JP3711964B2 - Manufacturing method of solid electrolytic capacitor - Google Patents

Manufacturing method of solid electrolytic capacitor Download PDF

Info

Publication number
JP3711964B2
JP3711964B2 JP2002208416A JP2002208416A JP3711964B2 JP 3711964 B2 JP3711964 B2 JP 3711964B2 JP 2002208416 A JP2002208416 A JP 2002208416A JP 2002208416 A JP2002208416 A JP 2002208416A JP 3711964 B2 JP3711964 B2 JP 3711964B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymerization
layer
solid electrolytic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002208416A
Other languages
Japanese (ja)
Other versions
JP2003037024A (en
Inventor
知子 細川
由賀利 島本
正人 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002208416A priority Critical patent/JP3711964B2/en
Publication of JP2003037024A publication Critical patent/JP2003037024A/en
Application granted granted Critical
Publication of JP3711964B2 publication Critical patent/JP3711964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は固体電解質形成用重合液を用いた固体電解コンデンサの製造方法に関するものである。
【0002】
【従来の技術】
最近の電子機器のデジタル化に伴い、これらに使用されるコンデンサも高周波領域においてインピーダンスが低く、小形大容量化したものへの要求が高まっている。従来、このような高周波領域用として使用されるコンデンサとしては、プラスチックフィルムコンデンサ、マイカコンデンサ、積層セラミックコンデンサなどが用いられている。また、その他にアルミニウム乾式電解コンデンサやアルミニウムまたはタンタル固体電解コンデンサなどがあり、上記アルミニウム乾式電解コンデンサでは、エッチングを施した陽・陰極アルミニウム箔をセパレータを介して巻き取り、液体の電解質を用いている。
【0003】
また、アルミニウムやタンタル固体電解コンデンサでは上記アルミニウム乾式電解コンデンサの特性改良のため電解質の固体化がなされており、この固体電解質形成には硝酸マンガン水溶液に陽極体を浸漬し、これを250〜350℃前後の高温炉中にて熱分解してマンガン酸化物層を形成している。このコンデンサの場合、電解質が固体のために高温における電解質の流出やドライアップによる容量低減、低温域での凝固から生じる機能低下などの欠点がなく、液状電解質と比べて良好な周波数特性、温度特性を示すものである。
【0004】
また、近年では固体電解質の高電導度化のためにピロール、チオフェンなどの重合性モノマーを重合させて導電性高分子とし、これを固体電解質とする固体電解コンデンサが実用化されている。
【0005】
【発明が解決しようとする課題】
上記固体電解質に導電性高分子を用いたコンデンサの固体電解質形成方法の1つとして、弁作用金属の誘電体酸化皮膜の表面にマンガン酸化物または導電性高分子等の導電性材料からなるプレコート層を形成した後、重合性モノマーを含む重合液中で外部電極から給電を行って導電性高分子の固体電解質を形成する電解重合があり、これによって比較的短時間で安定的に特性の良い固体電解コンデンサを作製することが可能である。また、固体電解コンデンサの生産においては、電解重合の重合速度を上げて固体電解質の形成に要する時間を低減することにより、さらに生産性を向上させることが可能である。
【0006】
しかしながら電解重合の重合速度を上げる方法としては、重合温度を上げる、重合電圧を上げる等の方法が考えられるが、重合温度を上げた場合には、重合性モノマーの揮発が起こり易くなり、重合液組成が不安定となる等の問題があり、また重合電圧を上げる場合には、水を含む重合液中では、水の電気分解等の重合とは異なる別の反応も起こり易くなるために重合効率が低下し、また水の電気分解等で発生する気泡が付着することによるインピーダンス悪化現象などの問題が見られ、コンデンサとして安定的に優れた製品特性を示し、かつ電解重合速度を上げることは困難であった。
【0007】
また、固体電解質の一部としてマンガン酸化物を用いる場合においては、マンガン酸化物を形成する際に従来の熱分解方法では、その高温処理のために誘電体酸化皮膜が損傷して漏れ電流が大きくなる現象が見られ、さらに固体電解質の一部として形成されるマンガン酸化物は電極体内部まで被覆されにくいために、容量引き出し率が低いものとなってしまい、インピーダンス特性も悪くなるという問題があった。
【0008】
本発明は従来のこのような課題を解決し、性能向上と電解重合時間の低減を同時に実現することができる固体電解質形成用重合液を用いた固体電解コンデンサの製造方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記課題を解決するために本発明は、重合性モノマーとアルキル基または芳香族環を有した分子量が180以上のアニオン系界面活性剤をあらかじめ混合し、この混合物に主溶媒である水を加えることで上記アニオン系界面活性剤が重合性モノマーを含むミセルを形成した溶液を作成し、この溶液にpH5以下になるようにpH調整剤を添加するようにして固体電解質形成重合液を調整し、この固体電解質形成用重合液を用いて、弁作用金属の表面に形成された誘電体酸化皮膜上に上記アニオン系界面活性剤が固体電解質中に選択的にドーパントとして取り込まれるように電解重合により固体電解質を形成するようにした固体電解コンデンサの製造方法である。
【0010】
この本発明により、耐脱ドープ性に優れるアニオン系界面活性剤を固体電解質中にドーパントとして選択的に取り込ませることによって重合速度が向上し、かつ初期および高温高湿中にコンデンサを放置するような条件下でもインピーダンス特性の優れた固体電解コンデンサを作製することが可能となる。
【0011】
これは、水を含む固体電解質形成用重合液中にアニオン系界面活性剤が存在することにより、アニオン系界面活性剤が重合性モノマーを取り込んだミセル構造をとると考えた場合、界面活性剤としてアニオン系材料を用いて重合膜を形成する陽極側に引き寄せ易くすることによって重合速度向上効果があり、また重合性モノマーと近傍に存在するアニオン系界面活性剤が重合膜中にドーパントとして取り込まれ易くなるためにインピーダンス特性の優れた固体電解コンデンサが得られるものと考えられる。
【0012】
また、固体電解質形成用重合液中にアニオン系界面活性剤が2種類以上存在する場合は、重合性モノマーとなじみやすい材料が選択的に取り込まれると考えられるため、より取り込まれ易い材料にアルキル基および芳香族環を持ち、分子量が180以上の材料を用いることにより、インピーダンス特性の優れた固体電解コンデンサを得ることができる。また、pH調整剤がアニオン系界面活性剤である場合も考えられるが、上記理由と同様でより取り込まれ易い材料にアルキル基および芳香族環を持ち、分子量が180以上の材料を用いることにより、インピーダンス特性の優れた固体電解コンデンサを得ることができる。
【0013】
また、pH調整剤としてアルキルリン酸エステル、アルキルスルホン酸、アリールスルホン酸等のアルキル基または芳香族環を有する酸を用いることにより、リン酸や硫酸等の酸を用いた場合と比較して、弁作用金属の誘電体酸化皮膜に対する化学的ストレスを少なくする等の効果があり、優れた漏れ電流特性、インピーダンス特性を得ることができる。
【0014】
また、固体電解質の一部としてマンガン酸化物を用いる場合においては、マンガン酸化物を形成する際に弁作用金属表面に形成された誘電体酸化皮膜をpH調整剤を添加することによりpH2以下とした硝酸マンガン水溶液に浸漬し、これを熱分解することによってマンガン酸化物層を形成することにより、生成したマンガン酸化物の粒子径が小さく、均質に形成されるため、誘電体酸化皮膜のより小さな細孔内部まで被覆することができ、これにより誘電体酸化皮膜の劣化も防止することができる。
【0015】
また、粒子径が均一で小さなマンガン酸化物により広範囲にわたって被覆されるため、その後の低pHの固体電解質形成用重合液による電解重合膜との密着性も改善できる。特に、硝酸・塩酸・硫酸・燐酸・硼酸・酢酸・燐酸エステルなどを添加した低pHの硝酸マンガン水溶液を熱分解することにより、微少で均一なマンガン酸化物を形成するため、熱分解時のNOxガス発生パスが確保でき、誘電体酸化皮膜へのストレスが少ないために漏れ電流の抑制効果が見られ、さらに被覆率が上がるために容量引き出し率の優れた固体電解コンデンサを得ることができるものである。
【0016】
【発明の実施の形態】
以下に本発明の具体的な実施の形態について説明するが、本発明はこれに限定されるものではない。
【0017】
(実施の形態1)
(実施例1)
図1は本発明の実施の形態による固体電解コンデンサの構成を示す断面図であり、まず陽極としてリードをつけた3mm×4mmのアルミニウムエッチド箔6を使用した。これに3%アジピン酸アンモニウム水溶液を用いて印加電圧12V、水溶液温度70℃で60分間陽極酸化を行うことにより、アルミニウムエッチド箔6の表面に誘電体酸化皮膜7を形成した。その後、pHが3.73である硝酸マンガン30%水溶液に浸漬して自然乾燥させた後、300℃で10分間熱分解処理を行うことにより、固体電解質層8の一部となるマンガン酸化物層を形成した。
【0018】
次に、ピロールモノマー0.5mol/Lとプロピルナフタレンスルホン酸ナトリウム0.1mol/Lをあらかじめ混合した後に溶媒である水とpH調整剤としてのプロピルリン酸エステルを添加してpHを2に調整した固体電解質形成用重合液を作製し、この重合液中で重合開始用電極を素子表面に近接させ、液温度30℃、重合電圧3Vで電解重合を行って固体電解質層8を形成した。その後、陰極引き出し層としてコロイダルカーボン懸濁液を塗布、乾燥することによって得られるカーボン層9および銀ペーストを塗布乾燥することによって得られる銀層10を形成し、カーボン層9と銀層10を併せて陰極引き出し部とした。その後、エポキシ樹脂により外装して10個の固体電解コンデンサを完成させた。この固体電解コンデンサの定格電圧は6.3Vである。
【0019】
(実施例2)
図1は本発明の実施の形態による固体電解コンデンサの構成を示す断面図であり、陽極としてリードをつけた3mm×4mmのアルミニウムエッチド箔6を使用した。これに3%アジピン酸アンモニウム水溶液を用いて印加電圧12V、水溶液温度70℃で60分間陽極酸化を行うことにより、アルミニウムエッチド箔6の表面に誘電体酸化皮膜7を形成した。その後、pHが3.73である硝酸マンガン30%水溶液にpH調整剤である硝酸を添加してpHを2とした溶液に浸漬して自然乾燥させた後、300℃で10分間熱分解処理を行うことにより、固体電解質層8の一部となるマンガン酸化物層を形成した。
【0020】
次に、ピロールモノマー0.5mol/Lとプロピルナフタレンスルホン酸ナトリウム0.1mol/Lをあらかじめ混合した後に溶媒である水とpH調整剤としてのプロピルリン酸エステルを添加してpHを2に調整した固体電解質形成用重合液を作製し、この重合液中で重合開始用電極を素子表面に近接させ、液温度30℃、重合電圧3Vで電解重合を行って固体電解質層8を形成した。その後、陰極引き出し層としてコロイダルカーボン懸濁液を塗布、乾燥することによって得られるカーボン層9および銀ペーストを塗布乾燥することによって得られる銀層10を形成し、カーボン層9と銀層10を併せて陰極引き出し部とした。その後、エポキシ樹脂により外装して10個の固体電解コンデンサを完成させた。この固体電解コンデンサの定格電圧は6.3Vである。
【0021】
(実施例3)
実施例2において、硝酸を添加して硝酸マンガン30%水溶液のpHを1.5に調整した以外は実施例2と同じ方法で固体電解コンデンサ10個を作製した。
【0022】
(実施例4)
実施例2において、硝酸を添加して硝酸マンガン30%水溶液のpHを1に調整した以外は実施例2と同じ方法で固体電解コンデンサ10個を作製した。
【0023】
(実施例5)
実施例2において、硝酸を添加して硝酸マンガン30%水溶液のpHを0.5に調整した以外は実施例2と同じ方法で固体電解コンデンサ10個を作製した。
【0024】
(実施例6)
実施例2において、硝酸を添加して硝酸マンガン30%水溶液のpHを0.3に調整した以外は実施例2と同じ方法で固体電解コンデンサ10個を作製した。
【0025】
(実施例7)
実施例2において、硝酸を添加して硝酸マンガン30%水溶液のpHを0.1に調整した以外は実施例2と同じ方法で固体電解コンデンサ10個を作製した。
【0026】
(実施例8)
実施例2において、硝酸を添加して硝酸マンガン30%水溶液のpHを0以下に調整した以外は実施例2と同じ方法で固体電解コンデンサ10個を作製した。
【0027】
(実施例9)
実施例2において、硫酸を添加して硝酸マンガン30%水溶液のpHを0以下に調整した以外は実施例2と同じ方法で固体電解コンデンサ10個を作製した。
【0028】
(実施例10)
実施例2において、塩酸を添加して硝酸マンガン30%水溶液のpHを0以下に調整した以外は実施例2と同じ方法で固体電解コンデンサ10個を作製した。
【0029】
(比較例1)
実施例1と同様に、陽極としてリードをつけた3mm×4mmのアルミニウムエッチド箔6を使用し、これに3%アジピン酸アンモニウム水溶液を用いて印加電圧12V、水溶液温度70℃で60分間陽極酸化を行うことにより、アルミニウムエッチド箔6の表面に誘電体酸化皮膜7を形成した。その後、pHが3.73である硝酸マンガン30%水溶液中に浸漬して自然乾燥させた後300℃で10分間熱分解処理を行うことにより、固体電解質層8の一部となるマンガン酸化物層を形成した。
【0030】
次に、ピロールモノマー0.5mol/Lとプロピルナフタレンスルホン酸ナトリウム0.1mol/Lをあらかじめ混合した後に溶媒である水を混合して固体電解質形成用重合液を作製し、この重合液中で重合開始用電極を素子表面に近接させ、液温度30℃、重合電圧3Vで電解重合を行って固体電解質層8を形成した。その後、陰極引き出し層としてコロイダルカーボン懸濁液を塗布、乾燥することによって得られるカーボン層9および銀ペーストを塗布乾燥することによって得られる銀層10を形成し、カーボン層9と銀層10を併せて陰極引き出し部とした。その後、エポキシ樹脂により外装して10個の固体電解コンデンサを完成させた。この固体電解コンデンサの定格電圧は6.3Vである。
【0031】
(比較例2)
実施例1と同様に、陽極としてリードをつけた3mm×4mmのアルミニウムエッチド箔6を使用し、これに3%アジピン酸アンモニウム水溶液を用いて印加電圧12V、水溶液温度70℃で60分間陽極酸化を行うことによりアルミニウムエッチド箔6の表面に誘電体酸化皮膜7を形成した。その後、pHが3.73である硝酸マンガン30%水溶液にpH調整剤である硝酸を添加してpHを2とした溶液に浸漬して自然乾燥させた後、300℃で10分間熱分解処理を行うことにより、固体電解質層8の一部となるマンガン酸化物層を形成した。
【0032】
次に、ピロールモノマー0.5mol/Lとプロピルナフタレンスルホン酸ナトリウム0.1mol/Lをあらかじめ混合した後に溶媒である水を混合して固体電解質形成用重合液を作製し、この重合液中で重合開始用電極を素子表面に近接させ、液温度30℃、重合電圧3Vで電解重合を行って固体電解質層8を形成した。その後、陰極引き出し層としてコロイダルカーボン懸濁液を塗布、乾燥することによって得られるカーボン層9および銀ペーストを塗布乾燥することによって得られる銀層10を形成し、カーボン層9と銀層10を併せて陰極引き出し部とした。その後、エポキシ樹脂により外装して10個の固体電解コンデンサを完成させた。この固体電解コンデンサの定格電圧は6.3Vである。
【0033】
また、上記実施例1〜10および比較例1、2により作製した固体電解コンデンサのエージングを行い、その後固体電解コンデンサの初期特性を測定した。これらの結果の平均値を(表1)に示す。
【0034】
【表1】

Figure 0003711964
【0035】
上記比較例1および実施例1と比較例2および実施例2の比較により、pH調整剤を添加して硝酸マンガン水溶液のpHを2以下にすることにより、容量引き出し率、漏れ電流特性および高周波領域でのインピーダンス・ESR特性の優れたものが得られるものである。また、実施例1〜10と比較例1、2の比較により、電解重合時のpHを2にすることによって、優れた容量引き出し率、漏れ電流特性、インピーダンス特性が得られることが分かる。
【0036】
この優れた特性は、pH調整剤を添加することによりpH2以下とした硝酸マンガン水溶液に浸漬し、これを熱分解することによってマンガン酸化物層を形成した後に、固体電解質形成用重合液を用いて電解重合することにより導電性高分子層を形成すると、このようにして熱分解されたマンガン酸化物の生成する粒子径が小さく、均質に形成されるため、誘電体酸化皮膜のより小さな細孔内部まで被覆することができ、これにより誘電体酸化皮膜の劣化も防止することができるものである。
【0037】
また、粒子径が均一で小さなマンガン酸化物により広範囲にわたって被覆されるため、その後の低pH重合液による電解重合膜との密着性も改善できる。特に、硝酸・塩酸・硫酸・燐酸・硼酸・酢酸・燐酸エステルなどの酸を添加した低pH硝酸マンガン水溶液を熱分解することにより、微少で均一な二酸化マンガンを形成するため、熱分解時のNOxガス発生パスが確保でき、誘電体酸化皮膜へのストレスが少ないために漏れ電流の抑制効果が見られ、さらに被覆率が上がるために容量引き出し率の優れた固体電解コンデンサを得ることができるものである。
【0038】
なお、上記実施の形態1では、陽極として弁作用金属のアルミニウムを使用した固体電解コンデンサについてのみ述べたが、本発明はこれに限定されるものではなく、外表面に誘電体酸化皮膜を有する弁作用金属であるタンタル、ニオブ、チタン等の他の物質でも同様の効果が得られることは言うまでもない。
【0039】
また、上記実施の形態1では導電性高分子を構成する重合性モノマーとしてピロールを使用した場合についてのみ述べたが、本発明はこれに限定されるものではなく、導電性高分子を構成するモノマーとしてチオフェン、アニリンあるいはその誘導体等の他の物質でも同様の効果が得られることは言うまでもない。
【0040】
また、上記実施の形態1では、固体電解質層の一部であるプレコート層としてマンガン酸化物を用いた場合についてのみ述べたが、本発明はこれに限定されるものではなく、導電性高分子等の他の導電性材料をプレコートとして用いた場合においても同様の効果が得られることは言うまでもない。
【0041】
以上のように本発明は、重合性モノマーとアルキル基または芳香族環を有した分子量が180以上のアニオン系界面活性剤をあらかじめ混合し、この混合物に主溶媒である水を加えることで上記アニオン系界面活性剤が重合性モノマーを含むミセルを形成した溶液を作成し、この溶液にpH5以下になるようにpH調整剤を添加するようにして固体電解質形成重合液を調整し、この固体電解質形成用重合液を用いて、弁作用金属の表面に形成された誘電体酸化皮膜上に上記アニオン系界面活性剤が固体電解質中に選択的にドーパントとして取り込まれるように電解重合により固体電解質を形成するようにしたものであり、耐脱ドープ性に優れるアニオン系界面活性剤が固体電解質中にドーパントとして選択的に取り込ませることによって重合速度を向上し、かつ初期および高温高湿中にコンデンサを放置するような条件下でもインピーダンス特性の優れた固体電解コンデンサを作製することが可能となり、その結果として、容量引き出し率、漏れ電流特性および高周波領域でのインピーダンス・ESR特性の優れた固体電解コンデンサを得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1による固体電解コンデンサの構成を示す断面図
【符号の説明】
6 アルミニウムエッチド箔
7 誘電体酸化皮膜
8 固体電解質層
9 カーボン層
10 銀層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a solid electrolytic capacitor using a polymerization liquid for forming a solid electrolyte.
[0002]
[Prior art]
With the recent digitization of electronic devices, there is an increasing demand for capacitors used in these devices that have a low impedance in the high frequency region and have a small size and a large capacity. Conventionally, as a capacitor used for such a high frequency region, a plastic film capacitor, a mica capacitor, a multilayer ceramic capacitor, or the like is used. In addition, there are aluminum dry electrolytic capacitors, aluminum or tantalum solid electrolytic capacitors, and the above aluminum dry electrolytic capacitors use a liquid electrolyte by winding an etched positive / cathode aluminum foil through a separator. .
[0003]
Further, in the case of aluminum or tantalum solid electrolytic capacitors, the solidification of the electrolyte has been made in order to improve the characteristics of the above-mentioned aluminum dry electrolytic capacitor. A manganese oxide layer is formed by thermal decomposition in front and rear high-temperature furnaces. In the case of this capacitor, the electrolyte is solid, so there are no drawbacks such as electrolyte outflow at high temperature, capacity reduction due to dry-up, and functional degradation caused by solidification in a low temperature range, and better frequency characteristics and temperature characteristics than liquid electrolytes Is shown.
[0004]
In recent years, in order to increase the electrical conductivity of solid electrolytes, solid electrolytic capacitors in which polymerizable monomers such as pyrrole and thiophene are polymerized to form a conductive polymer and this is used as a solid electrolyte have been put into practical use.
[0005]
[Problems to be solved by the invention]
As one method for forming a solid electrolyte of a capacitor using a conductive polymer as the solid electrolyte, a precoat layer made of a conductive material such as manganese oxide or a conductive polymer is formed on the surface of a dielectric oxide film of a valve action metal. There is electrolytic polymerization in which a solid electrolyte of a conductive polymer is formed by feeding power from an external electrode in a polymerization solution containing a polymerizable monomer. It is possible to produce an electrolytic capacitor. Further, in the production of solid electrolytic capacitors, it is possible to further improve productivity by increasing the polymerization rate of electrolytic polymerization and reducing the time required to form the solid electrolyte.
[0006]
However, methods for increasing the polymerization rate of electrolytic polymerization include methods such as increasing the polymerization temperature and increasing the polymerization voltage. However, when the polymerization temperature is increased, volatilization of the polymerizable monomer is likely to occur, and the polymerization solution There are problems such as instability of the composition, and when the polymerization voltage is increased, in the polymerization solution containing water, another reaction different from polymerization such as electrolysis of water is likely to occur, so that the polymerization efficiency In addition, there are problems such as deterioration of impedance due to adhesion of bubbles generated by electrolysis of water, etc., and it shows stable and excellent product characteristics as a capacitor, and it is difficult to increase the rate of electropolymerization Met.
[0007]
In addition, when manganese oxide is used as a part of the solid electrolyte, the conventional pyrolysis method when forming manganese oxide causes a large leakage current due to damage to the dielectric oxide film due to the high temperature treatment. In addition, the manganese oxide formed as a part of the solid electrolyte is difficult to cover the inside of the electrode body, so that the capacity drawing rate is low and the impedance characteristics are also deteriorated. It was.
[0008]
An object of the present invention is to solve the above-described conventional problems and to provide a method for producing a solid electrolytic capacitor using a polymerization liquid for forming a solid electrolyte capable of simultaneously improving performance and reducing electrolytic polymerization time. To do.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is prepared by previously mixing a polymerizable monomer and an anionic surfactant having an alkyl group or an aromatic ring and having a molecular weight of 180 or more, and adding water as a main solvent to the mixture. A solution in which the anionic surfactant forms a micelle containing a polymerizable monomer is prepared , and a solid electrolyte forming polymerization solution is prepared by adding a pH adjuster so that the pH is 5 or less. The solid electrolyte is polymerized by electrolytic polymerization so that the anionic surfactant is selectively incorporated into the solid electrolyte as a dopant on the dielectric oxide film formed on the surface of the valve action metal using the polymerization liquid for solid electrolyte formation. Is a method for manufacturing a solid electrolytic capacitor.
[0010]
According to the present invention, the polymerization rate is improved by selectively incorporating an anionic surfactant having excellent anti-doping resistance into the solid electrolyte as a dopant, and the capacitor is left in the initial stage and at high temperature and high humidity. It is possible to produce a solid electrolytic capacitor having excellent impedance characteristics even under conditions.
[0011]
This is because when an anionic surfactant is present in the polymerization solution for forming a solid electrolyte containing water, the anionic surfactant assumes a micelle structure incorporating a polymerizable monomer. It has an effect of improving the polymerization rate by facilitating the pulling to the anode side that forms the polymer film using an anionic material, and the anionic surfactant existing in the vicinity of the polymerizable monomer is easily incorporated as a dopant in the polymer film. Therefore, it is considered that a solid electrolytic capacitor having excellent impedance characteristics can be obtained.
[0012]
In addition, when two or more types of anionic surfactants are present in the polymerization liquid for forming a solid electrolyte, it is considered that a material that is easily compatible with the polymerizable monomer is selectively incorporated. In addition, by using a material having an aromatic ring and a molecular weight of 180 or more, a solid electrolytic capacitor having excellent impedance characteristics can be obtained. In addition, although the case where the pH adjuster is an anionic surfactant is also considered, by using a material having an alkyl group and an aromatic ring and a molecular weight of 180 or more in the material that is more easily taken in for the same reason as above. A solid electrolytic capacitor having excellent impedance characteristics can be obtained.
[0013]
In addition, by using an acid having an alkyl group or an aromatic ring such as an alkyl phosphate ester, an alkyl sulfonic acid, an aryl sulfonic acid as a pH adjuster, compared to a case where an acid such as phosphoric acid or sulfuric acid is used, There is an effect of reducing chemical stress on the dielectric oxide film of the valve action metal, and excellent leakage current characteristics and impedance characteristics can be obtained.
[0014]
When manganese oxide is used as a part of the solid electrolyte, the dielectric oxide film formed on the valve action metal surface when the manganese oxide is formed is adjusted to pH 2 or less by adding a pH adjuster. By forming the manganese oxide layer by immersing it in an aqueous manganese nitrate solution and thermally decomposing it, the particle size of the produced manganese oxide is small and uniform, so that the dielectric oxide film is made smaller. The inside of the hole can be covered, thereby preventing the deterioration of the dielectric oxide film.
[0015]
In addition, since the particle diameter is uniform and is coated over a wide range with small manganese oxide, it is possible to improve the adhesion with the electrolytic polymer film by the subsequent low pH solid electrolyte forming polymerization solution. In particular, by pyrolyzing a low-pH manganese nitrate aqueous solution to which nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, acetic acid, phosphoric acid ester, etc. are added, a fine and uniform manganese oxide is formed. A gas generation path can be secured, and since the stress on the dielectric oxide film is small, the effect of suppressing leakage current can be seen, and since the coverage rate is increased, a solid electrolytic capacitor with an excellent capacity drawing rate can be obtained. is there.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, specific embodiments of the present invention will be described, but the present invention is not limited thereto.
[0017]
(Embodiment 1)
(Example 1)
FIG. 1 is a cross-sectional view showing a configuration of a solid electrolytic capacitor according to an embodiment of the present invention. First, a 3 mm × 4 mm aluminum etched foil 6 provided with a lead as an anode was used. A dielectric oxide film 7 was formed on the surface of the aluminum etched foil 6 by performing anodization using an aqueous solution of 3% ammonium adipate at an applied voltage of 12 V and an aqueous solution temperature of 70 ° C. for 60 minutes. Then, after immersing in a 30% aqueous solution of manganese nitrate having a pH of 3.73 and allowing it to dry naturally, a manganese oxide layer that becomes a part of the solid electrolyte layer 8 is subjected to a thermal decomposition treatment at 300 ° C. for 10 minutes. Formed.
[0018]
Next, 0.5 mol / L of pyrrole monomer and 0.1 mol / L of sodium propylnaphthalenesulfonate were mixed in advance, and then the pH was adjusted to 2 by adding water as a solvent and propyl phosphate as a pH adjuster. A polymer electrolyte for forming a solid electrolyte was prepared. In this polymerization liquid, an electrode for initiating polymerization was brought close to the element surface, and electropolymerization was performed at a liquid temperature of 30 ° C. and a polymerization voltage of 3 V to form a solid electrolyte layer 8. Thereafter, a carbon layer 9 obtained by applying and drying a colloidal carbon suspension as a cathode lead layer and a silver layer 10 obtained by applying and drying a silver paste are formed, and the carbon layer 9 and the silver layer 10 are combined. Thus, a cathode lead portion was obtained. Thereafter, it was packaged with an epoxy resin to complete 10 solid electrolytic capacitors. The rated voltage of this solid electrolytic capacitor is 6.3V.
[0019]
(Example 2)
FIG. 1 is a cross-sectional view showing a configuration of a solid electrolytic capacitor according to an embodiment of the present invention, in which a 3 mm × 4 mm aluminum etched foil 6 provided with a lead is used as an anode. A dielectric oxide film 7 was formed on the surface of the aluminum etched foil 6 by performing anodization using an aqueous solution of 3% ammonium adipate at an applied voltage of 12 V and an aqueous solution temperature of 70 ° C. for 60 minutes. Then, after adding nitric acid as a pH adjuster to a 30% aqueous solution of manganese nitrate having a pH of 3.73 and immersing it in a solution having a pH of 2, it was naturally dried, followed by a thermal decomposition treatment at 300 ° C. for 10 minutes. By performing, the manganese oxide layer used as a part of solid electrolyte layer 8 was formed.
[0020]
Next, 0.5 mol / L of pyrrole monomer and 0.1 mol / L of sodium propylnaphthalenesulfonate were mixed in advance, and then the pH was adjusted to 2 by adding water as a solvent and propyl phosphate as a pH adjuster. A polymer electrolyte for forming a solid electrolyte was prepared. In this polymerization liquid, an electrode for initiating polymerization was brought close to the element surface, and electropolymerization was performed at a liquid temperature of 30 ° C. and a polymerization voltage of 3 V to form a solid electrolyte layer 8. Thereafter, a carbon layer 9 obtained by applying and drying a colloidal carbon suspension as a cathode lead layer and a silver layer 10 obtained by applying and drying a silver paste are formed, and the carbon layer 9 and the silver layer 10 are combined. Thus, a cathode lead portion was obtained. Thereafter, it was packaged with an epoxy resin to complete 10 solid electrolytic capacitors. The rated voltage of this solid electrolytic capacitor is 6.3V.
[0021]
(Example 3)
In Example 2, ten solid electrolytic capacitors were produced in the same manner as in Example 2 except that nitric acid was added to adjust the pH of the 30% aqueous manganese nitrate solution to 1.5.
[0022]
(Example 4)
In Example 2, ten solid electrolytic capacitors were produced in the same manner as in Example 2 except that nitric acid was added to adjust the pH of the 30% manganese nitrate aqueous solution to 1.
[0023]
(Example 5)
In Example 2, ten solid electrolytic capacitors were produced in the same manner as in Example 2 except that nitric acid was added to adjust the pH of the 30% aqueous manganese nitrate solution to 0.5.
[0024]
(Example 6)
In Example 2, ten solid electrolytic capacitors were produced in the same manner as in Example 2 except that nitric acid was added to adjust the pH of the 30% aqueous manganese nitrate solution to 0.3.
[0025]
(Example 7)
In Example 2, ten solid electrolytic capacitors were produced in the same manner as in Example 2 except that nitric acid was added to adjust the pH of the 30% aqueous manganese nitrate solution to 0.1.
[0026]
(Example 8)
In Example 2, ten solid electrolytic capacitors were produced in the same manner as in Example 2 except that nitric acid was added to adjust the pH of the 30% manganese nitrate aqueous solution to 0 or less.
[0027]
Example 9
In Example 2, ten solid electrolytic capacitors were produced in the same manner as in Example 2 except that sulfuric acid was added to adjust the pH of the 30% aqueous manganese nitrate solution to 0 or less.
[0028]
(Example 10)
In Example 2, ten solid electrolytic capacitors were produced in the same manner as in Example 2 except that hydrochloric acid was added to adjust the pH of the 30% manganese nitrate aqueous solution to 0 or less.
[0029]
(Comparative Example 1)
As in Example 1, a 3 mm × 4 mm aluminum etched foil 6 with a lead attached as an anode was used, and this was anodized with a 3% ammonium adipate aqueous solution at an applied voltage of 12 V and an aqueous solution temperature of 70 ° C. for 60 minutes. As a result, a dielectric oxide film 7 was formed on the surface of the aluminum etched foil 6. Thereafter, the manganese oxide layer that becomes a part of the solid electrolyte layer 8 is obtained by dipping in a 30% aqueous solution of manganese nitrate having a pH of 3.73 and naturally drying, followed by thermal decomposition at 300 ° C. for 10 minutes. Formed.
[0030]
Next, 0.5 mol / L of pyrrole monomer and 0.1 mol / L of sodium propylnaphthalenesulfonate are mixed in advance, and then water as a solvent is mixed to prepare a polymer solution for forming a solid electrolyte. The starting electrode was brought close to the element surface, and electrolytic polymerization was performed at a liquid temperature of 30 ° C. and a polymerization voltage of 3 V to form a solid electrolyte layer 8. Thereafter, a carbon layer 9 obtained by applying and drying a colloidal carbon suspension as a cathode lead layer and a silver layer 10 obtained by applying and drying a silver paste are formed, and the carbon layer 9 and the silver layer 10 are combined. Thus, a cathode lead portion was obtained. Thereafter, it was packaged with an epoxy resin to complete 10 solid electrolytic capacitors. The rated voltage of this solid electrolytic capacitor is 6.3V.
[0031]
(Comparative Example 2)
As in Example 1, a 3 mm × 4 mm aluminum etched foil 6 with a lead attached as an anode was used, and this was anodized with a 3% ammonium adipate aqueous solution at an applied voltage of 12 V and an aqueous solution temperature of 70 ° C. for 60 minutes. To form a dielectric oxide film 7 on the surface of the aluminum etched foil 6. Then, after adding nitric acid as a pH adjuster to a 30% aqueous solution of manganese nitrate having a pH of 3.73 and immersing it in a solution having a pH of 2, it was naturally dried, followed by a thermal decomposition treatment at 300 ° C. for 10 minutes. By performing, the manganese oxide layer used as a part of solid electrolyte layer 8 was formed.
[0032]
Next, 0.5 mol / L of pyrrole monomer and 0.1 mol / L of sodium propylnaphthalenesulfonate are mixed in advance, and then water as a solvent is mixed to prepare a polymer solution for forming a solid electrolyte. The starting electrode was brought close to the element surface, and electrolytic polymerization was performed at a liquid temperature of 30 ° C. and a polymerization voltage of 3 V to form a solid electrolyte layer 8. Thereafter, a carbon layer 9 obtained by applying and drying a colloidal carbon suspension as a cathode lead layer and a silver layer 10 obtained by applying and drying a silver paste are formed, and the carbon layer 9 and the silver layer 10 are combined. Thus, a cathode lead portion was obtained. Thereafter, it was packaged with an epoxy resin to complete 10 solid electrolytic capacitors. The rated voltage of this solid electrolytic capacitor is 6.3V.
[0033]
Moreover, the solid electrolytic capacitor produced by the said Examples 1-10 and Comparative Examples 1 and 2 was aged, and the initial characteristic of the solid electrolytic capacitor was measured after that. The average value of these results is shown in (Table 1).
[0034]
[Table 1]
Figure 0003711964
[0035]
By comparing the above Comparative Example 1 and Example 1 with Comparative Example 2 and Example 2, by adding a pH adjuster to make the pH of the manganese nitrate aqueous solution 2 or less, capacity drawing rate, leakage current characteristics and high frequency region In this case, an excellent impedance / ESR characteristic can be obtained. Moreover, it turns out by the comparison of Examples 1-10 and Comparative Examples 1 and 2 that the capacity | capacitance draw ratio, the leakage current characteristic, and the impedance characteristic which were excellent by obtaining pH at the time of electrolytic polymerization to 2 are acquired.
[0036]
This excellent characteristic is obtained by immersing in a manganese nitrate aqueous solution adjusted to pH 2 or less by adding a pH adjusting agent, and thermally decomposing it to form a manganese oxide layer, and then using a solid electrolyte forming polymerization solution. When the conductive polymer layer is formed by electropolymerization, the particle size produced by the pyrolyzed manganese oxide is small and uniform, so the inside of the smaller pores of the dielectric oxide film Thus, deterioration of the dielectric oxide film can be prevented.
[0037]
Moreover, since the particle diameter is uniform and is covered over a wide range with a small manganese oxide, it is possible to improve the adhesion with an electrolytic polymer film by a subsequent low pH polymerization solution. In particular, by pyrolyzing a low pH manganese nitrate aqueous solution to which acids such as nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, acetic acid and phosphoric acid ester are added, fine and uniform manganese dioxide is formed. A gas generation path can be secured, and since the stress on the dielectric oxide film is small, the effect of suppressing leakage current can be seen, and since the coverage rate is increased, a solid electrolytic capacitor with an excellent capacity drawing rate can be obtained. is there.
[0038]
In the first embodiment, only the solid electrolytic capacitor using aluminum as a valve metal as an anode has been described. However, the present invention is not limited to this, and a valve having a dielectric oxide film on the outer surface. It goes without saying that the same effect can be obtained with other substances such as tantalum, niobium and titanium which are working metals.
[0039]
In the first embodiment, only the case where pyrrole is used as the polymerizable monomer constituting the conductive polymer has been described. However, the present invention is not limited to this, and the monomer constituting the conductive polymer. Needless to say, the same effect can be obtained with other substances such as thiophene, aniline or derivatives thereof.
[0040]
In the first embodiment, only the case where the manganese oxide is used as the precoat layer that is a part of the solid electrolyte layer has been described. However, the present invention is not limited to this, and a conductive polymer, etc. It goes without saying that the same effect can be obtained even when other conductive materials are used as the precoat.
[0041]
As described above, in the present invention, a polymerizable monomer and an anionic surfactant having an alkyl group or an aromatic ring and having a molecular weight of 180 or more are mixed in advance, and water as a main solvent is added to the mixture to thereby add the anion. Create a solution in which micelles containing a polymerizable monomer as the system surfactant are formed, and adjust the solid electrolyte forming polymerization solution by adding a pH adjuster to this solution so that the pH is 5 or less. A solid electrolyte is formed by electropolymerization using a polymerization solution so that the anionic surfactant is selectively incorporated into the solid electrolyte as a dopant on the dielectric oxide film formed on the surface of the valve metal. Polymerized by selectively incorporating an anionic surfactant with excellent anti-doping resistance as a dopant into the solid electrolyte. It is possible to produce a solid electrolytic capacitor with excellent impedance characteristics even under conditions in which the capacitor is left in the initial stage and in high temperature and high humidity. As a result, the capacity draw rate, leakage current characteristics and A solid electrolytic capacitor having excellent impedance / ESR characteristics in a high frequency region can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a configuration of a solid electrolytic capacitor according to Embodiment 1 of the present invention.
6 Aluminum etched foil 7 Dielectric oxide film 8 Solid electrolyte layer 9 Carbon layer 10 Silver layer

Claims (2)

重合性モノマーとアルキル基または芳香族環を有した分子量が180以上のアニオン系界面活性剤をあらかじめ混合し、この混合物に主溶媒である水を加えることで上記アニオン系界面活性剤が重合性モノマーを含むミセルを形成した溶液を作成し、この溶液にpH5以下になるようにpH調整剤を添加するようにして固体電解質形成重合液を調整し、この固体電解質形成用重合液を用いて、弁作用金属の表面に形成された誘電体酸化皮膜上に上記アニオン系界面活性剤が固体電解質中に選択的にドーパントとして取り込まれるように電解重合により固体電解質を形成するようにした固体電解コンデンサの製造方法。A polymerizable monomer and an anionic surfactant having an alkyl group or an aromatic ring and having a molecular weight of 180 or more are mixed in advance, and water as a main solvent is added to the mixture to thereby convert the anionic surfactant into a polymerizable monomer. A solid electrolyte forming polymerization solution is prepared by adding a pH adjuster to the solution so that the pH is 5 or less, and using this solid electrolyte forming polymerization solution, Production of a solid electrolytic capacitor in which a solid electrolyte is formed by electrolytic polymerization so that the anionic surfactant is selectively incorporated as a dopant into the solid electrolyte on a dielectric oxide film formed on the surface of the working metal. Method. 固体電解質層を形成する前に、誘電体酸化皮膜が形成した弁作用金属をpH2以下の硝酸マンガン水溶液に浸漬し、これを熱分解することによって誘電体酸化皮膜層上にマンガン酸化物層を形成するようにした請求項1に記載の固体電解コンデンサの製造方法。Before forming the solid electrolyte layer, the valve action metal formed by the dielectric oxide film is immersed in an aqueous manganese nitrate solution with a pH of 2 or less, and this is thermally decomposed to form a manganese oxide layer on the dielectric oxide film layer. The manufacturing method of the solid electrolytic capacitor of Claim 1 made to do.
JP2002208416A 1999-02-10 2002-07-17 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP3711964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208416A JP3711964B2 (en) 1999-02-10 2002-07-17 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3239499 1999-02-10
JP11-32394 1999-02-10
JP2002208416A JP3711964B2 (en) 1999-02-10 2002-07-17 Manufacturing method of solid electrolytic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22240699A Division JP3346346B2 (en) 1999-02-10 1999-08-05 Polymerization liquid for forming solid electrolyte and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003037024A JP2003037024A (en) 2003-02-07
JP3711964B2 true JP3711964B2 (en) 2005-11-02

Family

ID=26370962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208416A Expired - Fee Related JP3711964B2 (en) 1999-02-10 2002-07-17 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3711964B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10206852B4 (en) 2002-02-18 2009-02-12 Walterscheid Rohrverbindungstechnik Gmbh Coupling for connecting hydraulic lines
DE602004025060D1 (en) 2003-06-18 2010-02-25 Shinetsu Polymer Co Conductive composition and manufacturing method therefor
TWI303832B (en) 2004-08-30 2008-12-01 Shinetsu Polymer Co Conductive composition and conductive cross-linked product, capacitor and production method thereof, and antistatic coating material, antistatic coating, antistatic film, optical filter, bnd optical information recording medium
JP4689222B2 (en) 2004-09-22 2011-05-25 信越ポリマー株式会社 Conductive coating film and method for producing the same
TWI325007B (en) 2004-10-08 2010-05-21 Shinetsu Polymer Co Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof
TWI479509B (en) 2006-02-09 2015-04-01 信越聚合物股份有限公司 Conductive polymer solution, conductive coating, capacitor and method for producing capacitor
TWI404090B (en) 2006-02-21 2013-08-01 Shinetsu Polymer Co Capacitor and capacitor manufacturing method
JP2009267232A (en) 2008-04-28 2009-11-12 Shin Etsu Polymer Co Ltd Capacitor, and manufacturing method thereof
JP5308982B2 (en) 2009-10-06 2013-10-09 信越ポリマー株式会社 Solid electrolytic capacitor, manufacturing method thereof, and solution for solid electrolytic capacitor
JP2011082313A (en) 2009-10-06 2011-04-21 Shin Etsu Polymer Co Ltd Solid electrolytic capacitor and method of manufacturing the same
JP5444057B2 (en) 2010-03-16 2014-03-19 信越ポリマー株式会社 Solid electrolytic capacitor, manufacturing method thereof, and solution for solid electrolytic capacitor
EP3349228B1 (en) 2015-09-08 2022-03-09 Shin-Etsu Polymer Co., Ltd. Electroconductive-polymer solution, capacitor, and process for producing capacitor

Also Published As

Publication number Publication date
JP2003037024A (en) 2003-02-07

Similar Documents

Publication Publication Date Title
US9959981B2 (en) Process for the production of electrolyte capacitors of high nominal voltage
JP5747170B2 (en) Electrolytic capacitor manufacturing method
US8456803B2 (en) Method for production of electrolyte capacitors
ZA200503497B (en) Process for the producing of electrolytic capacitators
JP3711964B2 (en) Manufacturing method of solid electrolytic capacitor
JP2010034384A (en) Method of manufacturing solid-state electrolytic capacitor
US8513123B2 (en) Method of manufacturing solid electrolytic capacitor
JP2003229330A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2008053479A (en) Manufacturing method of solid electrolytic capacitor
KR20000053593A (en) Method for producing a solid electrolytic capacitor
JPH10321471A (en) Solid electrolytic capacitor and its manufacture
JPH0682592B2 (en) Method for manufacturing solid electrolytic capacitor
JP3346346B2 (en) Polymerization liquid for forming solid electrolyte and method for producing the same
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0677093A (en) Solid-state electrolytic capacitor and manufacture thereof
JP3963561B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3800913B2 (en) Manufacturing method of solid electrolytic capacitor
JP4084862B2 (en) Manufacturing method of solid electrolytic capacitor
JP3972573B2 (en) Manufacturing method of solid electrolytic capacitor
JP3551020B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP4258619B2 (en) Manufacturing method of solid electrolytic capacitor
JPH10321474A (en) Solid electrolytic capacitor and its manufacture
JP2810100B2 (en) Method for manufacturing solid electrolytic capacitor
JP2007048947A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2000040643A (en) Solid electrolytic capacitor and its manufacture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees