型化・高性能化に寄
与するところが大きい。
As described above, according to the present invention, in the production of a solid electrolytic capacitor, polyaniline, which is a conductive material soluble in a solvent, is used in the preparation of a preliminary electrode layer for forming the cathode conductive layer. By doing so, there is an effect that the preliminary electrode layer can be formed in a short time, and the preliminary electrode layer can be obtained more simply and surely as compared with the conventional method.
In addition, since the resistance of the preliminary electrode layer is low, good capacitor characteristics can be obtained, which greatly contributes to downsizing and high performance of the capacitor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の固体電解コンデンサの原理構成を示す
図である。
FIG. 1 is a diagram showing a principle configuration of a solid electrolytic capacitor of the present invention.

【符号の説明】[Explanation of symbols]

1…弁金属 2…弁金属の酸化物層(陽極酸化膜) 3…可溶性導電材料(ポリアニリン層) 4…陰極導電層 5…カーボン導電層 6…銀ペースト層 7…陰極取り出しリード 8…モールド樹脂 DESCRIPTION OF SYMBOLS 1 ... Valve metal 2 ... Valve metal oxide layer (anodic oxide film) 3 ... Soluble conductive material (polyaniline layer) 4 ... Cathode conductive layer 5 ... Carbon conductive layer 6 ... Silver paste layer 7 ... Cathode extraction lead 8 ... Mold resin

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 弁金属からなる陽極と、陽極表面に形成
された誘電体層と、誘電体層の表面に形成されたポリア
ニリンによる予備電極層と、予備電極層上に形成された
導電性高分子物質層からなる陰極とを含んで成ることを
特徴とする固体電解コンデンサ。
1. An anode made of a valve metal, a dielectric layer formed on the surface of the anode, a preliminary electrode layer made of polyaniline formed on the surface of the dielectric layer, and a conductive high layer formed on the preliminary electrode layer. A solid electrolytic capacitor comprising a cathode composed of a molecular substance layer.
【請求項2】 前記予備電極層がドーパントを含む請求
項1記載の固体電解コンデンサ。
2. The solid electrolytic capacitor according to claim 1, wherein the preliminary electrode layer contains a dopant.
【請求項3】 前記ドーパントが、芳香族スルホン酸ま
たは脂肪族スルホン酸または、側鎖にスルホン酸基を有
する高分子酸である請求項2記載の固体電解コンデン
サ。
3. The solid electrolytic capacitor according to claim 2, wherein the dopant is an aromatic sulfonic acid or an aliphatic sulfonic acid, or a polymer acid having a sulfonic acid group in a side chain.
【請求項4】 前記芳香族スルホン酸が、ベンゼンスル
ホン酸またはp−トルエンスルホン酸またはナフタレン
スルホン酸またはアルキルナフタレンスルホン酸または
スチレンスルホン酸またはn−アルキルベンゼンスルホ
ン酸である請求項3記載の固体電解コンデンサ。
4. The solid electrolytic capacitor according to claim 3, wherein the aromatic sulfonic acid is benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, alkylnaphthalenesulfonic acid, styrenesulfonic acid, or n-alkylbenzenesulfonic acid. .
【請求項5】 前記脂肪族スルホン酸として、ビニルス
ルホン酸またはメタクリルスルホン酸またはドデシルス
ルホン酸またはトリフロロスルホン酸である請求項3記
載の固体電解コンデンサ。
5. The solid electrolytic capacitor according to claim 3, wherein the aliphatic sulfonic acid is vinyl sulfonic acid, methacrylic sulfonic acid, dodecyl sulfonic acid or trifluorosulfonic acid.
【請求項6】 前記陰極の前記導電性高分子物質が電解
重合により生成するポリピロール、ポリチオフェン、ポ
リアニリン、ポリフランあるいはそれらの側鎖置換誘導
体である請求項1〜5のいずれか1項に記載の固体電解
コンデンサ。
6. The solid according to claim 1, wherein the conductive polymer substance of the cathode is polypyrrole, polythiophene, polyaniline, polyfuran or a side chain-substituted derivative thereof produced by electrolytic polymerization. Electrolytic capacitor.
【請求項7】 コンデンサの陽極をなす弁金属表面を陽
極酸化して酸化物層を形成し、該陽極酸化膜表面にポリ
アニリン溶液を塗布、乾燥してポリアニリン層を形成
し、該ポリアニリン層を電極として電解重合により導電
性高分子物質層を形成する工程を含むことを特徴とする
固体電解コンデンサの製造方法。
7. A valve metal surface forming an anode of a capacitor is anodized to form an oxide layer, a polyaniline solution is applied to the surface of the anodized film and dried to form a polyaniline layer, and the polyaniline layer is used as an electrode. And a step of forming a conductive polymer substance layer by electrolytic polymerization as a method for producing a solid electrolytic capacitor.
【請求項8】 前記ポリアニリン層形成後、ドーパント
を含む溶液に該ポリアニリン層を浸漬して、該ポリアニ
リン層中にドーパントを含有せしめる工程を更に有する
請求項7記載の方法。
8. The method according to claim 7, further comprising a step of immersing the polyaniline layer in a solution containing a dopant after the formation of the polyaniline layer so that the dopant is contained in the polyaniline layer.
【請求項9】 前記ドーパントが、芳香族スルホン酸ま
たは脂肪族スルホン酸または、側鎖にスルホン酸基を有
する高分子酸である請求項7又は8記載の方法。
9. The method according to claim 7, wherein the dopant is an aromatic sulfonic acid or an aliphatic sulfonic acid, or a polymeric acid having a sulfonic acid group in a side chain.
【請求項10】 前記導電性高分子物質が電解重合によ
り生成するポリピロール、ポリチオフェン、ポリアニリ
ン、ポリフランあるいはそれらの側鎖置換誘導体である
請求項7〜9のいずれか1項に記載の方法。
10. The method according to claim 7, wherein the conductive polymer substance is polypyrrole, polythiophene, polyaniline, polyfuran or a side chain-substituted derivative thereof produced by electrolytic polymerization.
JP4227235A 1992-08-26 1992-08-26 Solid-state electrolytic capacitor and manufacture thereof Withdrawn JPH0677093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4227235A JPH0677093A (en) 1992-08-26 1992-08-26 Solid-state electrolytic capacitor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4227235A JPH0677093A (en) 1992-08-26 1992-08-26 Solid-state electrolytic capacitor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0677093A true JPH0677093A (en) 1994-03-18

Family

ID=16857635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4227235A Withdrawn JPH0677093A (en) 1992-08-26 1992-08-26 Solid-state electrolytic capacitor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0677093A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0820076A2 (en) 1996-07-16 1998-01-21 Nec Corporation Solid electrolyte capacitor and method for manufacturing the same
US6134099A (en) * 1997-06-03 2000-10-17 Matsushita Electric Industrial Electrolytic capacitor having a conducting polymer layer without containing an organic acid-type dopant
US6671168B2 (en) 2001-11-30 2003-12-30 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
JP2014204049A (en) * 2013-04-09 2014-10-27 カーリットホールディングス株式会社 Oxidant solution for production of conductive polymer, and method for production of solid electrolytic capacitor by use thereof
CN113410057A (en) * 2020-03-16 2021-09-17 钰邦科技股份有限公司 Capacitor unit and method for manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0820076A2 (en) 1996-07-16 1998-01-21 Nec Corporation Solid electrolyte capacitor and method for manufacturing the same
EP0820076B2 (en) 1996-07-16 2011-03-02 Nec Tokin Corporation Solid electrolyte capacitor and method for manufacturing the same
US6134099A (en) * 1997-06-03 2000-10-17 Matsushita Electric Industrial Electrolytic capacitor having a conducting polymer layer without containing an organic acid-type dopant
US6361572B1 (en) 1997-06-03 2002-03-26 Matsushita Electric Industrial Co., Ltd. Method of making an electrolytic capacitor having a conductive polymer formed on the inner surface of micropores of the anodes
US6671168B2 (en) 2001-11-30 2003-12-30 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
JP2014204049A (en) * 2013-04-09 2014-10-27 カーリットホールディングス株式会社 Oxidant solution for production of conductive polymer, and method for production of solid electrolytic capacitor by use thereof
CN113410057A (en) * 2020-03-16 2021-09-17 钰邦科技股份有限公司 Capacitor unit and method for manufacturing the same
CN113410057B (en) * 2020-03-16 2023-11-24 钰邦科技股份有限公司 Capacitor unit and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3157748B2 (en) Solid electrolytic capacitor using conductive polymer and method for manufacturing the same
KR101369488B1 (en) Method for producing electrolyte capacitors
US9287053B2 (en) Method of manufacturing solid electrolytic capacitor
KR101369489B1 (en) Process for the production of electrolyte capacitors of high nominal voltage
EP2154197A1 (en) Conductive polymer suspension and method for producing the same, conductive polymer material, electrolytic capacitor, and solid electrolytic capacitor and method for producing the same
JP2765453B2 (en) Method for manufacturing solid electrolytic capacitor
JP3711964B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001102255A (en) Tantalum solid electrolytic capacitor and manufacturing method therefor
KR20000053593A (en) Method for producing a solid electrolytic capacitor
EP2202765A2 (en) Electrically conducting polymer, solid electrolytic capacitor and manufacturing method thereof
JPH0677093A (en) Solid-state electrolytic capacitor and manufacture thereof
JPH10321471A (en) Solid electrolytic capacitor and its manufacture
JP4236719B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US6660188B1 (en) Electrical conducting polymer, solid electrolytic capacitor and manufacturing method thereof
KR100733972B1 (en) Method of producing a solid electrolytic capacitor by using a conductive polymer electrolytic composition
JPH0494110A (en) Manufacture of solid electrolytic capacitor
US6663796B1 (en) Electrical conducting polymer, solid electrolytic capacitor and manufacturing method thereof
JP3255091B2 (en) Method for manufacturing solid electrolytic capacitor
JP3346346B2 (en) Polymerization liquid for forming solid electrolyte and method for producing the same
JPH05217808A (en) Solid electrolytic capacitor and its manufacture
KR100753615B1 (en) Method of Manufacturing Solid Electrolytic Capacitor using Conductive Polymer
JP2792394B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP4084862B2 (en) Manufacturing method of solid electrolytic capacitor
JP2004288958A (en) Manufacturing method of solid electrolytic capacitor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102