JP2003037024A - Method of manufacturing solid electrolytic capacitor - Google Patents

Method of manufacturing solid electrolytic capacitor

Info

Publication number
JP2003037024A
JP2003037024A JP2002208416A JP2002208416A JP2003037024A JP 2003037024 A JP2003037024 A JP 2003037024A JP 2002208416 A JP2002208416 A JP 2002208416A JP 2002208416 A JP2002208416 A JP 2002208416A JP 2003037024 A JP2003037024 A JP 2003037024A
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymerization
solution
solid
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002208416A
Other languages
Japanese (ja)
Other versions
JP3711964B2 (en
Inventor
Tomoko Hosokawa
知子 細川
Yukari Shimamoto
由賀利 島本
Masato Ozawa
正人 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002208416A priority Critical patent/JP3711964B2/en
Publication of JP2003037024A publication Critical patent/JP2003037024A/en
Application granted granted Critical
Publication of JP3711964B2 publication Critical patent/JP3711964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a solid electrolytic capacitor using a polymerization solution for forming a solid electrolyte with which a large capacitance can be achieved, an impededance characteristic in a high-frequency range can be improved, and electrolytic polymerization time can be shortened while maintaining a leakage current characteristic. SOLUTION: An anionic surfactant of a molecular weight of 180 or larger, having a polymeric monomer and an alkyl group or an aromatic ring is mixed beforehand, and water, which is main solvent, is added to the mixture to obtain a solution. A pH regulator is added to adjust the solution to be pH 5 or lower, and thus a polymerization solution for forming a solid electrolyte is prepared. By using the polymerization solution, a solid electrolytic layer 8 is formed on a dielectric oxide film 7 formed on a surface of valve action metal by electrolytic polymerization so that the anionic surfactant is selectively taken in the solid electrolyte as a dopant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は固体電解質形成用重
合液を用いた固体電解コンデンサの製造方法に関するも
のである。
TECHNICAL FIELD The present invention relates to a method for producing a solid electrolytic capacitor using a polymerization liquid for forming a solid electrolyte.

【0002】[0002]

【従来の技術】最近の電子機器のデジタル化に伴い、こ
れらに使用されるコンデンサも高周波領域においてイン
ピーダンスが低く、小形大容量化したものへの要求が高
まっている。従来、このような高周波領域用として使用
されるコンデンサとしては、プラスチックフィルムコン
デンサ、マイカコンデンサ、積層セラミックコンデンサ
などが用いられている。また、その他にアルミニウム乾
式電解コンデンサやアルミニウムまたはタンタル固体電
解コンデンサなどがあり、上記アルミニウム乾式電解コ
ンデンサでは、エッチングを施した陽・陰極アルミニウ
ム箔をセパレータを介して巻き取り、液体の電解質を用
いている。
2. Description of the Related Art With the recent digitalization of electronic devices, the capacitors used for them have low impedance in the high frequency region, and there is an increasing demand for small and large capacitors. Conventionally, plastic film capacitors, mica capacitors, laminated ceramic capacitors and the like have been used as capacitors used for such high frequency regions. In addition, there are also aluminum dry electrolytic capacitors and aluminum or tantalum solid electrolytic capacitors. In the above aluminum dry electrolytic capacitors, the etched positive and negative electrode aluminum foil is wound around a separator and a liquid electrolyte is used. .

【0003】また、アルミニウムやタンタル固体電解コ
ンデンサでは上記アルミニウム乾式電解コンデンサの特
性改良のため電解質の固体化がなされており、この固体
電解質形成には硝酸マンガン水溶液に陽極体を浸漬し、
これを250〜350℃前後の高温炉中にて熱分解して
マンガン酸化物層を形成している。このコンデンサの場
合、電解質が固体のために高温における電解質の流出や
ドライアップによる容量低減、低温域での凝固から生じ
る機能低下などの欠点がなく、液状電解質と比べて良好
な周波数特性、温度特性を示すものである。
In addition, in the case of aluminum or tantalum solid electrolytic capacitors, solidification of the electrolyte is carried out in order to improve the characteristics of the above-mentioned aluminum dry type electrolytic capacitors. To form this solid electrolyte, the anode body is dipped in a manganese nitrate aqueous solution,
This is pyrolyzed in a high temperature furnace at about 250 to 350 ° C. to form a manganese oxide layer. In the case of this capacitor, since the electrolyte is a solid, there are no drawbacks such as electrolyte outflow at high temperature and capacity reduction due to dry-up, functional deterioration due to solidification in low temperature range, and better frequency characteristics and temperature characteristics than liquid electrolyte. Is shown.

【0004】また、近年では固体電解質の高電導度化の
ためにピロール、チオフェンなどの重合性モノマーを重
合させて導電性高分子とし、これを固体電解質とする固
体電解コンデンサが実用化されている。
Further, in recent years, in order to increase the electric conductivity of the solid electrolyte, a solid electrolytic capacitor in which a polymerizable monomer such as pyrrole or thiophene is polymerized to form a conductive polymer and which is used as a solid electrolyte has been put into practical use. .

【0005】[0005]

【発明が解決しようとする課題】上記固体電解質に導電
性高分子を用いたコンデンサの固体電解質形成方法の1
つとして、弁作用金属の誘電体酸化皮膜の表面にマンガ
ン酸化物または導電性高分子等の導電性材料からなるプ
レコート層を形成した後、重合性モノマーを含む重合液
中で外部電極から給電を行って導電性高分子の固体電解
質を形成する電解重合があり、これによって比較的短時
間で安定的に特性の良い固体電解コンデンサを作製する
ことが可能である。また、固体電解コンデンサの生産に
おいては、電解重合の重合速度を上げて固体電解質の形
成に要する時間を低減することにより、さらに生産性を
向上させることが可能である。
One of the methods for forming a solid electrolyte of a capacitor using a conductive polymer as the above solid electrolyte.
One is to form a precoat layer made of a conductive material such as manganese oxide or a conductive polymer on the surface of the dielectric oxide film of the valve metal, and then supply power from the external electrode in the polymerization liquid containing the polymerizable monomer. There is electrolytic polymerization to form a solid electrolyte of a conductive polymer, which makes it possible to produce a solid electrolytic capacitor having good characteristics stably in a relatively short time. Further, in the production of solid electrolytic capacitors, productivity can be further improved by increasing the polymerization rate of electrolytic polymerization to reduce the time required for forming the solid electrolyte.

【0006】しかしながら電解重合の重合速度を上げる
方法としては、重合温度を上げる、重合電圧を上げる等
の方法が考えられるが、重合温度を上げた場合には、重
合性モノマーの揮発が起こり易くなり、重合液組成が不
安定となる等の問題があり、また重合電圧を上げる場合
には、水を含む重合液中では、水の電気分解等の重合と
は異なる別の反応も起こり易くなるために重合効率が低
下し、また水の電気分解等で発生する気泡が付着するこ
とによるインピーダンス悪化現象などの問題が見られ、
コンデンサとして安定的に優れた製品特性を示し、かつ
電解重合速度を上げることは困難であった。
However, as a method for increasing the polymerization rate in electrolytic polymerization, it is possible to increase the polymerization temperature, increase the polymerization voltage, etc. However, when the polymerization temperature is increased, the polymerizable monomer is likely to volatilize. However, there is a problem that the composition of the polymerization solution becomes unstable, and when increasing the polymerization voltage, another reaction different from the polymerization such as electrolysis of water is likely to occur in the polymerization solution containing water. In addition, the polymerization efficiency is reduced, and there are problems such as impedance deterioration due to the adhesion of bubbles generated by the electrolysis of water,
It was difficult to stably exhibit excellent product characteristics as a capacitor and to increase the electrolytic polymerization rate.

【0007】また、固体電解質の一部としてマンガン酸
化物を用いる場合においては、マンガン酸化物を形成す
る際に従来の熱分解方法では、その高温処理のために誘
電体酸化皮膜が損傷して漏れ電流が大きくなる現象が見
られ、さらに固体電解質の一部として形成されるマンガ
ン酸化物は電極体内部まで被覆されにくいために、容量
引き出し率が低いものとなってしまい、インピーダンス
特性も悪くなるという問題があった。
Further, when manganese oxide is used as a part of the solid electrolyte, when the manganese oxide is formed, the conventional pyrolysis method damages the dielectric oxide film due to the high temperature treatment and leaks. The phenomenon that the current becomes large is seen, and furthermore, the manganese oxide formed as a part of the solid electrolyte does not easily cover the inside of the electrode body, resulting in a low capacity drawing rate and poor impedance characteristics. There was a problem.

【0008】本発明は従来のこのような課題を解決し、
性能向上と電解重合時間の低減を同時に実現することが
できる固体電解質形成用重合液を用いた固体電解コンデ
ンサの製造方法を提供することを目的とするものであ
る。
The present invention solves the above-mentioned conventional problems,
It is an object of the present invention to provide a method for producing a solid electrolytic capacitor using a polymerization solution for forming a solid electrolyte, which can simultaneously improve performance and reduce electrolytic polymerization time.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に本発明は、重合性モノマーとアルキル基または芳香族
環を有した分子量が180以上のアニオン系界面活性剤
をあらかじめ混合し、この混合物に主溶媒である水を加
えて溶液とし、この溶液にpH5以下になるようにpH
調整剤を添加するようにして固体電解質形成用重合液を
調製し、この固体電解質形成用重合液を用いて、弁作用
金属の表面に形成された誘電体酸化皮膜上に上記アニオ
ン系界面活性剤が固体電解質中に選択的にドーパントと
して取り込まれるように電解重合により固体電解質層を
形成するようにした製造方法である。
In order to solve the above-mentioned problems, the present invention provides a mixture of a polymerizable monomer and an anionic surfactant having an alkyl group or an aromatic ring and having a molecular weight of 180 or more in advance. The main solvent, water, is added to form a solution, and the solution is adjusted to pH 5 or below.
A polymerization solution for forming a solid electrolyte is prepared by adding a regulator, and the polymerization solution for forming a solid electrolyte is used to form the anionic surfactant on the dielectric oxide film formed on the surface of the valve metal. Is a production method in which a solid electrolyte layer is formed by electrolytic polymerization so that is selectively incorporated into the solid electrolyte as a dopant.

【0010】この本発明により、耐脱ドープ性に優れる
アニオン系界面活性剤を固体電解質中にドーパントとし
て選択的に取り込ませることによって重合速度が向上
し、かつ初期および高温高湿中にコンデンサを放置する
ような条件下でもインピーダンス特性の優れた固体電解
コンデンサを作製することが可能となる。
According to the present invention, the polymerization rate is improved by selectively incorporating an anionic surfactant having excellent dedoping resistance as a dopant in the solid electrolyte, and the capacitor is left in the initial stage and in high temperature and high humidity. It is possible to manufacture a solid electrolytic capacitor having excellent impedance characteristics even under such conditions.

【0011】これは、水を含む固体電解質形成用重合液
中にアニオン系界面活性剤が存在することにより、アニ
オン系界面活性剤が重合性モノマーを取り込んだミセル
構造をとると考えた場合、界面活性剤としてアニオン系
材料を用いて重合膜を形成する陽極側に引き寄せ易くす
ることによって重合速度向上効果があり、また重合性モ
ノマーと近傍に存在するアニオン系界面活性剤が重合膜
中にドーパントとして取り込まれ易くなるためにインピ
ーダンス特性の優れた固体電解コンデンサが得られるも
のと考えられる。
This is because when the anionic surfactant is present in the polymer electrolyte for forming a solid electrolyte containing water and the anionic surfactant takes a micellar structure incorporating a polymerizable monomer, There is an effect of improving the polymerization rate by facilitating drawing to the anode side forming a polymerized film using an anionic material as the activator, and the anionic surfactant present in the vicinity of the polymerizable monomer and as a dopant in the polymerized film is present. It is considered that a solid electrolytic capacitor having excellent impedance characteristics can be obtained because it is easily taken in.

【0012】また、固体電解質形成用重合液中にアニオ
ン系界面活性剤が2種類以上存在する場合は、重合性モ
ノマーとなじみやすい材料が選択的に取り込まれると考
えられるため、より取り込まれ易い材料にアルキル基お
よび芳香族環を持ち、分子量が180以上の材料を用い
ることにより、インピーダンス特性の優れた固体電解コ
ンデンサを得ることができる。また、pH調整剤がアニ
オン系界面活性剤である場合も考えられるが、上記理由
と同様でより取り込まれ易い材料にアルキル基および芳
香族環を持ち、分子量が180以上の材料を用いること
により、インピーダンス特性の優れた固体電解コンデン
サを得ることができる。
Further, when two or more kinds of anionic surfactants are present in the polymerization liquid for forming a solid electrolyte, it is considered that a material that is easily compatible with the polymerizable monomer is selectively taken in, and thus a material that is more easily taken in is obtained. A solid electrolytic capacitor having excellent impedance characteristics can be obtained by using a material having an alkyl group and an aromatic ring and having a molecular weight of 180 or more. In addition, although it is considered that the pH adjuster is an anionic surfactant, by using a material having an alkyl group and an aromatic ring and having a molecular weight of 180 or more for a material that is more easily incorporated for the same reason as above, It is possible to obtain a solid electrolytic capacitor having excellent impedance characteristics.

【0013】また、pH調整剤としてアルキルリン酸エ
ステル、アルキルスルホン酸、アリールスルホン酸等の
アルキル基または芳香族環を有する酸を用いることによ
り、リン酸や硫酸等の酸を用いた場合と比較して、弁作
用金属の誘電体酸化皮膜に対する化学的ストレスを少な
くする等の効果があり、優れた漏れ電流特性、インピー
ダンス特性を得ることができる。
Further, by using an acid having an alkyl group or an aromatic ring such as an alkyl phosphoric acid ester, an alkyl sulfonic acid or an aryl sulfonic acid as a pH adjusting agent, it is possible to compare with the case where an acid such as phosphoric acid or sulfuric acid is used. Then, there is an effect of reducing chemical stress on the dielectric oxide film of the valve action metal, and excellent leakage current characteristics and impedance characteristics can be obtained.

【0014】また、固体電解質の一部としてマンガン酸
化物を用いる場合においては、マンガン酸化物を形成す
る際に弁作用金属表面に形成された誘電体酸化皮膜をp
H調整剤を添加することによりpH2以下とした硝酸マ
ンガン水溶液に浸漬し、これを熱分解することによって
マンガン酸化物層を形成することにより、生成したマン
ガン酸化物の粒子径が小さく、均質に形成されるため、
誘電体酸化皮膜のより小さな細孔内部まで被覆すること
ができ、これにより誘電体酸化皮膜の劣化も防止するこ
とができる。
When manganese oxide is used as a part of the solid electrolyte, when the manganese oxide is formed, the dielectric oxide film formed on the valve action metal surface is p
By dipping in a manganese nitrate aqueous solution having a pH of 2 or less by adding an H-adjusting agent and thermally decomposing this to form a manganese oxide layer, the generated manganese oxide has a small particle size and is uniformly formed. Because
It is possible to coat even the inside of the smaller pores of the dielectric oxide film, and this can prevent deterioration of the dielectric oxide film.

【0015】また、粒子径が均一で小さなマンガン酸化
物により広範囲にわたって被覆されるため、その後の低
pHの固体電解質形成用重合液による電解重合膜との密
着性も改善できる。特に、硝酸・塩酸・硫酸・燐酸・硼
酸・酢酸・燐酸エステルなどを添加した低pHの硝酸マ
ンガン水溶液を熱分解することにより、微少で均一なマ
ンガン酸化物を形成するため、熱分解時のNOxガス発
生パスが確保でき、誘電体酸化皮膜へのストレスが少な
いために漏れ電流の抑制効果が見られ、さらに被覆率が
上がるために容量引き出し率の優れた固体電解コンデン
サを得ることができるものである。
Further, since the manganese oxide having a uniform particle size and a small size is coated over a wide range, the adhesion to the electrolytic polymerized film by the subsequent low pH solid electrolyte forming polymerization solution can be improved. In particular, when a low pH manganese nitrate aqueous solution containing nitric acid / hydrochloric acid / sulfuric acid / phosphoric acid / boric acid / acetic acid / phosphoric acid ester is thermally decomposed, a minute and uniform manganese oxide is formed. A gas generation path can be secured, the stress on the dielectric oxide film is small, and the effect of suppressing leakage current can be seen, and since the coverage is increased, a solid electrolytic capacitor with an excellent capacity extraction rate can be obtained. is there.

【0016】[0016]

【発明の実施の形態】以下に本発明の具体的な実施の形
態について説明するが、本発明はこれに限定されるもの
ではない。
BEST MODE FOR CARRYING OUT THE INVENTION Specific embodiments of the present invention will be described below, but the present invention is not limited thereto.

【0017】(実施の形態1) (実施例1)図1は本発明の実施の形態による固体電解
コンデンサの構成を示す断面図であり、まず陽極として
リードをつけた3mm×4mmのアルミニウムエッチド
箔6を使用した。これに3%アジピン酸アンモニウム水
溶液を用いて印加電圧12V、水溶液温度70℃で60
分間陽極酸化を行うことにより、アルミニウムエッチド
箔6の表面に誘電体酸化皮膜7を形成した。その後、p
Hが3.73である硝酸マンガン30%水溶液に浸漬し
て自然乾燥させた後、300℃で10分間熱分解処理を
行うことにより、固体電解質層8の一部となるマンガン
酸化物層を形成した。
(Embodiment 1) (Example 1) FIG. 1 is a cross-sectional view showing a structure of a solid electrolytic capacitor according to an embodiment of the present invention. First, a 3 mm × 4 mm aluminum-etched aluminum plate with a lead as an anode. Foil 6 was used. An aqueous solution of 3% ammonium adipate was used for this with an applied voltage of 12 V and an aqueous solution temperature of 70 ° C.
Dielectric oxide film 7 was formed on the surface of aluminum etched foil 6 by performing anodic oxidation for minutes. Then p
The manganese oxide layer, which becomes a part of the solid electrolyte layer 8, is formed by immersing in a 30% aqueous solution of manganese nitrate having H of 3.73 and naturally drying, and then performing thermal decomposition treatment at 300 ° C. for 10 minutes. did.

【0018】次に、ピロールモノマー0.5mol/L
とプロピルナフタレンスルホン酸ナトリウム0.1mo
l/Lをあらかじめ混合した後に溶媒である水とpH調
整剤としてのプロピルリン酸エステルを添加してpHを
2に調整した固体電解質形成用重合液を作製し、この重
合液中で重合開始用電極を素子表面に近接させ、液温度
30℃、重合電圧3Vで電解重合を行って固体電解質層
8を形成した。その後、陰極引き出し層としてコロイダ
ルカーボン懸濁液を塗布、乾燥することによって得られ
るカーボン層9および銀ペーストを塗布乾燥することに
よって得られる銀層10を形成し、カーボン層9と銀層
10を併せて陰極引き出し部とした。その後、エポキシ
樹脂により外装して10個の固体電解コンデンサを完成
させた。この固体電解コンデンサの定格電圧は6.3V
である。
Next, the pyrrole monomer 0.5 mol / L
And sodium propylnaphthalene sulfonate 0.1mo
After preliminarily mixing 1 / L, water as a solvent and propyl phosphate as a pH adjuster were added to prepare a polymerization solution for solid electrolyte formation in which the pH was adjusted to 2. The electrode was brought close to the element surface, and electrolytic polymerization was performed at a liquid temperature of 30 ° C. and a polymerization voltage of 3 V to form a solid electrolyte layer 8. Thereafter, a carbon layer 9 obtained by applying and drying a colloidal carbon suspension as a cathode extraction layer and a silver layer 10 obtained by applying and drying a silver paste are formed, and the carbon layer 9 and the silver layer 10 are combined. As a cathode lead-out portion. Then, it was packaged with epoxy resin to complete 10 solid electrolytic capacitors. The rated voltage of this solid electrolytic capacitor is 6.3V
Is.

【0019】(実施例2)図1は本発明の実施の形態に
よる固体電解コンデンサの構成を示す断面図であり、陽
極としてリードをつけた3mm×4mmのアルミニウム
エッチド箔6を使用した。これに3%アジピン酸アンモ
ニウム水溶液を用いて印加電圧12V、水溶液温度70
℃で60分間陽極酸化を行うことにより、アルミニウム
エッチド箔6の表面に誘電体酸化皮膜7を形成した。そ
の後、pHが3.73である硝酸マンガン30%水溶液
にpH調整剤である硝酸を添加してpHを2とした溶液
に浸漬して自然乾燥させた後、300℃で10分間熱分
解処理を行うことにより、固体電解質層8の一部となる
マンガン酸化物層を形成した。
Example 2 FIG. 1 is a sectional view showing the structure of a solid electrolytic capacitor according to an embodiment of the present invention, in which a lead-attached 3 mm × 4 mm aluminum etched foil 6 is used. An aqueous solution of 3% ammonium adipate was used to apply a voltage of 12 V and an aqueous solution temperature of 70
By performing anodization at 60 ° C. for 60 minutes, a dielectric oxide film 7 was formed on the surface of the aluminum etched foil 6. Then, nitric acid, which is a pH adjuster, was added to a 30% aqueous solution of manganese nitrate having a pH of 3.73, and the resultant was immersed in a solution having a pH of 2 and naturally dried, and then subjected to a thermal decomposition treatment at 300 ° C. for 10 minutes. By carrying out, a manganese oxide layer which becomes a part of the solid electrolyte layer 8 was formed.

【0020】次に、ピロールモノマー0.5mol/L
とプロピルナフタレンスルホン酸ナトリウム0.1mo
l/Lをあらかじめ混合した後に溶媒である水とpH調
整剤としてのプロピルリン酸エステルを添加してpHを
2に調整した固体電解質形成用重合液を作製し、この重
合液中で重合開始用電極を素子表面に近接させ、液温度
30℃、重合電圧3Vで電解重合を行って固体電解質層
8を形成した。その後、陰極引き出し層としてコロイダ
ルカーボン懸濁液を塗布、乾燥することによって得られ
るカーボン層9および銀ペーストを塗布乾燥することに
よって得られる銀層10を形成し、カーボン層9と銀層
10を併せて陰極引き出し部とした。その後、エポキシ
樹脂により外装して10個の固体電解コンデンサを完成
させた。この固体電解コンデンサの定格電圧は6.3V
である。
Next, the pyrrole monomer 0.5 mol / L
And sodium propylnaphthalene sulfonate 0.1mo
After preliminarily mixing 1 / L, water as a solvent and propyl phosphate as a pH adjuster were added to prepare a polymerization solution for solid electrolyte formation in which the pH was adjusted to 2. The electrode was brought close to the element surface, and electrolytic polymerization was performed at a liquid temperature of 30 ° C. and a polymerization voltage of 3 V to form a solid electrolyte layer 8. Thereafter, a carbon layer 9 obtained by applying and drying a colloidal carbon suspension as a cathode extraction layer and a silver layer 10 obtained by applying and drying a silver paste are formed, and the carbon layer 9 and the silver layer 10 are combined. As a cathode lead-out portion. Then, it was packaged with epoxy resin to complete 10 solid electrolytic capacitors. The rated voltage of this solid electrolytic capacitor is 6.3V
Is.

【0021】(実施例3)実施例2において、硝酸を添
加して硝酸マンガン30%水溶液のpHを1.5に調整
した以外は実施例2と同じ方法で固体電解コンデンサ1
0個を作製した。
Example 3 A solid electrolytic capacitor 1 was prepared in the same manner as in Example 2 except that nitric acid was added to adjust the pH of a 30% manganese nitrate aqueous solution to 1.5.
0 pieces were produced.

【0022】(実施例4)実施例2において、硝酸を添
加して硝酸マンガン30%水溶液のpHを1に調整した
以外は実施例2と同じ方法で固体電解コンデンサ10個
を作製した。
Example 4 Ten solid electrolytic capacitors were produced in the same manner as in Example 2 except that nitric acid was added to adjust the pH of a 30% manganese nitrate aqueous solution to 1.

【0023】(実施例5)実施例2において、硝酸を添
加して硝酸マンガン30%水溶液のpHを0.5に調整
した以外は実施例2と同じ方法で固体電解コンデンサ1
0個を作製した。
(Embodiment 5) A solid electrolytic capacitor 1 was prepared in the same manner as in Embodiment 2 except that nitric acid was added to adjust the pH of a 30% manganese nitrate aqueous solution to 0.5.
0 pieces were produced.

【0024】(実施例6)実施例2において、硝酸を添
加して硝酸マンガン30%水溶液のpHを0.3に調整
した以外は実施例2と同じ方法で固体電解コンデンサ1
0個を作製した。
Example 6 A solid electrolytic capacitor 1 was manufactured in the same manner as in Example 2 except that nitric acid was added to adjust the pH of a 30% manganese nitrate aqueous solution to 0.3.
0 pieces were produced.

【0025】(実施例7)実施例2において、硝酸を添
加して硝酸マンガン30%水溶液のpHを0.1に調整
した以外は実施例2と同じ方法で固体電解コンデンサ1
0個を作製した。
(Embodiment 7) A solid electrolytic capacitor 1 was manufactured in the same manner as in Embodiment 2 except that nitric acid was added to adjust the pH of a 30% manganese nitrate aqueous solution to 0.1.
0 pieces were produced.

【0026】(実施例8)実施例2において、硝酸を添
加して硝酸マンガン30%水溶液のpHを0以下に調整
した以外は実施例2と同じ方法で固体電解コンデンサ1
0個を作製した。
(Example 8) A solid electrolytic capacitor 1 was prepared in the same manner as in Example 2 except that nitric acid was added to adjust the pH of a 30% manganese nitrate aqueous solution to 0 or less.
0 pieces were produced.

【0027】(実施例9)実施例2において、硫酸を添
加して硝酸マンガン30%水溶液のpHを0以下に調整
した以外は実施例2と同じ方法で固体電解コンデンサ1
0個を作製した。
(Example 9) Solid electrolytic capacitor 1 was manufactured in the same manner as in Example 2 except that sulfuric acid was added to adjust the pH of a 30% manganese nitrate aqueous solution to 0 or less.
0 pieces were produced.

【0028】(実施例10)実施例2において、塩酸を
添加して硝酸マンガン30%水溶液のpHを0以下に調
整した以外は実施例2と同じ方法で固体電解コンデンサ
10個を作製した。
(Example 10) Ten solid electrolytic capacitors were produced in the same manner as in Example 2 except that hydrochloric acid was added to adjust the pH of a 30% manganese nitrate aqueous solution to 0 or less.

【0029】(比較例1)実施例1と同様に、陽極とし
てリードをつけた3mm×4mmのアルミニウムエッチ
ド箔6を使用し、これに3%アジピン酸アンモニウム水
溶液を用いて印加電圧12V、水溶液温度70℃で60
分間陽極酸化を行うことにより、アルミニウムエッチド
箔6の表面に誘電体酸化皮膜7を形成した。その後、p
Hが3.73である硝酸マンガン30%水溶液中に浸漬
して自然乾燥させた後300℃で10分間熱分解処理を
行うことにより、固体電解質層8の一部となるマンガン
酸化物層を形成した。
(Comparative Example 1) As in Example 1, a 3 mm × 4 mm aluminum etched foil 6 with a lead was used as an anode, and an aqueous solution of 3% ammonium adipate was used to apply an applied voltage of 12 V to the aqueous solution. 60 at 70 ℃
Dielectric oxide film 7 was formed on the surface of aluminum etched foil 6 by performing anodic oxidation for minutes. Then p
A manganese oxide layer which is a part of the solid electrolyte layer 8 is formed by immersing in a 30% aqueous solution of manganese nitrate having H of 3.73, naturally drying and then performing thermal decomposition treatment at 300 ° C. for 10 minutes. did.

【0030】次に、ピロールモノマー0.5mol/L
とプロピルナフタレンスルホン酸ナトリウム0.1mo
l/Lをあらかじめ混合した後に溶媒である水を混合し
て固体電解質形成用重合液を作製し、この重合液中で重
合開始用電極を素子表面に近接させ、液温度30℃、重
合電圧3Vで電解重合を行って固体電解質層8を形成し
た。その後、陰極引き出し層としてコロイダルカーボン
懸濁液を塗布、乾燥することによって得られるカーボン
層9および銀ペーストを塗布乾燥することによって得ら
れる銀層10を形成し、カーボン層9と銀層10を併せ
て陰極引き出し部とした。その後、エポキシ樹脂により
外装して10個の固体電解コンデンサを完成させた。こ
の固体電解コンデンサの定格電圧は6.3Vである。
Next, pyrrole monomer 0.5 mol / L
And sodium propylnaphthalene sulfonate 0.1mo
After mixing 1 / L in advance, water as a solvent was mixed to prepare a polymerization solution for solid electrolyte formation, and the polymerization initiation electrode was brought close to the element surface in this polymerization solution, and the solution temperature was 30 ° C. and the polymerization voltage was 3 V. Was subjected to electrolytic polymerization to form a solid electrolyte layer 8. Thereafter, a carbon layer 9 obtained by applying and drying a colloidal carbon suspension as a cathode extraction layer and a silver layer 10 obtained by applying and drying a silver paste are formed, and the carbon layer 9 and the silver layer 10 are combined. As a cathode lead-out portion. Then, it was packaged with epoxy resin to complete 10 solid electrolytic capacitors. The rated voltage of this solid electrolytic capacitor is 6.3V.

【0031】(比較例2)実施例1と同様に、陽極とし
てリードをつけた3mm×4mmのアルミニウムエッチ
ド箔6を使用し、これに3%アジピン酸アンモニウム水
溶液を用いて印加電圧12V、水溶液温度70℃で60
分間陽極酸化を行うことによりアルミニウムエッチド箔
6の表面に誘電体酸化皮膜7を形成した。その後、pH
が3.73である硝酸マンガン30%水溶液にpH調整
剤である硝酸を添加してpHを2とした溶液に浸漬して
自然乾燥させた後、300℃で10分間熱分解処理を行
うことにより、固体電解質層8の一部となるマンガン酸
化物層を形成した。
Comparative Example 2 As in Example 1, a 3 mm × 4 mm aluminum etched foil 6 with a lead was used as an anode, and a 3% ammonium adipate aqueous solution was used to apply an applied voltage of 12 V to the aqueous solution. 60 at 70 ℃
Dielectric oxide film 7 was formed on the surface of aluminum etched foil 6 by performing anodic oxidation for a minute. Then the pH
By adding nitric acid, which is a pH adjuster, to a 30% aqueous solution of manganese nitrate having a pH of 3.73, dipping it in a solution having a pH of 2 and allowing it to air-dry, and then performing thermal decomposition treatment at 300 ° C. for 10 minutes. A manganese oxide layer, which will be a part of the solid electrolyte layer 8, was formed.

【0032】次に、ピロールモノマー0.5mol/L
とプロピルナフタレンスルホン酸ナトリウム0.1mo
l/Lをあらかじめ混合した後に溶媒である水を混合し
て固体電解質形成用重合液を作製し、この重合液中で重
合開始用電極を素子表面に近接させ、液温度30℃、重
合電圧3Vで電解重合を行って固体電解質層8を形成し
た。その後、陰極引き出し層としてコロイダルカーボン
懸濁液を塗布、乾燥することによって得られるカーボン
層9および銀ペーストを塗布乾燥することによって得ら
れる銀層10を形成し、カーボン層9と銀層10を併せ
て陰極引き出し部とした。その後、エポキシ樹脂により
外装して10個の固体電解コンデンサを完成させた。こ
の固体電解コンデンサの定格電圧は6.3Vである。
Next, pyrrole monomer 0.5 mol / L
And sodium propylnaphthalene sulfonate 0.1mo
After mixing 1 / L in advance, water as a solvent was mixed to prepare a polymerization solution for solid electrolyte formation, and the polymerization initiation electrode was brought close to the element surface in this polymerization solution, and the solution temperature was 30 ° C. and the polymerization voltage was 3 V. Was subjected to electrolytic polymerization to form a solid electrolyte layer 8. Thereafter, a carbon layer 9 obtained by applying and drying a colloidal carbon suspension as a cathode extraction layer and a silver layer 10 obtained by applying and drying a silver paste are formed, and the carbon layer 9 and the silver layer 10 are combined. As a cathode lead-out portion. Then, it was packaged with epoxy resin to complete 10 solid electrolytic capacitors. The rated voltage of this solid electrolytic capacitor is 6.3V.

【0033】また、上記実施例1〜10および比較例
1、2により作製した固体電解コンデンサのエージング
を行い、その後固体電解コンデンサの初期特性を測定し
た。これらの結果の平均値を(表1)に示す。
The solid electrolytic capacitors produced in Examples 1 to 10 and Comparative Examples 1 and 2 were aged, and then the initial characteristics of the solid electrolytic capacitors were measured. The average value of these results is shown in (Table 1).

【0034】[0034]

【表1】 [Table 1]

【0035】上記比較例1および実施例1と比較例2お
よび実施例2の比較により、pH調整剤を添加して硝酸
マンガン水溶液のpHを2以下にすることにより、容量
引き出し率、漏れ電流特性および高周波領域でのインピ
ーダンス・ESR特性の優れたものが得られるものであ
る。また、実施例1〜10と比較例1、2の比較によ
り、電解重合時のpHを2にすることによって、優れた
容量引き出し率、漏れ電流特性、インピーダンス特性が
得られることが分かる。
Comparison between Comparative Example 1 and Example 1 and Comparative Example 2 and Example 2 shows that by adding a pH adjusting agent to adjust the pH of the manganese nitrate aqueous solution to 2 or less, the capacity withdrawing rate and the leakage current characteristics can be improved. Further, it has excellent impedance and ESR characteristics in a high frequency region. In addition, by comparing Examples 1 to 10 with Comparative Examples 1 and 2, it can be seen that by setting the pH at the time of electrolytic polymerization to 2, excellent capacity drawing rate, leakage current characteristics, and impedance characteristics can be obtained.

【0036】この優れた特性は、pH調整剤を添加する
ことによりpH2以下とした硝酸マンガン水溶液に浸漬
し、これを熱分解することによってマンガン酸化物層を
形成した後に、固体電解質形成用重合液を用いて電解重
合することにより導電性高分子層を形成すると、このよ
うにして熱分解されたマンガン酸化物の生成する粒子径
が小さく、均質に形成されるため、誘電体酸化皮膜のよ
り小さな細孔内部まで被覆することができ、これにより
誘電体酸化皮膜の劣化も防止することができるものであ
る。
This excellent property is obtained by immersing in a manganese nitrate aqueous solution having a pH of 2 or less by adding a pH adjuster and thermally decomposing the manganese oxide layer to form a manganese oxide layer. When a conductive polymer layer is formed by electrolytic polymerization using, the particle size generated by the pyrolyzed manganese oxide is small and the particles are homogeneously formed. It is possible to coat even the inside of the pores, and this can prevent deterioration of the dielectric oxide film.

【0037】また、粒子径が均一で小さなマンガン酸化
物により広範囲にわたって被覆されるため、その後の低
pH重合液による電解重合膜との密着性も改善できる。
特に、硝酸・塩酸・硫酸・燐酸・硼酸・酢酸・燐酸エス
テルなどの酸を添加した低pH硝酸マンガン水溶液を熱
分解することにより、微少で均一な二酸化マンガンを形
成するため、熱分解時のNOxガス発生パスが確保で
き、誘電体酸化皮膜へのストレスが少ないために漏れ電
流の抑制効果が見られ、さらに被覆率が上がるために容
量引き出し率の優れた固体電解コンデンサを得ることが
できるものである。
Further, since the manganese oxide having a uniform particle diameter and a small size is coated over a wide range, the adhesion with the electrolytic polymerized film by the low pH polymerization solution thereafter can be improved.
In particular, by thermally decomposing a low-pH manganese nitrate aqueous solution to which acids such as nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, boric acid, acetic acid, and phosphoric acid ester have been added, minute and uniform manganese dioxide is formed. A gas generation path can be secured, the stress on the dielectric oxide film is small, and the effect of suppressing leakage current can be seen, and since the coverage is increased, a solid electrolytic capacitor with an excellent capacity extraction rate can be obtained. is there.

【0038】なお、上記実施の形態1では、陽極として
弁作用金属のアルミニウムを使用した固体電解コンデン
サについてのみ述べたが、本発明はこれに限定されるも
のではなく、外表面に誘電体酸化皮膜を有する弁作用金
属であるタンタル、ニオブ、チタン等の他の物質でも同
様の効果が得られることは言うまでもない。
In the first embodiment described above, only the solid electrolytic capacitor using the valve action metal aluminum as the anode is described, but the present invention is not limited to this, and the dielectric oxide film is formed on the outer surface. It goes without saying that the same effect can be obtained even with other substances such as tantalum, niobium, and titanium which are valve-acting metals having.

【0039】また、上記実施の形態1では導電性高分子
を構成する重合性モノマーとしてピロールを使用した場
合についてのみ述べたが、本発明はこれに限定されるも
のではなく、導電性高分子を構成するモノマーとしてチ
オフェン、アニリンあるいはその誘導体等の他の物質で
も同様の効果が得られることは言うまでもない。
In the first embodiment, the case where pyrrole is used as the polymerizable monomer constituting the conductive polymer has been described, but the present invention is not limited to this, and the conductive polymer is used. Needless to say, the same effect can be obtained by using other substances such as thiophene, aniline or their derivatives as the constituent monomers.

【0040】また、上記実施の形態1では、固体電解質
層の一部であるプレコート層としてマンガン酸化物を用
いた場合についてのみ述べたが、本発明はこれに限定さ
れるものではなく、導電性高分子等の他の導電性材料を
プレコートとして用いた場合においても同様の効果が得
られることは言うまでもない。
In the first embodiment described above, only the case where manganese oxide is used as the precoat layer which is a part of the solid electrolyte layer has been described, but the present invention is not limited to this, and the conductivity is not limited. Needless to say, the same effect can be obtained when other conductive materials such as polymers are used as the precoat.

【0041】[0041]

【発明の効果】以上のように本発明は、重合性モノマー
とアルキル基または芳香族環を有した分子量が180以
上のアニオン系界面活性剤をあらかじめ混合し、この混
合物に主溶媒である水を加えて溶液とし、この溶液にp
H5以下になるようにpH調整剤を添加するようにして
固体電解質形成用重合液を調製し、この固体電解質形成
用重合液を用いて、弁作用金属の表面に形成された誘電
体酸化皮膜上に電解重合によりアニオン系界面活性剤を
固体電解質中に選択的にドーパントとして取り込まれる
ように固体電解質層を形成するようにしたものであり、
耐脱ドープ性に優れるアニオン系界面活性剤が固体電解
質中にドーパントとして選択的に取り込ませることによ
って重合速度を向上し、かつ初期および高温高湿中にコ
ンデンサを放置するような条件下でもインピーダンス特
性の優れた固体電解コンデンサを作製することが可能と
なり、その結果として、容量引き出し率、漏れ電流特性
および高周波領域でのインピーダンス・ESR特性の優
れた固体電解コンデンサを得ることができる。
As described above, according to the present invention, a polymerizable monomer and an anionic surfactant having an alkyl group or an aromatic ring and having a molecular weight of 180 or more are mixed in advance, and water as a main solvent is added to the mixture. Add a solution and add p to this solution.
On the dielectric oxide film formed on the surface of the valve metal, a polymerization solution for solid electrolyte formation was prepared by adding a pH adjusting agent to H5 or less, and this polymerization solution for solid electrolyte formation was used. It is intended to form a solid electrolyte layer so that an anionic surfactant is selectively incorporated as a dopant into the solid electrolyte by electrolytic polymerization.
The anionic surfactant with excellent dedoping resistance improves the polymerization rate by being selectively incorporated as a dopant in the solid electrolyte, and the impedance characteristics are maintained even under the condition that the capacitor is left in the initial stage and in high temperature and high humidity. It is possible to produce a solid electrolytic capacitor having excellent characteristics, and as a result, it is possible to obtain a solid electrolytic capacitor having excellent capacity drawing ratio, leakage current characteristics, and impedance / ESR characteristics in a high frequency region.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1による固体電解コンデン
サの構成を示す断面図
FIG. 1 is a sectional view showing a configuration of a solid electrolytic capacitor according to a first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

6 アルミニウムエッチド箔 7 誘電体酸化皮膜 8 固体電解質層 9 カーボン層 10 銀層 6 Aluminum Etched Foil 7 Dielectric oxide film 8 Solid electrolyte layer 9 carbon layer 10 silver layers

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小澤 正人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masato Ozawa             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重合性モノマーとアルキル基または芳香
族環を有した分子量が180以上のアニオン系界面活性
剤をあらかじめ混合し、この混合物に主溶媒である水を
加えて溶液とし、この溶液にpH5以下になるようにp
H調整剤を添加するようにして固体電解質形成用重合液
を調製し、この固体電解質形成用重合液を用いて、弁作
用金属の表面に形成された誘電体酸化皮膜上に上記アニ
オン系界面活性剤が固体電解質中に選択的にドーパント
として取り込まれるように電解重合により固体電解質層
を形成するようにした固体電解コンデンサの製造方法。
1. A polymerizable monomer and an anionic surfactant having an alkyl group or an aromatic ring and having a molecular weight of 180 or more are mixed in advance, and water as a main solvent is added to the mixture to prepare a solution. p to keep pH below 5
A polymer electrolyte for forming a solid electrolyte was prepared by adding an H-adjusting agent, and the anionic surface active agent was formed on the dielectric oxide film formed on the surface of the valve metal by using the polymer liquid for forming a solid electrolyte. A method for producing a solid electrolytic capacitor, wherein a solid electrolyte layer is formed by electrolytic polymerization so that the agent is selectively incorporated into the solid electrolyte as a dopant.
【請求項2】 固体電解質層を形成する前に、pH2以
下の硝酸マンガン水溶液に浸漬し、これを熱分解するこ
とによって誘電体酸化皮膜層上にマンガン酸化物層を形
成するようにした請求項1に記載の固体電解コンデンサ
の製造方法。
2. A manganese oxide layer is formed on the dielectric oxide film layer by immersing in a manganese nitrate aqueous solution having a pH of 2 or less and thermally decomposing it before forming the solid electrolyte layer. 1. The method for manufacturing the solid electrolytic capacitor as described in 1.
【請求項3】 硝酸マンガン水溶液に添加するpH調整
剤が酸である請求項2に記載の固体電解コンデンサの製
造方法。
3. The method for producing a solid electrolytic capacitor according to claim 2, wherein the pH adjustor added to the manganese nitrate aqueous solution is an acid.
JP2002208416A 1999-02-10 2002-07-17 Manufacturing method of solid electrolytic capacitor Expired - Fee Related JP3711964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208416A JP3711964B2 (en) 1999-02-10 2002-07-17 Manufacturing method of solid electrolytic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3239499 1999-02-10
JP11-32394 1999-02-10
JP2002208416A JP3711964B2 (en) 1999-02-10 2002-07-17 Manufacturing method of solid electrolytic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22240699A Division JP3346346B2 (en) 1999-02-10 1999-08-05 Polymerization liquid for forming solid electrolyte and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003037024A true JP2003037024A (en) 2003-02-07
JP3711964B2 JP3711964B2 (en) 2005-11-02

Family

ID=26370962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208416A Expired - Fee Related JP3711964B2 (en) 1999-02-10 2002-07-17 Manufacturing method of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3711964B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113441A1 (en) 2003-06-18 2004-12-29 Shin-Etsu Polymer Co., Ltd. Conductive composition, conductive coating material, conductive resin, capacitor, photo-electric converting element, and process for producing the same
US6964435B2 (en) 2002-02-18 2005-11-15 Walterscheid Rohrverbindungstechnik Gmbh Coupling for connecting hydraulic ducts
WO2007097364A1 (en) 2006-02-21 2007-08-30 Shin-Etsu Polymer Co., Ltd. Capacitor and method for fabricating the capacitor
EP2147953A2 (en) 2006-02-09 2010-01-27 Shin-Etsu Polymer Co., Ltd. Conductive polymer solution, conductive coating, capacitor and process for manufacturing capacitor
US7666326B2 (en) 2004-08-30 2010-02-23 Shin-Etsu Polymer Co., Ltd. Conductive composition and conductive cross-linked product, capacitor and production method thereof, and antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium
US7683109B2 (en) 2004-09-22 2010-03-23 Shin-Etsu Polymer Co., Ltd. Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof
US7842196B2 (en) 2004-10-08 2010-11-30 Shin-Etsu Polymer Co., Ltd. Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof
EP2309523A1 (en) 2009-10-06 2011-04-13 Shin-Etsu Polymer Co. Ltd. Solid conductive polymer electrolytic capacitor and method for producing same comprising a drying step
EP2309524A1 (en) 2009-10-06 2011-04-13 Shin-Etsu Polymer Co. Ltd. Solid electrolytic capacitor, method for producing same, and solution for solid electrolytic capacitor
US8422202B2 (en) 2008-04-28 2013-04-16 Shin-Etsu Polymer Co., Ltd. Capacitor and method for manufacturing the same
US8773843B2 (en) 2010-03-16 2014-07-08 Shin-Etsu Polymer Co., Ltd. Solid electrolytic capacitor, method for producing the same and solution for solid electrolytic capacitor
KR20180044983A (en) 2015-09-08 2018-05-03 신에츠 폴리머 가부시키가이샤 Method for producing conductive polymer solution, capacitor and capacitor

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964435B2 (en) 2002-02-18 2005-11-15 Walterscheid Rohrverbindungstechnik Gmbh Coupling for connecting hydraulic ducts
EP2014718A1 (en) 2003-06-18 2009-01-14 Shin-Etsu Polymer Co. Ltd. Conductive composition, and their production method
WO2004113441A1 (en) 2003-06-18 2004-12-29 Shin-Etsu Polymer Co., Ltd. Conductive composition, conductive coating material, conductive resin, capacitor, photo-electric converting element, and process for producing the same
US8097184B2 (en) 2004-08-30 2012-01-17 Shin-Etsu Polymer Co., Ltd. Conductive composition and conductive cross-linked product, capacitor and production method thereof, and antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium
US8551366B2 (en) 2004-08-30 2013-10-08 Shin-Etsu Polymer Co., Ltd. Conductive composition and conductive cross-linked product, capacitor and production method thereof, and antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium
US8388866B2 (en) 2004-08-30 2013-03-05 Shin-Etsu Polymer Co., Ltd. Conductive composition and conductive cross-linked product, capacitor and production method thereof, and antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium
US7666326B2 (en) 2004-08-30 2010-02-23 Shin-Etsu Polymer Co., Ltd. Conductive composition and conductive cross-linked product, capacitor and production method thereof, and antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium
US7683109B2 (en) 2004-09-22 2010-03-23 Shin-Etsu Polymer Co., Ltd. Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof
US7916455B2 (en) 2004-09-22 2011-03-29 Shin-Etsu Polymer Co., Ltd. Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof
US8035952B2 (en) 2004-10-08 2011-10-11 Shin-Etsu Polymer Co., Ltd. Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof
US7842196B2 (en) 2004-10-08 2010-11-30 Shin-Etsu Polymer Co., Ltd. Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof
US8021579B2 (en) 2004-10-08 2011-09-20 Shin-Etsu Polymer Co., Ltd. Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof
US8472165B2 (en) 2006-02-09 2013-06-25 Shin-Etsu Polymer Co., Ltd. Conductive polymer solution, conductive coating, condenser and process for manufacturing condenser
EP2147953A2 (en) 2006-02-09 2010-01-27 Shin-Etsu Polymer Co., Ltd. Conductive polymer solution, conductive coating, capacitor and process for manufacturing capacitor
US8339770B2 (en) 2006-02-21 2012-12-25 Shin-Etsu Polymer Co., Ltd. Capacitor and method for producing thereof
EP2172953A1 (en) 2006-02-21 2010-04-07 Shin-Etsu Polymer Co., Ltd. Capacitor
EP2172954A1 (en) 2006-02-21 2010-04-07 Shin-Etsu Polymer Co., Ltd. Method for producing a capacitor and a conductive polymer solution
WO2007097364A1 (en) 2006-02-21 2007-08-30 Shin-Etsu Polymer Co., Ltd. Capacitor and method for fabricating the capacitor
US8422202B2 (en) 2008-04-28 2013-04-16 Shin-Etsu Polymer Co., Ltd. Capacitor and method for manufacturing the same
US8390989B2 (en) 2009-10-06 2013-03-05 Shin-Etsu Polymer Co., Ltd. Solid electrolytic capacitor, method for producing same, and solution for solid electrolytic capacitor
EP2309524A1 (en) 2009-10-06 2011-04-13 Shin-Etsu Polymer Co. Ltd. Solid electrolytic capacitor, method for producing same, and solution for solid electrolytic capacitor
EP2309523A1 (en) 2009-10-06 2011-04-13 Shin-Etsu Polymer Co. Ltd. Solid conductive polymer electrolytic capacitor and method for producing same comprising a drying step
US8773843B2 (en) 2010-03-16 2014-07-08 Shin-Etsu Polymer Co., Ltd. Solid electrolytic capacitor, method for producing the same and solution for solid electrolytic capacitor
KR20180044983A (en) 2015-09-08 2018-05-03 신에츠 폴리머 가부시키가이샤 Method for producing conductive polymer solution, capacitor and capacitor
US10377908B2 (en) 2015-09-08 2019-08-13 Shin-Etsu Polymer Co., Ltd. Conductive polymer solution, capacitor, and method for producing the capacitor

Also Published As

Publication number Publication date
JP3711964B2 (en) 2005-11-02

Similar Documents

Publication Publication Date Title
JP4983744B2 (en) Manufacturing method of solid electrolytic capacitor
JPH11121281A (en) Method for manufacturing solid electrolytic capacitor
JP2765453B2 (en) Method for manufacturing solid electrolytic capacitor
JP2005109252A (en) Method of manufacturing solid electrolytic capacitor
JP2003037024A (en) Method of manufacturing solid electrolytic capacitor
JP2003229330A (en) Solid electrolytic capacitor and manufacturing method thereof
JP2000232036A (en) Manufacture of solid electrolytic capacitor
JP2001217159A (en) Solid electrolytic capacitor and its manufacturing method
KR20000053593A (en) Method for producing a solid electrolytic capacitor
JP3671828B2 (en) Manufacturing method of solid electrolytic capacitor
JPH10321471A (en) Solid electrolytic capacitor and its manufacture
JP2000297142A (en) Polymerization liquid for forming solid electrolyte, its preparation, and preparation of solid electrolytic capacitor using same
JPH1167602A (en) Capacitor and its manufacture
JP2002008946A (en) Method of manufacturing solid electrolytic capacitor
JP4126746B2 (en) Solid electrolytic capacitor and manufacturing method thereof
US5951721A (en) Process for producing solid electrolytic capacitor
JPH11238648A (en) Solid electrolytic capacitor and its manufacture
JPH0677093A (en) Solid-state electrolytic capacitor and manufacture thereof
JPH11283875A (en) Solid electrolytic capacitor and manufacture thereof
JP2006147900A (en) Manufacturing method of solid electrolytic capacitor
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JPH09213575A (en) Production of solid electrolytic capacitor
JPH11251192A (en) Solid electrolytic capacitor and its manufacture
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JPH05234826A (en) Manufacture of capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees