JPH10303075A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH10303075A
JPH10303075A JP12031497A JP12031497A JPH10303075A JP H10303075 A JPH10303075 A JP H10303075A JP 12031497 A JP12031497 A JP 12031497A JP 12031497 A JP12031497 A JP 12031497A JP H10303075 A JPH10303075 A JP H10303075A
Authority
JP
Japan
Prior art keywords
oxide film
group
solid electrolytic
electrolytic capacitor
dielectric oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12031497A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukushi
和彦 福士
Yasuo Sakai
康雄 酒井
Mika Itou
美香 伊藤
Toshikatsu Terao
俊勝 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Towa Electron Ltd
Original Assignee
Fujitsu Towa Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Towa Electron Ltd filed Critical Fujitsu Towa Electron Ltd
Priority to JP12031497A priority Critical patent/JPH10303075A/en
Publication of JPH10303075A publication Critical patent/JPH10303075A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce a fraction defective due to leakage current by, after a derivative of polythiophene expressed in a specific formula is formed on a dielectric oxide film in a chemical oxidative polymerization, performing a formation repair process for the dielectric oxide film. SOLUTION: A square-shaped anode material formed by sintering tantalum powder is anodized, and a tantalum oxide film is formed on the surface of a sintered body. On the tantalum oxide film, derivative of polythiophene expressed in a formula (in the formula, R1 and R2 are hydrogen or C1-C4- alkylene group while having no relation to each other, or, depending on the case, C1-C4-alkylene group substituted while making them cooperate with each other, preferably methylene substituted with alkyl group, or depending on the case, 1,2-ethylene group or 1,2-cyclohexylene group substituted with C1-C 12-alkyne or phenyl group) is formed in a chemical oxidative polymerization. Then formation repair process is performed for the tantalum oxide film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解コンデン
サの製造方法に関し、更に詳しくは、導電性高分子化合
物を固体電解質とし、かつ漏れ電流の安定化処置を施し
た固体電解コンデンサの製造法に関するものである。
The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly, to a method for manufacturing a solid electrolytic capacitor in which a conductive polymer compound is used as a solid electrolyte and leakage current stabilization treatment is performed. Things.

【0002】[0002]

【従来の技術】通常、固体電解コンデンサは、タンタル
或いはアルミニウム等の弁作用金属の多孔質成形体を陽
極とし、その酸化皮膜を誘電体とし、そして二酸化マン
ガンや7、7、8、8−テトラシアノキノジメタン(T
CNQ)錯塩等の固体電解質を陰極の一部とする構造を
有している。この場合、固体電解質には多孔質成形体内
部の誘電体全面と電極リードとの間を電気的に接続する
機能を有するが、その上に誘電体酸化皮膜の絶縁欠陥に
起因する電気的短絡を修復する機能を有することが望ま
しい。そのような要請から、導電率は高いが誘電体修復
機能がない金属は固体電解質としては不適当であり、従
来、短絡電流による熱等によって絶縁体に移転する二酸
化マンガン等が固体電解質として用いられてきた。しか
しながら、二酸化マンガンを電極の一部とするものは、
その導電率が充分低くないので、高周波域でのインピー
ダンスが大きい。一方、TCNQ錯塩を電極の一部とす
るものは、TCNQ錯塩が熱分解し易いので、耐熱性に
劣っている等、これらを用いた固体電解コンデンサには
種々の解決課題が残っていた。そこで、近年、高分子の
分野において、新しい固体電解質材料の開発が進めら
れ、その結果、ポリピロール、ポリチオフェン、ポリア
ニリン等の共役系高分子化合物に電子供与性や電子吸引
性化合物(ドーパント)をドーピングした導電性高分子
化合物を固体電解質として用いた固体電解コンデンサが
種々提案されている。更に説明すれば、この種の固体電
解コンデンサの基本的な構造は、図1に模式的に示され
ているように、弁作用を有する金属からなる陽極体1の
表面に誘電体酸化皮膜2、導電性高分子化合物層3、陰
極となる導電体層としてのグラファイト層4および銀ペ
ースト層5を順次形成し、導電体層からは陰極リード6
を、陽極体1からは陽極リード7を夫々引き出して、陽
極体1の全周面を外装樹脂材8にてモールド封止してな
るものである。そして、該固体電解コンデンサにおいて
は、特定のチオフェンモノマーを誘電体酸化皮膜上で酸
化剤を用いて重合させポリチオフェンの誘導体を形成し
ていた。
2. Description of the Related Art In general, a solid electrolytic capacitor is formed by using a porous molded body of a valve metal such as tantalum or aluminum as an anode, an oxide film as a dielectric, and manganese dioxide, 7, 7, 8, 8-tetratetrafluoroethylene. Cyanoquinodimethane (T
It has a structure in which a solid electrolyte such as CNQ) complex salt is part of the cathode. In this case, the solid electrolyte has a function of electrically connecting the entire surface of the dielectric inside the porous molded body and the electrode leads, and furthermore, an electrical short circuit caused by an insulation defect of the dielectric oxide film is formed thereon. It is desirable to have a function to repair. Due to such demands, metals having high conductivity but no dielectric repair function are unsuitable as solid electrolytes.Conventionally, manganese dioxide or the like, which is transferred to an insulator by heat or the like due to short-circuit current, has been used as a solid electrolyte. Have been. However, when manganese dioxide is part of the electrode,
Since the conductivity is not sufficiently low, the impedance in a high frequency range is large. On the other hand, when the TCNQ complex salt is used as a part of the electrode, the TCNQ complex salt is easily decomposed by heat, so that the solid electrolytic capacitor using them has various problems such as poor heat resistance. In recent years, new solid electrolyte materials have been developed in the field of polymers, and as a result, conjugated polymer compounds such as polypyrrole, polythiophene, and polyaniline have been doped with electron-donating or electron-withdrawing compounds (dopants). Various solid electrolytic capacitors using a conductive polymer compound as a solid electrolyte have been proposed. More specifically, the basic structure of this type of solid electrolytic capacitor is, as schematically shown in FIG. 1, a dielectric oxide film 2 on a surface of an anode body 1 made of a metal having a valve action. A conductive polymer compound layer 3, a graphite layer 4 serving as a conductor layer serving as a cathode, and a silver paste layer 5 are sequentially formed, and a cathode lead 6 is formed from the conductor layer.
The anode lead 7 is pulled out from the anode body 1, and the entire peripheral surface of the anode body 1 is molded and sealed with an exterior resin material 8. In the solid electrolytic capacitor, a specific thiophene monomer is polymerized on a dielectric oxide film using an oxidizing agent to form a polythiophene derivative.

【0003】[0003]

【発明が解決しようとする課題】ところが、上述したよ
うに、誘電体酸化皮膜層上で酸化剤を用いて重合させた
導電性高分子化合物を固体電解質とする従来の固体電解
コンデンサは、高周波特性および温度特性に優れた固体
電解コンデンサであるが、その製造方法については未だ
検討の余地があり、重合回数を増やしてゆくと、漏れ電
流が大きくなったりして再現性がないという問題点があ
った。
However, as described above, a conventional solid electrolytic capacitor using a conductive polymer compound polymerized by using an oxidizing agent on a dielectric oxide film layer as a solid electrolyte has a high frequency characteristic. Although it is a solid electrolytic capacitor with excellent temperature characteristics, there is still room for study on its manufacturing method, and there is a problem in that as the number of polymerizations increases, the leakage current increases and the reproducibility is poor. Was.

【0004】本発明は、このような従来の問題点に鑑み
なされたもので、その目的とするところは、高周波特性
および温度特性に優れ、かつ漏れ電流による不良率を低
下させ、製造上の歩留まりを向上させることができる固
体電解コンデンサの製造方法を提供することにある。
The present invention has been made in view of such conventional problems, and has as its object to improve the high-frequency characteristics and the temperature characteristics, reduce the defective rate due to leakage current, and increase the production yield. It is an object of the present invention to provide a method for manufacturing a solid electrolytic capacitor capable of improving the solid electrolytic capacitor.

【0005】[0005]

【課題を解決するための手段】この目的を達成するた
め、本発明は、陽極体としての弁作用金属の表面に誘電
体酸化皮膜、導電性高分子化合物層、導電体層を順次形
成し、該導電体層を一方の電極とし、前記弁作用金属を
他方の電極とする固体電解コンデンサの製造方法におい
て、前記誘電体酸化皮膜上に一般式
According to the present invention, a dielectric oxide film, a conductive polymer compound layer and a conductive layer are sequentially formed on the surface of a valve metal as an anode body. In the method for manufacturing a solid electrolytic capacitor in which the conductor layer is used as one electrode and the valve metal is used as the other electrode, a general formula is formed on the dielectric oxide film.

【化2】 〔式中R1およびR2は、相互に無関係に水素またはC
1〜C4−アルキレン基を表し、或いは共同して、場合
によっては置換してあるC1〜C4−アルキレン基、好
ましくは、場合によってはアルキル基によって置換して
あるメチレン基、場合によってはC1〜C12−アルキ
ンまたはフェニル基によって置換してある1,2−エチ
レン基、または1,2−シクロヘキシレン基〕で表され
るポリチオフェンの誘導体を化学酸化重合で形成した
後、該誘電体酸化皮膜を化成修復処理することを特徴と
するものである。
Embedded image Wherein R 1 and R 2 independently of one another are hydrogen or C
Represents a 1-C4-alkylene group or, jointly, an optionally substituted C1-C4-alkylene group, preferably a methylene group optionally substituted by an alkyl group, optionally a C1-C12 A 1,2-ethylene group or a 1,2-cyclohexylene group substituted by an alkyne or phenyl group] by chemical oxidative polymerization, and then repairing the dielectric oxide film by chemical conversion. It is characterized by processing.

【0006】本発明における陽極体としての弁作用を有
する金属としては、アルミニウム、タンタルから選ば
れ、表面積を増大するためにエッチングまたは焼結処理
したものが用いられ、この弁作用金属に酸化皮膜を形成
するにはアジピン酸、ホウ酸水溶液等を用いて電気化学
的な手段により通常の方法で形成され。酸化皮膜を形成
した弁作用金属は特定のチオフェンモノマーと特定の酸
化剤と溶媒の混合溶液中に浸漬することで、導電性高分
子化合物層を酸化皮膜上に析出させる。そして、反応終
了後、未反応の酸化剤と過剰の酸とを乾燥が容易な溶
媒、例えば水、アルコール等で洗浄を行い乾燥させる。
なお、導電性高分子化合物層形成後の酸化皮膜の化生修
復処理はアジピン酸、サリチル酸、リン酸等の1%以下
の希薄溶液中において導電性高分子化合物層を通して行
う。
In the present invention, the metal having a valve action as the anode body is selected from aluminum and tantalum, and is used by etching or sintering to increase the surface area. It is formed by an ordinary method by an electrochemical means using an aqueous solution of adipic acid or boric acid. The valve metal having an oxide film formed thereon is immersed in a mixed solution of a specific thiophene monomer, a specific oxidizing agent, and a solvent to deposit a conductive polymer compound layer on the oxide film. After completion of the reaction, the unreacted oxidizing agent and excess acid are washed with a solvent that is easy to dry, such as water or alcohol, and dried.
In addition, the metamorphosis repair treatment of the oxide film after the formation of the conductive polymer compound layer is performed through the conductive polymer compound layer in a dilute solution of 1% or less of adipic acid, salicylic acid, phosphoric acid or the like.

【0007】[0007]

【発明の実施の形態】発明の実施の形態について説明す
ると、本発明に係る固体電解コンデンサの製造方法は、
図1に示された基本的な構造の固体電解コンデンサにお
いて、陽極体としての弁作用を有する金属を化成して表
面に誘電体酸化皮膜を形成し、該誘電体酸化皮膜上にポ
リチオフェンの誘導体を化学酸化重合で所定の厚さにな
るまで数回繰り返し形成後、該誘電体酸化皮膜を化成修
復処理する構成に特徴を有するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments of the present invention will be described.
In the solid electrolytic capacitor having the basic structure shown in FIG. 1, a metal having a valve action as an anode body is formed to form a dielectric oxide film on the surface, and a polythiophene derivative is formed on the dielectric oxide film. It is characterized in that the dielectric oxide film is subjected to a chemical conversion repair treatment after being repeatedly formed several times until a predetermined thickness is obtained by chemical oxidation polymerization.

【0008】[0008]

【実施例】以下に具体的実施例について説明する。 実施例1 タンタル粉末を焼結して形成した角形陽極体(2.1×
1.0×1.2mm)1をリン酸水溶液中で陽極酸化(5
0V)し、焼結体表面にタンタル酸化皮膜2を形成し
た。このタンタル酸化皮膜2を形成した陽極体1を4g
のイソプロパノール中の1.5gのP−トルエンスルホ
ン酸鉄(III)と0.5gの3,4−エチレンジオキシ
−チオフェンの溶液中に浸漬し、導電性高分子化合物3
を重合させた。反応終了後、未反応の酸化剤を水洗によ
って洗浄し、50℃で1時間、真空中で乾燥した。所定
の厚さになるまで、この重合を2回繰り返した。次に、
アジピン酸の0.5%水溶液中で酸化皮膜の化成修復を
35Vで行い、水洗、乾燥した。次に、導電体層として
のグラファイト層4および銀ペースト層5を順次形成
し、導電体層からは陰極リード6を、陽極体1からは陽
極リード7をそれぞれ引き出した後、陽極体1の全周面
を外装エポキシ樹脂材8にてモールド封止して固体電解
コンデンサを完成させた。
EXAMPLES Specific examples will be described below. Example 1 A square anode body (2.1 ×) formed by sintering tantalum powder
1.0 × 1.2 mm) 1 in an aqueous phosphoric acid solution
0V) to form a tantalum oxide film 2 on the surface of the sintered body. 4 g of the anode body 1 having the tantalum oxide film 2 formed thereon
Immersed in a solution of 1.5 g of iron (III) P-toluenesulfonate and 0.5 g of 3,4-ethylenedioxy-thiophene in isopropanol
Was polymerized. After the completion of the reaction, the unreacted oxidizing agent was washed with water and dried at 50 ° C. for 1 hour in vacuum. This polymerization was repeated twice until a predetermined thickness was obtained. next,
The oxide film was repaired at 35 V in a 0.5% aqueous solution of adipic acid, washed with water and dried. Next, a graphite layer 4 and a silver paste layer 5 as a conductor layer are sequentially formed, and a cathode lead 6 is pulled out from the conductor layer, and an anode lead 7 is pulled out from the anode body 1. The peripheral surface was molded and sealed with an exterior epoxy resin material 8 to complete a solid electrolytic capacitor.

【0009】実施例2 エッチングによって拡面(25μF/cm2)厚さ95μ
m、面積5×3mmのアルミニウム箔(陽極)1をホウ酸
アンモニウム中、50Vで陽極酸化して誘電体酸化皮膜
2を形成した。このアルミニウム酸化皮膜を形成した陽
極体1をアセトンとイソプロパノールの1:2混合物5
gの1gのメタンスルホン酸鉄(III)と0.5gの
3,4−エチレンジオキシ−チオフェンの溶液中に浸漬
し、導電性高分子化合物3を重合させた。反応終了後、
未反応の酸化剤を水洗によって洗浄し、50℃で1時
間、真空中で乾燥した。所定の厚さになるまで、この重
合を3回繰り返した。次に、アジピン酸の0.5%水溶
液中で酸化皮膜の化成修復を35Vで行い、水洗、乾燥
した。次に、導電体層としてのグラファイト層4および
銀ペースト層5を順次形成し、導電体層からは陰極リー
ド6を、陽極体1からは陽極リード7をそれぞれ引き出
した後、陽極体1の全周面を外装エポキシ樹脂材8にて
モールド封止して固体電解コンデンサを完成させた。
Example 2 Etched surface (25 μF / cm 2 ) Thickness 95 μm by etching
An aluminum foil (anode) 1 having a size of 5 × 3 mm and an area of 5 × 3 mm was anodized in ammonium borate at 50 V to form a dielectric oxide film 2. The anode body 1 having the aluminum oxide film formed thereon was mixed with a 1: 2 mixture 5 of acetone and isopropanol.
g of 1 g of iron (III) methanesulfonate and 0.5 g of a solution of 3,4-ethylenedioxy-thiophene to polymerize the conductive polymer compound 3. After the reaction,
The unreacted oxidant was washed by washing with water and dried at 50 ° C. for 1 hour in vacuo. This polymerization was repeated three times until a predetermined thickness was obtained. Next, the oxide film was repaired with a conversion at 35 V in a 0.5% aqueous solution of adipic acid, washed with water, and dried. Next, a graphite layer 4 and a silver paste layer 5 as a conductor layer are sequentially formed, and a cathode lead 6 is pulled out from the conductor layer, and an anode lead 7 is pulled out from the anode body 1. The peripheral surface was molded and sealed with an exterior epoxy resin material 8 to complete a solid electrolytic capacitor.

【0010】以上の実施例1、実施例2のそれぞれにお
いて、アジピン酸の0.5%水溶液の酸化皮膜の化成修
復をしない以外は各実施例におけると同様の手順で完成
させた固体電解コンデンサ(比較例1、比較例2、)と
比較した。
In each of the first and second embodiments, a solid electrolytic capacitor (completed in the same procedure as in each embodiment) except that the oxide film of a 0.5% aqueous solution of adipic acid was not chemically converted was repaired. Comparative Examples 1 and 2) were compared.

【0011】実施例1、実施例2と比較例1、比較例2
の各固体電解コンデンサにつき、その静電容量、誘電損
失(tanδ)、等価直列抵抗、漏れ電流の初期値と高
温寿命試験後の値を表1に示す。
Examples 1 and 2 and Comparative Examples 1 and 2
Table 1 shows the initial values of the capacitance, the dielectric loss (tan δ), the equivalent series resistance, the leakage current, and the values after the high-temperature life test for each solid electrolytic capacitor.

【0012】[0012]

【表1】 [Table 1]

【0013】この表1から明らかなように、本方法発明
に係る各実施例の固体電解コンデンサは、いずれも高周
波域における等価直列抵抗特性に優れ、かつ高温寿命試
験において漏れ電流が増大することがない良好な結果が
得られたことが判る。
As is apparent from Table 1, all of the solid electrolytic capacitors according to the embodiments of the present invention have excellent equivalent series resistance characteristics in a high frequency range and an increase in leakage current in a high temperature life test. It can be seen that no good results were obtained.

【0014】[0014]

【発明の効果】しかして、本発明によれば、陽極体とし
ての弁作用を有する金属表面の酸化皮膜上に、所定の厚
さのポリチオフェンの誘導体を形成した後、酸化皮膜の
化成修復処理を行うものであるから、優れた高周波特性
を損ねることなく、漏れ電流による不良率の低下を防止
することができ、製造上の歩留まりを向上させることが
できる。
According to the present invention, after a polythiophene derivative having a predetermined thickness is formed on an oxide film on a metal surface having a valve action as an anode body, a conversion repair treatment of the oxide film is performed. Therefore, it is possible to prevent a decrease in the defective rate due to leakage current without impairing excellent high-frequency characteristics, and to improve a manufacturing yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固体電解コンデンサの基本的な構造を示す模式
的断面図である。
FIG. 1 is a schematic sectional view showing a basic structure of a solid electrolytic capacitor.

【符号の説明】[Explanation of symbols]

1 陽極体としての弁作用金属 2 誘電体酸化皮膜 3 導電性高分子化合物層 4 グラファイト層 5 銀ペースト層 6 陰極リード 7 陽極リード 8 外装樹脂材 DESCRIPTION OF SYMBOLS 1 Valve metal as an anode body 2 Dielectric oxide film 3 Conductive polymer compound layer 4 Graphite layer 5 Silver paste layer 6 Cathode lead 7 Anode lead 8 Exterior resin material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 美香 神奈川県横浜市港北区新横浜3丁目18番3 号 富士通東和エレクトロン株式会社内 (72)発明者 寺尾 俊勝 神奈川県横浜市港北区新横浜3丁目18番3 号 富士通東和エレクトロン株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Mika Ito 3-18-3 Shin-Yokohama, Kohoku-ku, Yokohama, Kanagawa Prefecture Inside Fujitsu Towa Electron Limited (72) Toshikatsu Terao 3-18 Shin-Yokohama, Kohoku-ku, Yokohama, Kanagawa No. 3 Inside Fujitsu Towa Electron Limited

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 陽極体としての弁作用金属の表面に誘電
体酸化皮膜、導電性高分子化合物層、導電体層を順次形
成し、該導電体層を一方の電極とし、前記弁作用金属を
他方の電極とする固体電解コンデンサの製造方法におい
て、 前記誘電体酸化皮膜上に一般式 【化1】 〔式中R1およびR2は、相互に無関係に水素またはC
1〜C4−アルキレン基を表し、或いは共同して、場合
によっては置換してあるC1〜C4−アルキレン基、好
ましくは、場合によってはアルキル基によって置換して
あるメチレン基、場合によってはC1〜C12−アルキ
ンまたはフェニル基によって置換してある1,2−エチ
レン基、または1,2−シクロヘキシレン基〕で表され
るポリチオフェンの誘導体を化学酸化重合で形成した
後、該誘電体酸化皮膜を化成修復処理することを特徴と
する固体電解コンデンサの製造方法。
1. A dielectric oxide film, a conductive polymer compound layer, and a conductor layer are sequentially formed on the surface of a valve metal as an anode body, and the conductor layer is used as one electrode. In a method of manufacturing a solid electrolytic capacitor having the other electrode, a general formula is provided on the dielectric oxide film. Wherein R 1 and R 2 independently of one another are hydrogen or C
Represents a 1-C4-alkylene group or, jointly, an optionally substituted C1-C4-alkylene group, preferably a methylene group optionally substituted by an alkyl group, optionally a C1-C12 A 1,2-ethylene group or a 1,2-cyclohexylene group substituted by an alkyne or phenyl group] by chemical oxidative polymerization, and then repairing the dielectric oxide film by chemical conversion. A method for producing a solid electrolytic capacitor, characterized by performing a treatment.
JP12031497A 1997-04-23 1997-04-23 Manufacture of solid electrolytic capacitor Pending JPH10303075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12031497A JPH10303075A (en) 1997-04-23 1997-04-23 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12031497A JPH10303075A (en) 1997-04-23 1997-04-23 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH10303075A true JPH10303075A (en) 1998-11-13

Family

ID=14783182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12031497A Pending JPH10303075A (en) 1997-04-23 1997-04-23 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH10303075A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148328A (en) * 1999-11-19 2001-05-29 Nec Corp Manufacturing method for solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148328A (en) * 1999-11-19 2001-05-29 Nec Corp Manufacturing method for solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
KR100334918B1 (en) Solid electrolytic capacitor using a conducting polymer and method of making same
JP2765462B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3065286B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH07135126A (en) Solid electrolytic capacitor and its manufacture
JP3228323B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3711964B2 (en) Manufacturing method of solid electrolytic capacitor
KR20000053593A (en) Method for producing a solid electrolytic capacitor
US5965062A (en) Electrically-conductive polymer and production method thereof, and solid-electrolytic capacitor
JPH0682592B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0494110A (en) Manufacture of solid electrolytic capacitor
JP2002134363A (en) Solid capacitor and its manufacturing method
JP2570600B2 (en) Method for manufacturing solid electrolytic capacitor
JPH10303075A (en) Manufacture of solid electrolytic capacitor
JPH10303080A (en) Method for manufacturing solid electrolytic capacitor
JP3255091B2 (en) Method for manufacturing solid electrolytic capacitor
KR100753615B1 (en) Method of Manufacturing Solid Electrolytic Capacitor using Conductive Polymer
KR100753612B1 (en) Solid Electrolyte Capacitor and Method for Producing the Same
JPH0677093A (en) Solid-state electrolytic capacitor and manufacture thereof
JPH05159979A (en) Manufacture of solid electrolytic capacitor
JP2632944B2 (en) Solid electrolytic capacitors
KR100809080B1 (en) Method of Manufacturing a Solid Electrolytic Capacitor
JP3454733B2 (en) Method for manufacturing solid electrolytic capacitor
JPH10303074A (en) Method for manufacturing solid electrolytic capacitor
JP2810100B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0494108A (en) Manufacture of solid electrolytic capacitor