JP2810100B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JP2810100B2
JP2810100B2 JP1092243A JP9224389A JP2810100B2 JP 2810100 B2 JP2810100 B2 JP 2810100B2 JP 1092243 A JP1092243 A JP 1092243A JP 9224389 A JP9224389 A JP 9224389A JP 2810100 B2 JP2810100 B2 JP 2810100B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
solid
solid electrolyte
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1092243A
Other languages
Japanese (ja)
Other versions
JPH02271513A (en
Inventor
一美 内藤
英則 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP1092243A priority Critical patent/JP2810100B2/en
Publication of JPH02271513A publication Critical patent/JPH02271513A/en
Application granted granted Critical
Publication of JP2810100B2 publication Critical patent/JP2810100B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高周波性能の良好な固体電解コンデンサの
製造方法に関する。
The present invention relates to a method for manufacturing a solid electrolytic capacitor having good high-frequency performance.

〔従来の技術〕[Conventional technology]

固体電解コンデンサは表面に誘電体酸化皮膜を有する
アルミニウム、タンタル、ニオブ等の弁作用金属に固体
電解質を付着した構造を有している。
The solid electrolytic capacitor has a structure in which a solid electrolyte is attached to a valve metal such as aluminum, tantalum, or niobium having a dielectric oxide film on the surface.

従来、この種の固体愛電解コンデンサの固体電解質に
は、主に硝酸マンガンの熱分解により形成される二酸化
マンガンが用いられている。しかし、この熱分解の際の
必要な高熱と発生するNO2ガスの酸化作用等によって誘
電体であるアルミニウム、タンタルなどの誘電体酸化皮
膜を損傷が起り、そのため耐電圧は低下し、漏れ電流が
大きくなり、誘電特性を劣化させる等大きな欠点があ
る。また再化成という工程も数回必要になる。
Conventionally, manganese dioxide formed mainly by thermal decomposition of manganese nitrate has been used as a solid electrolyte of this type of solid electrolytic capacitor. However, the high heat required during this thermal decomposition and the oxidizing action of the generated NO 2 gas, etc., damage the dielectric oxide film such as aluminum and tantalum, which lowers the withstand voltage and reduces the leakage current. It has a large drawback, such as an increase in the dielectric properties. Also, several steps of re-chemical formation are required.

これらの欠点を補うために高熱を付加せずに固体電解
質を形成する方法、つまり、高電導性の高分子半導体材
料を固体電解質とする方法が試みられている。その例と
しては下記の一般式(I)で表わされるモノマーを重合
して得られる高分子化合物にドーパントをドープして得
られる電導性高分子化合物を固体電解質とする固体電解
コンデンサが知られている。
In order to compensate for these disadvantages, a method of forming a solid electrolyte without applying high heat, that is, a method of using a polymer semiconductor material having high conductivity as a solid electrolyte has been attempted. As an example, a solid electrolytic capacitor using a conductive polymer obtained by doping a polymer obtained by polymerizing a monomer represented by the following general formula (I) with a dopant is known. .

又、この種の電導性高分子化合物を固体電解質とする
固体電解コンデンサの製造方法として、一般式(I)で
表わされるモノマーを溶解した溶液中で電解重合するこ
とによって作製する方法も知られている。
As a method for producing a solid electrolytic capacitor using a conductive polymer compound of this type as a solid electrolyte, a method of producing the same by electrolytic polymerization in a solution in which a monomer represented by the general formula (I) is dissolved is also known. I have.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上述した電解重合によって固体電解質
を形成する場合、後述する誘電体酸化皮膜にも電流を通
ずることになるため、この皮膜にピンホールが生じ、そ
の結果、作製した固体電解コンデンサの漏れ電流値を下
げるための工程が必要である。一般にピンホールの大き
さが大きくなると漏れ電流を下げることが困難となる
か、又は非常に長い時間を必要としている。
However, when a solid electrolyte is formed by the above-described electrolytic polymerization, electric current also passes through a dielectric oxide film described later, so that a pinhole is generated in the film, and as a result, a leakage current value of the manufactured solid electrolytic capacitor is obtained. Requires a process for lowering the temperature. In general, as the size of the pinhole increases, it becomes difficult to reduce the leakage current, or a very long time is required.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、上述した問題点を解決するためになされた
もので、一般式(I) で表わされるモノマーを重合して得られる高分子化合物
にドーパントをドープして得られる電導性高分子化合物
を固体電解質とする固体電解コンデンサ合を製造するに
際し、弁作用金属の表面に形成された誘電体酸化皮膜上
に、前記固体電解質を非金属の導電性物質が浮遊した電
解液中で電解重合によって形成する固体電解コンデンサ
の製造方法にある。
The present invention has been made to solve the above-mentioned problems, and has been made by the general formula (I) In producing a solid electrolytic capacitor using a conductive polymer compound obtained by doping a polymer compound obtained by polymerizing a monomer represented by the above with a dopant as a solid electrolyte, the dielectric formed on the surface of the valve action metal A method for manufacturing a solid electrolytic capacitor, wherein the solid electrolyte is formed on a body oxide film by electrolytic polymerization in an electrolyte in which a nonmetallic conductive substance is suspended.

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明に於いて固体電解コンデンサの陽極として用い
られる弁作用金属としては、例えばアルミニウム、タン
タル、ニオブ、チタン及びこれを基質とする合金等、弁
作用を有する金属がいずれも使用できる。
As the valve action metal used as the anode of the solid electrolytic capacitor in the present invention, any metal having a valve action such as aluminum, tantalum, niobium, titanium and an alloy using the same as a substrate can be used.

弁作用金属の表面に設ける誘電体酸化皮膜は、弁作用
金属の表面部分に設けられた弁作用金属自体の酸化物層
であってもよく、あるいは、弁作用金属の表面上に設け
られた他の誘電体酸化物の層であってもよいが、特に弁
作用金属自体の酸化物からなる層であることが好まし
い。いずれの場合にも酸化物層を設ける方法としては、
電解液を用いた陽極化成法など従来公知の方法を用いる
ことができる。
The dielectric oxide film provided on the surface of the valve action metal may be an oxide layer of the valve action metal itself provided on the surface portion of the valve action metal, or may be an oxide layer provided on the surface of the valve action metal. May be used, but it is particularly preferably a layer made of an oxide of the valve metal itself. In any case, as a method of providing an oxide layer,
A conventionally known method such as an anodizing method using an electrolytic solution can be used.

次に、本発明で用いられるモノマーは、前記の一般式
(I)の構造を有するものである。
Next, the monomer used in the present invention has the structure of the above general formula (I).

代表例として、チオフェン、ピロール、フラン、N−
メチルピロール、3−メチルチオフェン等が挙げられ
る。これらのモノマーを2種以上使用してもよい。電解
重合に於いては、前述したモノマーを溶解し、非金属の
導電性物質が浮遊した適当な電解液に、化成された弁作
用金属を浸漬し、別に用意した陰極とで電解反応を行う
ことによって、弁作用金属の表面に高分子化合物が析出
する。この場合、モノマーは、電解液中の電解質イオン
がドーパントとなるため重合と同時にドーピングされて
電導性高分子化合物となる。
Representative examples include thiophene, pyrrole, furan, N-
Methylpyrrole, 3-methylthiophene and the like are mentioned. Two or more of these monomers may be used. In the electropolymerization, the above-mentioned monomer is dissolved, the formed valve action metal is immersed in an appropriate electrolyte solution in which a nonmetallic conductive substance is suspended, and an electrolytic reaction is performed with a separately prepared cathode. Thereby, a polymer compound is deposited on the surface of the valve metal. In this case, the monomer is doped at the same time as the polymerization because the electrolyte ion in the electrolyte serves as a dopant, and becomes a conductive polymer compound.

本発明に於いて使用する非金属の電導性物質として
は、電導度が10S・cm-1以上のものが好ましく、代表例
として、グラファイトカーボン、炭素繊維等の炭素を主
成分とする物質、ポリチオフェン、ポリピロール等の電
導性高分子粉末が挙げられる。電導度が10S・cm-1未満
の物質、例えば、二酸化マンガン、二酸化鉛等の金属酸
化物では効果が無く、金属粉末の場合はかって漏れ電流
値が大きくなって不具合である。
As the nonmetallic conductive substance used in the present invention, those having an electric conductivity of 10 Scm -1 or more are preferable, and typical examples thereof include graphite carbon, a substance mainly containing carbon such as carbon fiber, and polythiophene. And conductive polymer powders such as polypyrrole. Substances having an electric conductivity of less than 10 S · cm −1 , for example, metal oxides such as manganese dioxide and lead dioxide have no effect, and metal powders have a problem in that the leakage current value becomes large.

浮遊する導電性物質の量は、導電性物質の種類、使用
する電解液量によって変化するため一概に規定できない
が、一般に電解液中に浸漬する化成された弁作用金属を
覆う程度に存在すれば良い。
The amount of floating conductive material cannot be specified unconditionally because it varies depending on the type of conductive material and the amount of electrolyte used, but it is generally sufficient to cover the formed valve metal that is immersed in the electrolyte. good.

本発明に使用する電解液は従来公知の電解液を使用す
ることができる。例えば、プロピレンカーボネート、エ
チレンカーボネート、γ−ブチロラクトン、アセトニト
リル、ジメチルホルムアミド、スルフォラン、メチルス
ルホキシド、ニトロメタン、水等の溶媒にI-、Cl-、B
r-、F-、ClO4 -、BF4 -、AsF6 -、AsF4 -、PF6 -、F3CSO4 -
BCl4 -、NO3 -、POF4 -、CN-、SiF5 -、CH3COO-、C6H5CO
O-、CH3C6H4SO4 -、C6H5SO4 -、SO4 -、SiF6 2-,HF2 -等のア
ルカリ金属塩もしくはハロゲンイオンを除いてアンモニ
ウム塩からなる電解質を溶解したものである。
As the electrolytic solution used in the present invention, a conventionally known electrolytic solution can be used. For example, propylene carbonate, ethylene carbonate, .gamma.-butyrolactone, acetonitrile, dimethylformamide, sulfolane, methyl sulfoxide, nitromethane, in a solvent such as water I -, Cl -, B
r -, F -, ClO 4 -, BF 4 -, AsF 6 -, AsF 4 -, PF 6 -, F 3 CSO 4 -,
BCl 4 -, NO 3 -, POF 4 -, CN -, SiF 5 -, CH 3 COO -, C 6 H 5 CO
O -, CH 3 C 6 H 4 SO 4 -, C 6 H 5 SO 4 -, SO 4 -, SiF 6 2-, HF 2 - and the like electrolyte comprising an ammonium salt except alkali metal salts or halogen ions It is dissolved.

又、前述した電導性高分子化合物に、さらにドーパン
トとしてI2、Br2、SO3、AsF5、SbF5、トルエンスルフォ
ン酸、ベンゼンスルフォン酸等の電子受容体を化学的方
法を用いてドープするか、あるいは、BF4 -、ClO4 -、PF6
-、AsF6 -、トルエンスルフォン酸イオン、ベンゼンスル
ホン酸イオン等のアニオンを電気化学的方法を用いてド
ープして使用してもよい。
Further, the above-described conductive polymer compound is further doped with an electron acceptor such as I 2 , Br 2 , SO 3 , AsF 5 , SbF 5 , toluenesulfonic acid, benzenesulfonic acid, or the like as a dopant using a chemical method. or, or, BF 4 -, ClO 4 - , PF 6
-, AsF 6 -, toluenesulfonic acid ion, the anion may be used by doping using electrochemical methods such as benzenesulfonate ion.

本発明に用いる固体電解質は電導度が100〜102S・cm
-1オーダーのものが得られ、電導度が高い程、作製した
固体電解コンデンサの高周波でのtanδが低く良好なも
のとなる。
The solid electrolyte used in the present invention is electric conductivity of 10 0 ~10 2 S · cm
A value of -1 order is obtained, and the higher the electric conductivity, the lower the tan δ at a high frequency of the manufactured solid electrolytic capacitor, and the better it becomes.

本発明の方法による固体電解コンデンサは、上述した
固体電解質の層の上にカーボンペースト又は/及び銀ペ
ースト等で陰極層を取り出し、更に樹脂やケース等、従
来公知の方法で封口して製品とされる。
The solid electrolytic capacitor according to the method of the present invention is obtained by taking out a cathode layer with a carbon paste and / or silver paste or the like on the above-mentioned solid electrolyte layer, and further sealing it with a conventionally known method such as a resin or a case to obtain a product. You.

〔作用〕 固体電解コンデンサの陽極として用いる化成された弁
作用金属を非金属の導電性物質が浮遊した電解液中に浸
漬すると、弁作用金属の表面が非金属の導電性物質で覆
われる。そしてこの状態で電解重合を行うと弁作用金属
には均一に電流が流れて、弁作用金属の表面に形成され
ている誘電体酸化皮膜にピンホールは発生しても、それ
は小さなピンホールである。従って後にエージングして
このピンホールを修復する工程でも修復が容易である。
[Operation] When the formed valve-action metal used as the anode of the solid electrolytic capacitor is immersed in the electrolyte in which the nonmetallic conductive material is suspended, the surface of the valve-action metal is covered with the nonmetallic conductive material. When electrolytic polymerization is performed in this state, current flows uniformly through the valve action metal, and even if a pinhole occurs in the dielectric oxide film formed on the surface of the valve action metal, it is a small pinhole. . Therefore, the pinhole can be easily repaired in a process of repairing the pinhole by aging later.

以下、実施例、比較例を示して説明する。 Hereinafter, examples and comparative examples will be described.

実施例1〜6 りん酸とりん酸アンモニウム水溶液中で化成処理して
表面に誘電体酸化皮膜を形成したアルミニウムエッチン
グ箔(以下化成箔と称する。)(10μF/cm2)の小片1cm
×1cmを120枚用意し、各実施例にそれぞれ20枚ずつ使用
した。表1に記載したモノマー及び導電性物質をそれぞ
れ溶解及び浮遊させた0.05MBu4NBF4−CH3CN溶液中に前
述した小片を浸漬し電解重合を行った。約2時間後、化
成箔上に形成された電導性高分子化合物を水で充分洗浄
した後、乾燥した。形成された固体電解質の電導度は、
おおよそ10〜200S・cm-1であった。次に固体電解質の層
を形成した化成箔を銀ペースト浴に浸漬し、陰極層を形
成した後、樹脂封口して固体電解コンデンサを作製し
た。そしてエージングを2時間行った。
Examples 1 to 6 1 cm small pieces of aluminum etching foil (hereinafter referred to as chemical conversion foil) (10 μF / cm 2 ) having a dielectric oxide film formed on the surface by a chemical conversion treatment in an aqueous solution of phosphoric acid and ammonium phosphate.
120 sheets of × 1 cm were prepared, and 20 sheets were used for each example. The small pieces described above were immersed in a 0.05 MBu 4 NBF 4 —CH 3 CN solution in which the monomer and the conductive substance shown in Table 1 were dissolved and suspended, respectively, and electrolytic polymerization was performed. After about 2 hours, the conductive polymer compound formed on the chemical conversion foil was sufficiently washed with water and dried. The conductivity of the formed solid electrolyte is
It was approximately 10 to 200 S · cm −1 . Next, the chemical conversion foil on which the solid electrolyte layer was formed was immersed in a silver paste bath to form a cathode layer, and then sealed with a resin to produce a solid electrolytic capacitor. Aging was performed for 2 hours.

比較例1 実施例と同様の化成箔を20枚使用し、モノマーとして
ピロールを溶解した。導電性物質を浮遊させなかった以
外は実施例と同様にして固体電解質を形成して固体電解
コンデンサを作製し、エージングも2時間行った。形成
された固体電解質の電導度はおおよそ25S・cm-1であっ
た。
Comparative Example 1 Pyrrole was dissolved as a monomer using 20 chemical conversion foils similar to those in the example. Except that the conductive substance was not suspended, a solid electrolyte was formed in the same manner as in the example to produce a solid electrolytic capacitor, and aging was also performed for 2 hours. The conductivity of the formed solid electrolyte was approximately 25 S · cm −1 .

以上作製した固体電解コンデンサの性能を表2に示し
た。
Table 2 shows the performance of the solid electrolytic capacitor manufactured as described above.

〔発明の効果〕 以上説明したように本発明の固体電解コンデンサの製
造方法によれば、固体電解質を重合によって形成する際
に、非金属の導電性物質が浮遊した電解液中で行うの
で、エージング時間が短くても作製した固体電解コンデ
ンサの漏れ電流値が小さく性能の良好な固体電解コンデ
ンサを作製することができる。
[Effects of the Invention] As described above, according to the method for manufacturing a solid electrolytic capacitor of the present invention, when the solid electrolyte is formed by polymerization, the solid electrolyte is formed in an electrolytic solution in which a nonmetallic conductive substance is suspended. Even if the time is short, a solid electrolytic capacitor having a small leakage current value and good performance can be manufactured.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式(I) で表されるモノマーを重合して得られる高分子化合物に
ドーパントをドープして得られる電導性高分子化合物を
固体電解質とする固体電解コンデンサを製造するに際
し、弁作用金属の表面に形成された誘電体酸化皮膜上
に、前記固体電解質を電導度が10S・cm-1以上の非金属
の導電性物質が浮遊した電解液中で電解重合によって形
成することを特徴とする固体電解コンデンサの製造方
法。
1. The compound of the general formula (I) When manufacturing a solid electrolytic capacitor using a conductive polymer compound obtained by doping a polymer compound obtained by polymerizing a monomer represented by the above with a dopant as a solid electrolyte, a dielectric formed on the surface of a valve action metal A method for producing a solid electrolytic capacitor, characterized in that the solid electrolyte is formed on a body oxide film by electrolytic polymerization in an electrolytic solution in which a nonmetallic conductive substance having a conductivity of 10 S · cm −1 or more is suspended.
JP1092243A 1989-04-12 1989-04-12 Method for manufacturing solid electrolytic capacitor Expired - Lifetime JP2810100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1092243A JP2810100B2 (en) 1989-04-12 1989-04-12 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1092243A JP2810100B2 (en) 1989-04-12 1989-04-12 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH02271513A JPH02271513A (en) 1990-11-06
JP2810100B2 true JP2810100B2 (en) 1998-10-15

Family

ID=14048992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1092243A Expired - Lifetime JP2810100B2 (en) 1989-04-12 1989-04-12 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2810100B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297811A (en) * 1988-05-26 1989-11-30 Asahi Glass Co Ltd Solid electrolytic capacitor

Also Published As

Publication number Publication date
JPH02271513A (en) 1990-11-06

Similar Documents

Publication Publication Date Title
JP3065286B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0794368A (en) Solid electrolytic capacitor and manufacture thereof
JPH0456445B2 (en)
JP3119604B2 (en) Method for manufacturing solid electrolytic capacitor
JP2765453B2 (en) Method for manufacturing solid electrolytic capacitor
JP3711964B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0682592B2 (en) Method for manufacturing solid electrolytic capacitor
KR20000053593A (en) Method for producing a solid electrolytic capacitor
JPS62118511A (en) Manufacture of solid electrolytic capacitor
JP2810100B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03291909A (en) Solid-state electrolytic capacitor
JPH02238613A (en) Solid electrolytic capacitor
JP2922521B2 (en) Solid electrolytic capacitors
JP3346346B2 (en) Polymerization liquid for forming solid electrolyte and method for producing the same
JPH0378222A (en) Manufacture of solid tantalum capacitor
JP2632944B2 (en) Solid electrolytic capacitors
JP2612007B2 (en) Method for manufacturing solid electrolytic capacitor
JP2716032B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH04111407A (en) Manufacture of solid electrolytic capacitor
JPH10303080A (en) Method for manufacturing solid electrolytic capacitor
JPH0426534B2 (en)
JPH03285321A (en) Solid electrolytic capacitor
JPH10303075A (en) Manufacture of solid electrolytic capacitor
JPH0520887B2 (en)
JPH02251126A (en) Manufacture of solid electrolytic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11