JP2003229330A - Solid electrolytic capacitor and manufacturing method thereof - Google Patents

Solid electrolytic capacitor and manufacturing method thereof

Info

Publication number
JP2003229330A
JP2003229330A JP2002348984A JP2002348984A JP2003229330A JP 2003229330 A JP2003229330 A JP 2003229330A JP 2002348984 A JP2002348984 A JP 2002348984A JP 2002348984 A JP2002348984 A JP 2002348984A JP 2003229330 A JP2003229330 A JP 2003229330A
Authority
JP
Japan
Prior art keywords
conductive polymer
polymer film
film
electrolytic capacitor
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002348984A
Other languages
Japanese (ja)
Inventor
Masanori Yoshida
雅憲 吉田
Mikiya Shimada
幹也 嶋田
Yasuhiko Nakada
泰彦 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002348984A priority Critical patent/JP2003229330A/en
Publication of JP2003229330A publication Critical patent/JP2003229330A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor that is appropriate to cope with both high capacity and low ESR (equivalent series resistance). <P>SOLUTION: Two conductive polymer films forming one portion of a conductive polymer layer are formed in two solutions having different pHs due to electrolytic oxidation polymerization or chemical oxidation polymerization. In this manner, in the solid electrolytic capacitor, the conductive polymer layer includes a first conductive polymer film 301 made of a plurality of particles where an average particle size is relatively small, and a second conductive polymer film 302 having an average particle size that is larger than the average particle size of the first conductive polymer film, the second film 302 is formed while covering openings of a plurality of holes 101 formed in an anode conductor 1, and the first film 301 is formed so that at least one portion of the first film 301 is arranged inside the plurality of holes, or is arranged to be the outermost film of the conductive polymer layer. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解コンデン
サとその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor and its manufacturing method.

【0002】[0002]

【従来の技術】近年、固体電解コンデンサが使用される
電子機器では、集積回路の高周波化、大電流化が著し
い。これに伴い、等価直列抵抗(equivalent series re
sistance;以下「ESR」と略す)が低く、容量が大き
く、かつ損失の小さい固体電解コンデンサが求められて
いる。
2. Description of the Related Art In recent years, in electronic equipment in which a solid electrolytic capacitor is used, the frequency of integrated circuits is increasing and the current is increasing significantly. Accordingly, the equivalent series resistance (equivalent series re
There is a demand for a solid electrolytic capacitor having a low sistance (hereinafter abbreviated as “ESR”), a large capacitance, and a small loss.

【0003】固体電解コンデンサについて、固体電解コ
ンデンサの内部電極(即ちコンデンサ素子)の従来の製
造方法を例示する。まず、陽極導体となる弁金属(valv
e metal;例えばタンタル金属)をリン酸などの電解質
溶液中で陽極酸化し、その表面に酸化膜層(誘電体層)
を形成する。次に、この酸化膜層の表面に固体電解質を
形成する。固体電解質としては、例えば、陽極導体を硝
酸マンガン溶液に浸漬し、引き上げ、さらに焼成するこ
とにより形成できる二酸化マンガンが知られている。最
後に、固体電解質上に陰極導体を形成する。陰極導体と
しては、例えばカーボン層と外装銀導電性樹脂層との積
層体が用いられる。コンデンサ素子には、外部への電気
的接続のために、陽極導体に陽極リード端子が、陰極導
体に陰極リード端子がそれぞれ接続される。
For a solid electrolytic capacitor, a conventional method for manufacturing an internal electrode (that is, a capacitor element) of the solid electrolytic capacitor will be illustrated. First, the valve metal (valv
e metal; for example, tantalum metal) is anodized in an electrolyte solution such as phosphoric acid, and an oxide film layer (dielectric layer) is formed on the surface.
To form. Next, a solid electrolyte is formed on the surface of this oxide film layer. As a solid electrolyte, for example, manganese dioxide that can be formed by immersing an anode conductor in a manganese nitrate solution, pulling it up, and firing it is known. Finally, a cathode conductor is formed on the solid electrolyte. As the cathode conductor, for example, a laminate of a carbon layer and an exterior silver conductive resin layer is used. To the capacitor element, an anode lead terminal is connected to the anode conductor and a cathode lead terminal is connected to the cathode conductor for electrical connection to the outside.

【0004】ESRには、上記各部材がそれぞれ有する
抵抗が影響を及ぼし得るが、抵抗について最も考慮すべ
き余地があるのは固体電解質である。固体電解質の抵抗
を引き下げるために、二酸化マンガン(導電率0.1S
/cm程度)よりも導電率が高い導電性高分子材料を用
いることが提案され、実用化されている。例えばポリピ
ロールを用いれば、100S/cm程度の導電率を実現
できる。導電性高分子材料を構成するための単量体(モ
ノマー)としては、ピロールの他、アニリン、チオフェ
ン、3,4−エチレンジオキシチオフェンなどが知られ
ている。導電性高分子層の形成方法は、化学酸化重合と
電解酸化重合とに大別できる。
The ESR can be influenced by the resistance of each of the above-mentioned members, but the solid electrolyte has the most room for consideration of the resistance. In order to lower the resistance of the solid electrolyte, manganese dioxide (conductivity 0.1S
It has been proposed and put into practical use that a conductive polymer material having a conductivity higher than that of the conductive polymer material is used. For example, if polypyrrole is used, a conductivity of about 100 S / cm can be realized. As the monomer for forming the conductive polymer material, aniline, thiophene, 3,4-ethylenedioxythiophene, etc. are known in addition to pyrrole. The method of forming the conductive polymer layer can be roughly classified into chemical oxidative polymerization and electrolytic oxidative polymerization.

【0005】ESRには層間の接触抵抗も影響を及ぼ
す。本出願人による特開2000−232036号公報
では、導電性高分子層に導電性ポリマー微粒子を混在さ
せ、この微粒子によって形成された凹凸により導電性高
分子層と陰極導体との接触抵抗を低下させることが開示
されている。この公報に記載の方法では、導電性ポリマ
ー微粒子を分散させた重合溶液を用いた化学酸化重合に
より、導電性高分子層が形成される。
Contact resistance between layers also affects the ESR. In Japanese Patent Laid-Open No. 2000-232036 by the applicant, conductive polymer particles are mixed in the conductive polymer layer, and the contact resistance between the conductive polymer layer and the cathode conductor is reduced due to the unevenness formed by the particles. It is disclosed. In the method described in this publication, the conductive polymer layer is formed by chemical oxidative polymerization using a polymerization solution in which conductive polymer particles are dispersed.

【0006】コンデンサの大容量化のために、導電性高
分子層を粒子状に形成することも提案されている。特開
平8−45790号公報では、酸化剤に対するモノマー
の混合モル比を1以上とした重合溶液を用いた化学酸化
重合により、粒径0.2μm以下の粒子状のポリピロー
ルを形成することが開示されている。導電性高分子層の
粒径を抑制すれば、この層の剥離が抑制され、誘電体層
が潜在的に有する容量を引き出しやすくなる。
It has also been proposed to form the conductive polymer layer in the form of particles in order to increase the capacity of the capacitor. Japanese Unexamined Patent Publication No. 8-45790 discloses that particulate polypyrrole having a particle size of 0.2 μm or less is formed by chemical oxidative polymerization using a polymerization solution in which a mixing molar ratio of a monomer to an oxidizing agent is 1 or more. ing. When the particle size of the conductive polymer layer is suppressed, peeling of this layer is suppressed, and the capacity potentially possessed by the dielectric layer is easily extracted.

【0007】電解酸化重合で形成した導電性高分子層
は、化学酸化重合で形成した導電性高分子層よりも導電
率が高く、良質な膜となることが知られている。しか
し、単一の電解液を用いて繰り返し電解酸化重合を行う
と、導電性高分子層の導電率が徐々に変化する。特開平
11−121279号公報では、この変化を抑制するた
めに、重合溶液のpHを所定範囲内に維持しながら電解
酸化重合することが開示されている。
It is known that the electroconductive polymer layer formed by electrolytic oxidative polymerization has a higher electric conductivity than the electroconductive polymer layer formed by chemical oxidative polymerization, resulting in a good quality film. However, when the electrolytic oxidation polymerization is repeatedly performed using a single electrolytic solution, the conductivity of the conductive polymer layer gradually changes. Japanese Patent Application Laid-Open No. 11-121279 discloses that in order to suppress this change, electrolytic oxidation polymerization is performed while maintaining the pH of the polymerization solution within a predetermined range.

【0008】特開2000−297142号公報では、
電解酸化重合に用いる重合溶液のpHを5以下とするこ
とが開示されている。ここでは、pHを下げることによ
り、重合反応の速度向上が図られている。
In Japanese Patent Laid-Open No. 2000-297142,
It is disclosed that the pH of the polymerization solution used for electrolytic oxidation polymerization is 5 or less. Here, the speed of the polymerization reaction is improved by lowering the pH.

【0009】[0009]

【特許文献1】特開2000−232036号公報[Patent Document 1] Japanese Patent Laid-Open No. 2000-232036

【特許文献2】特開平8−45790号公報[Patent Document 2] Japanese Patent Laid-Open No. 8-45790

【特許文献3】特開平11−121279号公報[Patent Document 3] Japanese Patent Laid-Open No. 11-112279

【特許文献4】特開2000−297142号公報[Patent Document 4] Japanese Patent Laid-Open No. 2000-297142

【0010】[0010]

【発明が解決しようとする課題】このように、導電性高
分子層を固体電解質とする固体電解コンデンサについて
は、多数の検討が進められてきた。しかし、固体電解コ
ンデンサにおける低いESRと大きい容量との両立、さ
らには低い損失の実現、は未だ十分に達成されていな
い。
As described above, many studies have been conducted on the solid electrolytic capacitor using the conductive polymer layer as the solid electrolyte. However, compatibility between low ESR and large capacitance in a solid electrolytic capacitor and realization of low loss have not yet been sufficiently achieved.

【0011】[0011]

【課題を解決するための手段】そこで、本発明は、弁金
属からなる陽極導体と、この陽極導体の表面に形成され
た誘電体層と、この誘電体層の表面に形成され、導電性
高分子層を含む固体電解質とを含む固体電解コンデンサ
の製造方法であって、上記導電性高分子層の一部となる
第1導電性高分子膜を第1溶液内で形成する工程と、上
記導電性高分子層の別の一部となる第2導電性高分子膜
を、第1溶液のpHよりも低いpHを有する第2溶液内
で形成する工程と、を含み、第1導電性高分子膜と第2
導電性高分子膜とを、ともに電解酸化重合により形成す
る固体電解コンデンサの製造方法を提供する。第1およ
び第2導電性高分子膜を、電解酸化重合ではなく、とも
に化学酸化重合により形成してもよい。
Therefore, the present invention is directed to an anode conductor made of a valve metal, a dielectric layer formed on the surface of the anode conductor, and a high conductivity layer formed on the surface of the dielectric layer. A method for producing a solid electrolytic capacitor including a solid electrolyte including a molecular layer, the method comprising: forming a first conductive polymer film, which is a part of the conductive polymer layer, in a first solution; Forming a second conductive polymer film, which is another part of the conductive polymer layer, in a second solution having a pH lower than that of the first solution. Membrane and second
Provided is a method for manufacturing a solid electrolytic capacitor, which comprises forming a conductive polymer film together by electrolytic oxidation polymerization. The first and second conductive polymer films may be formed by chemical oxidative polymerization instead of electrolytic oxidative polymerization.

【0012】また、本発明は、弁金属からなる陽極導体
と、この陽極導体の表面に形成された誘電体層と、この
誘電体層の表面に形成され、導電性高分子層を含む固体
電解質と、を含む固体電解コンデンサであって、上記陽
極導体が複数の孔を含み、上記導電性高分子層が、複数
の粒子からなる第1導電性高分子膜と、上記複数の粒子
の平均粒径よりも大きな平均粒径を有する第2導電性高
分子膜とを含み、第2導電性高分子膜が、上記複数の孔
の開口を覆うように形成され、かつ第1導電性高分子膜
が、少なくともその一部が上記複数の孔の内部に配置さ
れるように形成されるか、または、上記導電性高分子層
の最外膜として配置された固体電解コンデンサを提供す
る。
Further, the present invention provides an anode conductor made of a valve metal, a dielectric layer formed on the surface of the anode conductor, and a solid electrolyte formed on the surface of the dielectric layer and containing a conductive polymer layer. And a first conductive polymer film including a plurality of holes, wherein the anode conductor includes a plurality of holes, and an average particle size of the plurality of particles. A second conductive polymer film having an average particle size larger than the diameter, the second conductive polymer film is formed to cover the openings of the plurality of holes, and the first conductive polymer film However, at least a part thereof is formed so as to be arranged inside the plurality of holes, or is provided as an outermost film of the conductive polymer layer.

【0013】[0013]

【発明の実施の形態】本発明によれば、低いESRと大
きい容量との両立に適した固体電解コンデンサとその製
造方法が提供される。電解酸化重合により形成される導
電性高分子膜の状態は、その重合に用いる重合溶液のp
Hに依存する。同様に、化学酸化重合により形成される
導電性高分子膜の状態も、その重合に用いる重合溶液の
pHに依存する。なお、モノマーを含有する溶液(モノ
マー溶液)と酸化剤を含有する溶液(酸化剤溶液)の2
液を用いて化学酸化重合を行う場合、モノマー溶液のp
Hと酸化剤溶液のpHが異なるときには、重合溶液のp
Hは、高分子の骨格を形成するモノマーの活性により大
きな影響を与えるモノマー溶液のpHを指すこととす
る。
According to the present invention, there is provided a solid electrolytic capacitor suitable for achieving both low ESR and large capacitance, and a method for manufacturing the same. The state of the conductive polymer film formed by electrolytic oxidation polymerization is the p of the polymerization solution used for the polymerization.
Depends on H. Similarly, the state of the conductive polymer film formed by the chemical oxidative polymerization also depends on the pH of the polymerization solution used for the polymerization. It should be noted that 2 of a solution containing a monomer (monomer solution) and a solution containing an oxidant (oxidant solution)
When chemical oxidative polymerization is performed using a liquid, p of the monomer solution
When the pH of H and the oxidant solution are different, p of the polymerization solution
H shall refer to the pH of the monomer solution that has a greater effect on the activity of the monomers that form the backbone of the polymer.

【0014】一般に、pHが相対的に高い重合溶液から
形成した導電性高分子膜は、pHが相対的に低い重合溶
液から形成した導電性高分子膜よりも細かい粒子状とな
り、その比表面積は相対的に大きくなる。pHが低い重
合溶液から形成した導電性高分子膜は、粒子状というよ
りは1つの連続体として観察されることもある。なお、
本明細書では、「平均粒径」という用語を、単一の粒
子、即ち粒界が観察されない連続したフィルムとして観
察される膜にも、その単一粒子の粒径を「平均粒径」と
読み替えることにより適用する。
Generally, a conductive polymer film formed from a polymerization solution having a relatively high pH has finer particles than a conductive polymer film formed from a polymerization solution having a relatively low pH, and its specific surface area is It becomes relatively large. The conductive polymer film formed from the polymerization solution having a low pH may be observed as one continuous body rather than as a particle. In addition,
In the present specification, the term “average particle size” refers to a single particle, that is, a film observed as a continuous film in which grain boundaries are not observed, and the particle size of the single particle is referred to as “average particle size”. Apply by replacing.

【0015】従来、電解酸化重合のための重合溶液で
は、上記のとおり、膜の特性を一定とするために、pH
を所定範囲内に調整すべきことが知られていた。また、
電解酸化重合の反応速度は、pHが低い範囲でより速く
なることも知られていた。しかし、異なるpHを有する
ように調製された複数の重合溶液を用い、好ましくは陽
極導体の表面に形成された細孔の形状を考慮しつつ、E
SRの低下と容量の増大とを同時に追求できるように膜
の形状を調整した複数の導電性高分子膜を積層すること
は未だ提案されていない。細かい粒子状の導電性高分子
膜は、細孔への充填および層外表面の拡面化に有利であ
る。これに対し、大きい粒子状の、または連続したフィ
ルム状の導電性高分子膜は、層の低抵抗化に有利であ
る。
Conventionally, in a polymerization solution for electrolytic oxidative polymerization, in order to keep the characteristics of the membrane constant, as described above,
Was known to be adjusted within a predetermined range. Also,
It was also known that the reaction rate of electrolytic oxidative polymerization was higher in the low pH range. However, using a plurality of polymerization solutions prepared so as to have different pHs, preferably while considering the shape of the pores formed on the surface of the anode conductor, E
It has not been proposed yet to stack a plurality of conductive polymer films whose film shapes are adjusted so that SR lowering and capacity increasing can be pursued at the same time. The conductive polymer film in the form of fine particles is advantageous for filling the pores and expanding the outer surface of the layer. On the other hand, a conductive polymer film in the form of large particles or a continuous film is advantageous for lowering the resistance of the layer.

【0016】これを考慮して、本発明の一形態では、相
対的に平均粒径が小さい第1導電性高分子膜上に、相対
的に平均粒径が大きい第2導電性高分子膜が形成され
る。換言すれば、相対的にpHが大きい重合溶液から形
成された第1導電性高分子膜上に、相対的にpHが小さ
い重合溶液から形成された第2導電性高分子膜が形成さ
れる。この場合、第1導電性高分子膜は、少なくともそ
の一部が陽極導体の表面に形成された複数の孔の内部に
配置されるように形成するとよい。固体電解コンデンサ
の高容量化、特に低周波帯域での容量の確保、には、細
孔の深部にまで導電性高分子を充填することが好ましい
からである。さらに、第2導電性高分子膜を、陽極導体
に形成された複数の孔の開口を覆うように形成すると、
高容量化とともに低ESR化を実現しやすくなり、さら
には高周波帯域での容量の確保も容易となる。
In consideration of this, in one embodiment of the present invention, the second conductive polymer film having a relatively large average particle size is provided on the first conductive polymer film having a relatively small average particle size. It is formed. In other words, the second conductive polymer film formed from the polymerization solution having a relatively low pH is formed on the first conductive polymer film formed from the polymerization solution having a relatively high pH. In this case, the first conductive polymer film may be formed such that at least a part thereof is arranged inside the plurality of holes formed on the surface of the anode conductor. This is because, in order to increase the capacity of the solid electrolytic capacitor, especially to secure the capacity in the low frequency band, it is preferable to fill the conductive polymer to the deep part of the pores. Further, when the second conductive polymer film is formed so as to cover the openings of the plurality of holes formed in the anode conductor,
It is easy to realize high capacity and low ESR, and it is also easy to secure capacity in a high frequency band.

【0017】本発明の別の一形態では、相対的に平均粒
径が大きい第2導電性高分子膜上に、相対的に平均粒径
が小さい第1導電性高分子膜が形成される。換言すれ
ば、相対的にpHが小さい重合溶液から形成された第2
導電性高分子膜上に、相対的にpHが大きい重合溶液か
ら形成された第1導電性高分子膜が形成される。この場
合、第1導電性高分子膜は、導電性高分子層の最外膜と
して、即ち陰極導体と接する膜として配置するとよい。
固体電解コンデンサの低ESR化、特に高周波帯域での
低ESR化には、導電性高分子層と陰極導体との接触面
積を増加させて接触抵抗を低下させることが好ましいか
らである。ここでも、第2導電性高分子膜により、陽極
導体に形成された複数の孔の開口を覆うとよい。
In another aspect of the present invention, the first conductive polymer film having a relatively small average particle size is formed on the second conductive polymer film having a relatively large average particle size. In other words, the second formed from the polymerization solution having a relatively low pH.
A first conductive polymer film formed of a polymerization solution having a relatively high pH is formed on the conductive polymer film. In this case, the first conductive polymer film may be arranged as the outermost film of the conductive polymer layer, that is, as the film in contact with the cathode conductor.
This is because it is preferable to increase the contact area between the conductive polymer layer and the cathode conductor to reduce the contact resistance in order to reduce the ESR of the solid electrolytic capacitor, particularly in the high frequency band. Here again, the openings of the plurality of holes formed in the anode conductor may be covered with the second conductive polymer film.

【0018】本発明の好ましい一形態では、導電性高分
子層のまた別の一部となる第3導電性高分子膜がさらに
形成される。この膜は、第2導電性高分子膜を形成する
ための第2溶液よりも高いpHを有する第3溶液内で形
成すればよい。この成膜法を用いれば、第3導電性高分
子膜を、第2導電性高分子膜の平均粒径よりも小さい平
均粒径を有する複数の粒子から構成できる。第3導電性
高分子膜も、第1および第2導電性高分子膜と同種の重
合法(電解酸化重合または化学酸化重合)により形成す
るとよい。
In a preferred embodiment of the present invention, a third conductive polymer film, which is another part of the conductive polymer layer, is further formed. This film may be formed in a third solution having a higher pH than the second solution for forming the second conductive polymer film. By using this film forming method, the third conductive polymer film can be composed of a plurality of particles having an average particle size smaller than that of the second conductive polymer film. The third conductive polymer film may also be formed by the same polymerization method (electrolytic oxidation polymerization or chemical oxidation polymerization) as the first and second conductive polymer films.

【0019】第3導電性高分子膜を形成する場合は、例
えば、まず第1導電性高分子膜を少なくともその一部が
陽極導体に形成された複数の孔の内部に配置されるよう
に形成し、次に第2導電性高分子膜を上記複数の孔の開
口を覆うように形成し、さらに第3導電性高分子膜を導
電性高分子層の最外膜となるように形成するとよい。こ
の好ましい形態によれば、細孔への導電性高分子の充填
と、陰極導体との接触面積の増大とを同時に実現でき
る。この場合、第3導電性高分子膜は、第2導電性高分
子膜の表面を拡面化する膜として機能する。
In the case of forming the third conductive polymer film, for example, first, the first conductive polymer film is formed so that at least a part of the first conductive polymer film is arranged inside the plurality of holes formed in the anode conductor. Then, the second conductive polymer film may be formed to cover the openings of the plurality of holes, and the third conductive polymer film may be formed to be the outermost film of the conductive polymer layer. . According to this preferable mode, it is possible to simultaneously fill the pores with the conductive polymer and increase the contact area with the cathode conductor. In this case, the third conductive polymer film functions as a film for expanding the surface of the second conductive polymer film.

【0020】本発明の製造方法では、第1溶液のpHと
第2溶液とのpHとの差は、例えば1.5以上が適当で
あり、2.5以上が好ましく、5以上がより好ましい。
特に限定されないが、第1溶液はアルカリ性が、第2溶
液は酸性が好適である。なお、本発明の方法で用いる重
合溶液に含まれる溶媒は、典型的には水であるが、これ
に限定されず、水と有機溶媒との混合液(好ましくは水
と相溶性のある有機溶媒)、エタノール、イソプロパノ
ールのようなアルコールなどの有機溶媒であってもよ
い。
In the production method of the present invention, the difference between the pH of the first solution and the pH of the second solution is, for example, suitably 1.5 or more, preferably 2.5 or more, more preferably 5 or more.
Although not particularly limited, the first solution is preferably alkaline and the second solution is preferably acidic. The solvent contained in the polymerization solution used in the method of the present invention is typically water, but is not limited thereto. A mixed liquid of water and an organic solvent (preferably an organic solvent compatible with water) ), An organic solvent such as alcohol such as ethanol or isopropanol.

【0021】細孔内に形成するための導電性高分子膜を
構成する粒子の平均粒径は、細孔の径にもよるが、一般
には0.1μm以下が適当であり、0.07μm以下が
好ましく、特に0.01μm〜0.1μmが好適であ
る。より具体的には、陽極導体に形成された複数の孔の
孔径の体積分布率の最頻値に対応する孔径の30%以
下、特に20%以下、が好ましい。孔径の体積分布率
は、細孔分布測定装置により測定できる。
The average particle size of the particles forming the conductive polymer film to be formed in the pores depends on the diameter of the pores, but generally 0.1 μm or less is suitable and 0.07 μm or less. Is preferable, and 0.01 μm to 0.1 μm is particularly preferable. More specifically, 30% or less, particularly 20% or less, of the hole diameter corresponding to the mode of the volume distribution ratio of the hole diameters of the plurality of holes formed in the anode conductor is preferable. The volume distribution ratio of pore diameter can be measured by a pore distribution measuring device.

【0022】最外膜として形成する導電性高分子膜を構
成する粒子の平均粒径は、一般には5μm以下が適当で
あり、1μm以下がより好ましい。
The average particle size of the particles forming the conductive polymer film formed as the outermost film is generally 5 μm or less, and more preferably 1 μm or less.

【0023】導電性高分子膜を構成する粒子の粒径は、
例えば電解酸化重合の場合には、重合液の溶媒、ドーパ
ント、モノマーなどの組成や種類、印加電圧による重合
速度の相違によっても影響を受ける。しかし、pHによ
る粒径の調整は、これら他の要因による調整よりも、固
体電解コンデンサの好ましい製造条件を損なうことなく
実施できる範囲が広く、異なる組成や種類による調整に
加えて実施できるという利点がある。
The particle size of the particles constituting the conductive polymer film is
For example, in the case of electrolytic oxidative polymerization, it is also affected by the composition and types of the solvent of the polymerization solution, the dopant, the monomer, etc., and the difference in the polymerization rate depending on the applied voltage. However, the adjustment of the particle size by pH has a wider range that can be performed without impairing the preferable manufacturing conditions of the solid electrolytic capacitor than the adjustment by these other factors, and has the advantage that it can be performed in addition to the adjustment by different compositions and types. is there.

【0024】一般に、導電性高分子の細孔への充填率の
向上は、細孔の深さが深くなるほどその重要性が高くな
る。陽極導体に形成された複数の孔の深さの平均値が4
0μmを超える場合には、平均粒径が相対的に小さく、
少なくともその一部が複数の孔の内部に配置されるよう
に形成した導電性高分子膜の必要性は高くなる。一方、
陽極導体に形成された複数の孔の深さの平均値が40μ
m以下である場合には、上記導電性高分子膜の形成に大
きな効果が期待できないこともある。後者の場合には、
製造コストの削減を重視して、電解酸化重合の第1工程
として平均粒径が相対的に大きい導電性高分子膜により
孔の開口を覆い、第2工程として平均粒径が相対的に小
さい導電性高分子膜により陰極導体との接触抵抗の低減
を図るべきこともある。
Generally, the improvement of the filling rate of the conductive polymer in the pores becomes more important as the depth of the pores becomes deeper. The average depth of the holes formed in the anode conductor is 4
If it exceeds 0 μm, the average particle size is relatively small,
The necessity of the conductive polymer film formed so that at least a part thereof is arranged inside the plurality of holes becomes high. on the other hand,
The average depth of the holes formed in the anode conductor is 40μ.
When it is m or less, a great effect may not be expected in the formation of the conductive polymer film. In the latter case,
Emphasizing reduction of manufacturing cost, the opening of the pores is covered with a conductive polymer film having a relatively large average particle size as the first step of electrolytic oxidation polymerization, and the conductive layer having a relatively small average particle size is used as the second step. In some cases, the contact resistance with the cathode conductor should be reduced by the conductive polymer film.

【0025】即ち、本発明は、その別の側面から、弁金
属からなる陽極導体と、この陽極導体の表面に形成され
た誘電体層と、この誘電体層の表面に形成され、導電性
高分子層を含む固体電解質とを含む固体電解コンデンサ
の製造方法であって、上記導電性高分子層の少なくとも
一部を電解酸化重合により形成し、上記陽極導体に形
成された複数の孔の深さの平均値が40μmを超えると
きには、上記電解酸化重合の第1工程として、上記導電
性高分子層の一部となる第1導電性高分子膜を、第1溶
液内において少なくともその一部が上記複数の孔の内部
に配置されるように形成し、上記電解酸化重合の第2工
程として、上記導電性高分子層の別の一部となる第2導
電性高分子膜を、第1溶液よりも低いpHを有する第2
溶液内において上記複数の孔の開口を覆うように形成
し、上記複数の孔の深さの平均値が40μm以下であ
るときには、上記電解酸化重合の第1工程として、上記
導電性高分子層の一部となる第2導電性高分子膜を第1
溶液内において上記陽極導体に形成された複数の孔の開
口を覆うように形成し、上記電解酸化重合の第2工程と
して、上記導電性高分子層の別の一部となる第1導電性
高分子膜を上記第1溶液よりも高いpHを有する第2溶
液内において上記導電性高分子層の最外膜として形成す
る、固体電解コンデンサの製造方法を提供する。ここで
も、第1および第2導電性高分子膜は、電解酸化重合で
はなく化学酸化重合により形成しても構わない。
That is, according to another aspect of the present invention, an anode conductor made of a valve metal, a dielectric layer formed on the surface of this anode conductor, and a conductive layer formed on the surface of this dielectric layer are provided. A method for producing a solid electrolytic capacitor including a solid electrolyte including a molecular layer, wherein at least a part of the conductive polymer layer is formed by electrolytic oxidation polymerization, and a depth of a plurality of holes formed in the anode conductor. When the average value of is more than 40 μm, as a first step of the electrolytic oxidative polymerization, at least a part of the first conductive polymer film, which is a part of the conductive polymer layer, in the first solution is As a second step of the electrolytic oxidative polymerization, a second conductive polymer film, which is another part of the conductive polymer layer, is formed so as to be arranged inside the plurality of holes, and the second solution is formed from the first solution. Second with a very low pH
When it is formed so as to cover the openings of the plurality of holes in the solution and the average value of the depth of the plurality of holes is 40 μm or less, as the first step of the electrolytic oxidation polymerization, the conductive polymer layer First part of the second conductive polymer film that becomes a part
In the solution, a plurality of holes formed in the anode conductor are formed so as to cover the openings of the plurality of holes, and as a second step of the electrolytic oxidation polymerization, the first conductive high layer serving as another part of the conductive polymer layer is formed. Provided is a method for manufacturing a solid electrolytic capacitor, which comprises forming a molecular film as an outermost film of the conductive polymer layer in a second solution having a higher pH than the first solution. Here again, the first and second conductive polymer films may be formed by chemical oxidative polymerization instead of electrolytic oxidative polymerization.

【0026】以下、本発明の好ましい実施形態を、図面
を参照してさらに説明する。
Hereinafter, preferred embodiments of the present invention will be further described with reference to the drawings.

【0027】図1に示すように、コンデンサ素子は、一
般に、陽極導体1上に、誘電体層2、固体電解質3、陰
極導体4がこの順に積層された構造を有している。陰極
導体4は、カーボン層5と外装銀導電性樹脂層6とから
なる2層構造としてもよい。陽極導体1は、弁作用を有
する金属の板、箔もしくは線と弁作用を有する金属の微
粒子からなる焼結体、または例えばエッチングにより拡
面処理を施した金属箔によって形成される。弁金属に
は、タンタル、アルミニウム、チタン、ニオブ、ジルコ
ニウムまたはこれら金属の合金、好ましくはタンタル、
アルミニウムおよびニオブから選ばれる少なくとも1
種、を用いればよく、例えばタンタル粉末とニオブ箔ま
たは線を用いたコンデンサとしてもよい。
As shown in FIG. 1, a capacitor element generally has a structure in which a dielectric layer 2, a solid electrolyte 3, and a cathode conductor 4 are laminated in this order on an anode conductor 1. The cathode conductor 4 may have a two-layer structure including a carbon layer 5 and an exterior silver conductive resin layer 6. The anode conductor 1 is formed of a metal plate having a valve action, a foil or a sintered body made of fine particles of a wire and a metal having a valve action, or a metal foil subjected to surface expansion treatment by etching, for example. Valve metals include tantalum, aluminum, titanium, niobium, zirconium or alloys of these metals, preferably tantalum,
At least one selected from aluminum and niobium
The seed may be used, and for example, a capacitor using tantalum powder and niobium foil or wire may be used.

【0028】誘電体層2は、陽極導体1の表面を電解酸
化させた酸化膜であり、焼結体やエッチング箔などの空
孔部にも形成される。酸化膜の厚みは電解酸化の電圧に
より調整できる。
The dielectric layer 2 is an oxide film obtained by electrolytically oxidizing the surface of the anode conductor 1, and is also formed in voids such as a sintered body and an etching foil. The thickness of the oxide film can be adjusted by the voltage of electrolytic oxidation.

【0029】固体電解質3には、少なくとも導電性高分
子層が含まれている。導電性高分子層は、例えばポリピ
ロール、ポリチオフェン、ポリアニリン、ポリ−3、4
−エチレンジオキシチオフェン、特にピロール、チオフ
ェンおよび3、4−エチレンジオキシチオフェンおよび
これらの誘導体から選ばれる少なくとも1種の重合体、
を含むことが好ましい。導電性高分子層は、ピロールな
どのモノマーと、アルキルナフタレンスルホン酸などの
ドーパントと、硫酸鉄(III)、過硫酸アンモニウムな
どの酸化剤とを用いる化学酸化重合により形成できる。
化学酸化重合に代えて、あるいは化学酸化重合ととも
に、詳細を後述する電解酸化重合により形成してもよ
い。
The solid electrolyte 3 contains at least a conductive polymer layer. The conductive polymer layer is, for example, polypyrrole, polythiophene, polyaniline, poly-3, 4,
-Ethylenedioxythiophene, in particular pyrrole, thiophene and at least one polymer selected from 3,4-ethylenedioxythiophene and derivatives thereof,
It is preferable to include. The conductive polymer layer can be formed by chemical oxidative polymerization using a monomer such as pyrrole, a dopant such as alkylnaphthalenesulfonic acid, and an oxidizing agent such as iron (III) sulfate and ammonium persulfate.
Instead of chemical oxidative polymerization, or together with chemical oxidative polymerization, it may be formed by electrolytic oxidative polymerization whose details will be described later.

【0030】なお、固体電解質3には、例えば二酸化マ
ンガン、酸化ルテニウムなどの酸化物導電体、TCNQ
錯体(7,7,8,8−テトラシアノキノジメタンコン
プレックス塩)などの有機物半導体が含まれていてもよ
い。
The solid electrolyte 3 includes, for example, an oxide conductor such as manganese dioxide or ruthenium oxide, TCNQ.
An organic semiconductor such as a complex (7,7,8,8-tetracyanoquinodimethane complex salt) may be contained.

【0031】図2に陽極導体1の細孔101近傍の拡大
図を示す。この固体電解コンデンサでは、固体電解質
は、化学酸化重合により形成された導電性膜300に加
え、いずれも電解酸化重合により形成された第1導電性
高分子膜301、第2導電性高分子膜302、および第
3導電性高分子膜303から構成されている。導電性膜
300は、例えば硝酸マンガンの熱分解により形成され
た二酸化マンガンであり、また例えば化学酸化重合によ
って形成された導電性高分子膜である。3つの膜301
〜303を形成するための電解酸化重合は、膜300の
導電性を利用して実施される。
FIG. 2 shows an enlarged view of the vicinity of the pores 101 of the anode conductor 1. In this solid electrolytic capacitor, the solid electrolyte contains a first conductive polymer film 301 and a second conductive polymer film 302 both formed by electrolytic oxidation polymerization in addition to the conductive film 300 formed by chemical oxidation polymerization. , And a third conductive polymer film 303. The conductive film 300 is, for example, manganese dioxide formed by thermal decomposition of manganese nitrate, or a conductive polymer film formed by, for example, chemical oxidative polymerization. Three membranes 301
The electro-oxidative polymerization to form ~ 303 is performed utilizing the conductivity of the membrane 300.

【0032】電解酸化重合では、pHが相対的に高い重
合溶液から第1および第3導電性高分子膜301,30
3が、pHが相対的に低い重合溶液から第2導電性高分
子膜302がそれぞれ形成される。その結果、膜30
1,303は細粒状となり、膜302は粒径が大きく、
場合によっては全体が一つの粒子、即ち連続したフィル
ム状に形成される。第1導電性高分子膜301はその少
なくとも一部が細孔101の内部に入り込み、好ましく
は細孔101内の誘電体層2の表面を実質的に覆うよう
に、第2導電性高分子膜302は細孔101の開口を覆
うように、第3導電性高分子膜303は陰極導体4と接
触する最外膜として、この順に形成される。
In the electrolytic oxidative polymerization, the first and third conductive polymer films 301, 30 are prepared from a polymerization solution having a relatively high pH.
3, the second conductive polymer film 302 is formed from a polymerization solution having a relatively low pH. As a result, the membrane 30
1, 303 is a fine grain, the film 302 has a large grain size,
In some cases, the whole is formed into one particle, that is, a continuous film. The second conductive polymer film 301 is such that at least a part of the first conductive polymer film 301 enters the inside of the pores 101 and preferably substantially covers the surface of the dielectric layer 2 in the pores 101. The third conductive polymer film 303 is formed in this order as an outermost film in contact with the cathode conductor 4 so that 302 covers the opening of the pore 101.

【0033】このように導電性高分子膜を配置すると、
第1導電性高分子膜301により誘電体膜2が本来有す
る容量を引き出すことができ、第2導電性高分子膜30
2により固体電解質を低抵抗化でき、第3導電性高分子
膜303により陰極導体4との間の接触抵抗を低減でき
る。
When the conductive polymer film is arranged in this way,
The first conductive polymer film 301 can bring out the capacitance originally possessed by the dielectric film 2, and the second conductive polymer film 30
2 can reduce the resistance of the solid electrolyte, and the third conductive polymer film 303 can reduce the contact resistance with the cathode conductor 4.

【0034】第1導電性高分子膜301は、細孔の深さ
102の平均値が40μmを超えるときに、その形成の
効果が大きい。弁金属としてタンタルまたはニオブを用
いた粉末とリード線または箔とを組み合わせた構造のコ
ンデンサでは、細孔の深さの平均が40μmを超えるこ
とが多い。従って、タンタルまたはニオブを弁金属とす
る場合には、第1導電性高分子膜301の形成が高容量
化にしばしば顕著な効果をもたらす。この膜301の平
均粒径は、上記のとおり、具体的には細孔101の孔径
最頻値との関連で定めることが好ましいが、一般には
0.1μm以下が好適である。この平均粒径を実現する
ためには、第1導電性高分子膜301を形成するための
重合溶液のpHは、重合方法やモノマーの種類などにも
よるが、7以上、例えば電解酸化重合によるときには7
〜10に設定するとよい。
The first conductive polymer film 301 has a great effect on its formation when the average value of the depths 102 of the pores exceeds 40 μm. In a capacitor having a structure in which a powder using tantalum or niobium as a valve metal is combined with a lead wire or a foil, the average depth of pores often exceeds 40 μm. Therefore, when tantalum or niobium is used as the valve metal, the formation of the first conductive polymer film 301 often brings a remarkable effect to increase the capacity. As described above, the average particle size of the film 301 is preferably determined in relation to the mode of the pore size of the pores 101, but is generally 0.1 μm or less. In order to realize this average particle diameter, the pH of the polymerization solution for forming the first conductive polymer film 301 depends on the polymerization method and the kind of the monomer, but is 7 or more, for example, by electrolytic oxidation polymerization. Sometimes 7
It is recommended to set to 10.

【0035】なお、弁金属としてアルミニウムのエッチ
ング箔を用いる場合には、孔の形成の方法によっては細
孔の深さの平均値が40μm以下となることもある。こ
の場合には、第1導電性高分子膜301の形成を省略し
てもよい。
When an aluminum etching foil is used as the valve metal, the average depth of the pores may be 40 μm or less depending on the method of forming the pores. In this case, the formation of the first conductive polymer film 301 may be omitted.

【0036】第2導電性高分子膜302は、複数の孔の
開口を覆い、かつ膜の外側表面が誘電体層2の最外側
(最も高い位置)よりも常に高い位置にあるように、換
言すれば膜の外側表面が細孔の内側には入り込まない程
度にまで、堆積させるとよい(図2参照)。この第2導
電性高分子膜302は、粒界が少なく、かつ陽極導体1
全体を連続したフィルムとして包み込み、導電性高分子
層全体を低抵抗化する。第2導電性高分子膜302を形
成するための重合溶液のpHは、同じく重合方法などに
もよるが、7以下、例えば電解酸化重合によるときには
2〜7に設定するとよい。
The second conductive polymer film 302 covers the openings of the plurality of holes, and in other words, the outer surface of the film is always higher than the outermost (highest position) of the dielectric layer 2. Then, the film may be deposited to such an extent that the outer surface of the film does not enter the inside of the pores (see FIG. 2). The second conductive polymer film 302 has few grain boundaries and is the anode conductor 1.
The whole is wrapped as a continuous film to reduce the resistance of the entire conductive polymer layer. The pH of the polymerization solution for forming the second conductive polymer film 302 depends on the polymerization method and the like, but may be set to 7 or less, for example, 2 to 7 in the case of electrolytic oxidation polymerization.

【0037】第2導電性高分子膜302の外側表面は比
較的平坦となるため、陰極導体との接触抵抗の低減には
第3導電性高分子膜303の形成が望ましい。第3導電
性高分子膜303の平均粒径は、第1導電性高分子膜3
01の平均粒径程度にまで制限する必要はなく、一般に
は5μm以下とすれば拡面化の目的を達成できる。第3
導電性高分子膜303を形成するための重合溶液のpH
は、同じく重合方法などにもよるが、4.5以上、例え
ば電解酸化重合によるときには4.5〜10に設定する
とよい。
Since the outer surface of the second conductive polymer film 302 is relatively flat, it is desirable to form the third conductive polymer film 303 to reduce the contact resistance with the cathode conductor. The average particle diameter of the third conductive polymer film 303 is the same as the first conductive polymer film 3
It is not necessary to limit the average particle size to 01, and generally 5 μm or less can achieve the purpose of surface enlargement. Third
PH of polymerization solution for forming conductive polymer film 303
Depends on the polymerization method and the like, but is preferably set to 4.5 or more, for example, 4.5 to 10 when electrolytic oxidation polymerization is performed.

【0038】各導電性高分子膜301〜303の比率
は、特に制限されないが、第2導電性高分子膜を1とし
たときに、重量比により表示して、第1導電性高分子膜
301が0.5〜2、第3導電性高分子膜303が0.
1〜0.5であることが好ましい。電解酸化重合の場
合、各膜の重量比は、当該膜の形成に消費される電流量
に実質的に比例し、この電流量により制御できる。
The ratio of the respective conductive polymer films 301 to 303 is not particularly limited, but when the second conductive polymer film is 1, it is expressed by the weight ratio and the first conductive polymer film 301 is displayed. Is 0.5 to 2 and the third conductive polymer film 303 is 0.
It is preferably 1 to 0.5. In the case of electrolytic oxidative polymerization, the weight ratio of each film is substantially proportional to the amount of current consumed to form the film, and can be controlled by this amount of current.

【0039】相対的に大きい平均粒径を有する第2導電
性高分子膜302の形成により、細孔101の内部に
は、導電性高分子が充填されていない空乏103が残存
することがある。しかし、細粒状の導電性高分子を形成
し続けて細孔を充填するよりも、相対的に低いpHの下
で低抵抗の導電性高分子膜302を形成したほうが、固
体電解コンデンサの特性は向上する。
Due to the formation of the second conductive polymer film 302 having a relatively large average particle size, depletion 103 not filled with the conductive polymer may remain inside the pores 101. However, the characteristics of the solid electrolytic capacitor are better when the conductive polymer film 302 having a low resistance is formed at a relatively low pH, rather than continuously forming the fine conductive polymer particles and filling the pores. improves.

【0040】ここでは、電解酸化重合を用いて第1〜第
3導電性高分子膜を形成した固体電解コンデンサについ
て説明した。しかし、pHを適宜調整した化学酸化重合
により、上記と同じ効果を得ることも可能である。ただ
し、pHによる導電性高分子膜の特性の変化は、化学酸
化重合によるよりも電解酸化重合によるほうが顕著とな
る。
Here, the solid electrolytic capacitor in which the first to third conductive polymer films are formed by electrolytic oxidation polymerization has been described. However, it is possible to obtain the same effect as described above by chemical oxidative polymerization in which the pH is adjusted appropriately. However, the change in the characteristics of the conductive polymer film due to pH becomes more remarkable by electrolytic oxidative polymerization than by chemical oxidative polymerization.

【0041】陰極導体4は、例えば、カーボン層5と外
装銀導電性樹脂層6とからなる積層体とするとよい。カ
ーボン層5は、導電性粒子としてカーボン粒子を含み、
このカーボン粒子により、導電性樹脂層6に含まれる銀
粉と固体電解質層3との電気的接続が密に保たれる。
The cathode conductor 4 may be, for example, a laminated body composed of a carbon layer 5 and an exterior silver conductive resin layer 6. The carbon layer 5 contains carbon particles as conductive particles,
The carbon particles maintain close electrical connection between the silver powder contained in the conductive resin layer 6 and the solid electrolyte layer 3.

【0042】図1では省略したが、コンデンサ素子は、
陽極導体1に陽極リード端子が、陰極導体4に陰極リー
ド端子がそれぞれ接続され、さらに、例えばエポキシ樹
脂である外装樹脂内に封止され、固体電解コンデンサと
なる。
Although omitted in FIG. 1, the capacitor element is
An anode lead terminal is connected to the anode conductor 1 and a cathode lead terminal is connected to the cathode conductor 4, and further sealed in an exterior resin such as an epoxy resin to form a solid electrolytic capacitor.

【0043】以下、図3〜図8を参照して、電解酸化重
合における重合電極の配置について説明する。
The arrangement of polymerizing electrodes in electrolytic oxidation polymerization will be described below with reference to FIGS.

【0044】図3〜図7は、電解酸化重合における重合
電極の各種配置例を示す。これらの図に示されていると
おり、電解酸化重合は、膜を形成する対象となる膜形成
母体10、重合用陽極(陽電極)7および重合用陰極
(陰電極)8を重合溶液9に浸漬して行う。陽極7およ
び陰極8は電源12に接続されている。膜形成母体10
は、具体的には、少なくとも誘電体層が形成された陽極
導体である。通常、陽極7は、膜形成母体10の近傍に
固定される。このとき、陽極7および陰極8は、図3お
よび図4に示すように、これら電極7,8の間に膜形成
母体10の少なくとも一部が介在するように配置するこ
とが好ましい。図7に示した配置では、膜形成母体10
の陰極8側の表面11に形成される導電性高分子が、陰
極側、即ち母体10の表面から離れる方向へと成長しや
すくなり、この膜成長の方向性がこの表面における導電
性高分子膜の密着性に影響を及ぼすことがある。電極配
置の影響は、pHが相対的に低い、例えば酸性である重
合溶液において顕著となる。pHが低い(例えば7未満
である)重合溶液では、導電性高分子の成長が速く、か
つ導電性高分子膜が連続したフィルム状となりやすいか
らである。
3 to 7 show various examples of arrangement of polymerization electrodes in electrolytic oxidation polymerization. As shown in these figures, electrolytic oxidation polymerization involves immersing a film-forming matrix 10, a polymerization anode (positive electrode) 7 and a polymerization cathode (negative electrode) 8 on which a film is to be formed, in a polymerization solution 9. Then do. The anode 7 and the cathode 8 are connected to the power supply 12. Membrane forming base 10
Is specifically an anode conductor on which at least a dielectric layer is formed. Usually, the anode 7 is fixed near the film forming base 10. At this time, as shown in FIGS. 3 and 4, the anode 7 and the cathode 8 are preferably arranged such that at least a part of the film forming matrix 10 is interposed between the electrodes 7 and 8. In the arrangement shown in FIG. 7, the film forming base 10
The conductive polymer formed on the surface 11 of the cathode 8 side is easily grown on the cathode side, that is, in the direction away from the surface of the matrix 10. The direction of this film growth is the conductive polymer film on this surface. May affect the adhesion. The influence of the electrode arrangement becomes remarkable in a polymerization solution having a relatively low pH, for example, an acidic polymerization solution. This is because in a polymerization solution having a low pH (for example, less than 7), the conductive polymer grows quickly and the conductive polymer film is likely to be a continuous film.

【0045】即ち、本発明の方法では、陽極と陰極と
を、これら電極の間に陽極導体および誘電体層を含む膜
形成母体の少なくとも一部が介在するように配置し、こ
の陽極および陰極を用いて電解酸化重合を行うことによ
り、導電性高分子層を形成する少なくとも1つの膜、例
えば第1導電性高分子膜および第2導電性高分子膜から
選ばれる少なくとも一方、を形成することが好ましい。
That is, in the method of the present invention, the anode and the cathode are arranged so that at least a part of the film-forming matrix including the anode conductor and the dielectric layer is interposed between these electrodes, and the anode and the cathode are arranged. It is possible to form at least one film forming a conductive polymer layer, for example, at least one selected from a first conductive polymer film and a second conductive polymer film, by carrying out electrolytic oxidative polymerization. preferable.

【0046】図5、図6に示すように、複数の陰極8
a,8bを配置する場合には、陽極7といずれか一方の
陰極8a(8b)との間に、膜形成母体10の少なくと
も一部が介在するだけではなく(図5,図6)、その膜
形成母体10に対応する陽極7と、当該陽極7に最も近
い陰極8aとの間に当該膜形成母体10の少なくとも一
部が介在するように配置するべきである(図5)。この
配置によれば、陽極7と、相対的に遠い陰極8bとの間
に膜形成母体10を配置するよりも(図6)、有効に電
界を印加できる。
As shown in FIGS. 5 and 6, a plurality of cathodes 8
In the case of arranging a and 8b, not only at least a part of the film forming base 10 is interposed between the anode 7 and one of the cathodes 8a (8b) (FIGS. 5 and 6), It should be arranged such that at least a part of the film forming base 10 is interposed between the anode 7 corresponding to the film forming base 10 and the cathode 8a closest to the anode 7 (FIG. 5). According to this arrangement, the electric field can be applied more effectively than when the film forming base 10 is arranged between the anode 7 and the cathode 8b relatively far (FIG. 6).

【0047】この配置は、実際の製造工程では、複数の
膜形成母体について同一の重合溶液を用いて電解酸化重
合を実施する場合に重要となる(図8)。即ち、複数の
膜形成母体10と、これら複数の膜形成母体10のそれ
ぞれに対応する複数の陽極(陽電極)7とを準備し、複
数の陽極7のそれぞれについて、陽極7に最も近い陰極
(陰電極)8と当該陽極7との間に、当該陽極7に対応
する膜形成母体10の少なくとも一部を介在させること
が好ましい。この配置は、本発明のまた別の側面を形成
する。
This arrangement is important in the actual manufacturing process when electrolytic oxidation polymerization is carried out using the same polymerization solution for a plurality of film-forming bases (FIG. 8). That is, a plurality of film forming bases 10 and a plurality of anodes (positive electrodes) 7 respectively corresponding to the plurality of film forming bases 10 are prepared, and for each of the plurality of anodes 7, the cathode (closest to the anode 7 It is preferable to interpose at least a part of the film-forming base 10 corresponding to the anode 7 between the negative electrode) 8 and the anode 7. This arrangement forms another aspect of the invention.

【0048】即ち、本発明は、弁金属からなる陽極導体
と、この陽極導体の表面に形成された誘電体層と、この
誘電体層の表面に形成され、導電性高分子層を含む固体
電解質とを含む固体電解コンデンサの製造方法であっ
て、少なくとも上記誘電体層を予め形成した上記陽極導
体を膜形成母体として、複数の膜形成母体と、これら複
数の膜形成母体のそれぞれに対応する複数の陽極とを準
備し、複数の陽極のそれぞれについて、陽極に最も近い
陰極と当該陽極との間に当該陽極に対応する膜形成母体
の少なくとも一部を介在させた配置による電解酸化重合
により、上記導電性高分子層の少なくとも一部を形成す
る固体電解コンデンサの製造方法も提供する。この製造
方法によれば、密着性に優れた導電性高分子層を効率よ
く形成できる。
That is, the present invention provides an anode conductor made of a valve metal, a dielectric layer formed on the surface of the anode conductor, and a solid electrolyte formed on the surface of the dielectric layer and containing a conductive polymer layer. A method of manufacturing a solid electrolytic capacitor comprising: a plurality of film forming bases, and a plurality of film forming bases corresponding to each of the plurality of film forming bases, wherein the anode conductor on which at least the dielectric layer is formed in advance is used as a film forming base. An anode of, and for each of the plurality of anodes, by electrolytic oxidation polymerization by an arrangement in which at least a part of the film forming matrix corresponding to the anode is interposed between the cathode closest to the anode and the anode, Also provided is a method of manufacturing a solid electrolytic capacitor that forms at least a portion of a conductive polymer layer. According to this manufacturing method, a conductive polymer layer having excellent adhesion can be efficiently formed.

【0049】[0049]

【実施例】(実施例1) [予備実験]電解酸化重合におけるpHの相違による影
響を確認した。作製した固体電解コンデンサは、図1と
同様の構成を有する。
[Examples] (Example 1) [Preliminary experiment] The influence of the difference in pH in electrolytic oxidation polymerization was confirmed. The produced solid electrolytic capacitor has the same configuration as that shown in FIG.

【0050】まず、弁作用を有するタンタル金属の比表
面積が70000μF・V/gである微粉末を、1.4
mm×3.0mm×3.8mmに成形し、陽極引き出し
用タンタルワイヤーリードを備えた形で真空焼結し、焼
結体ペレットからなる陽極導体を作製した。次に、この
陽極導体を90℃の5重量%リン酸水溶液中で印加電圧
30Vの条件で化成することにより、陽極導体の表面に
誘電体層として酸化タンタル膜を形成した。この陽極導
体の細孔の平均的な深さは、成形体の厚み(1.4m
m)の半分、即ち700μmとなる。
First, 1.4% of fine powder having a specific surface area of tantalum metal having a valve action of 70,000 μF · V / g was prepared.
mm × 3.0 mm × 3.8 mm, and vacuum-sintered in a form equipped with a tantalum wire lead for drawing out an anode to produce an anode conductor made of a sintered pellet. Next, this anode conductor was formed in a 5 wt% phosphoric acid aqueous solution at 90 ° C. under the condition of an applied voltage of 30 V to form a tantalum oxide film as a dielectric layer on the surface of the anode conductor. The average depth of the pores of this anode conductor is the thickness of the molded body (1.4 m
m), that is, 700 μm.

【0051】陽極導体を洗浄、乾燥した後、固体電解質
を形成した。ここでは、導電性高分子としてポリ−3,
4−エチレンジオキシチオフェンを形成することとし
た。まず、誘電体層に導電性を付与するために、化学酸
化重合を行った。重合溶液は、3,4−エチレンジオキ
シチオフェン3g、アルキルナフタレンスルホン酸鉄
(III)40重量%のn−ブタノール溶液を70g、n
−ブタノール10gを混合して調製した。この重合溶液
に陽極導体を浸漬させ、40℃〜150℃の大気中で乾
燥させる作業を3回繰り返することにより化学酸化重合
を行った。引き続き、再化成電圧18Vで濃度約0.0
5%のリン酸溶液中で再化成し、誘電体層を修復した。
さらに、陽極導体を約90℃の純水中で洗浄し、約12
0℃の大気中で乾燥させた。こうして、電解酸化重合の
膜形成母体として、誘電体層および化学酸化重合による
導電性高分子膜が形成された陽極導体を得た。
After washing and drying the anode conductor, a solid electrolyte was formed. Here, as the conductive polymer, poly-3,
It was decided to form 4-ethylenedioxythiophene. First, chemical oxidative polymerization was performed to impart conductivity to the dielectric layer. The polymerization solution was 3 g of 3,4-ethylenedioxythiophene, 70 g of an n-butanol solution containing 40% by weight of iron (III) alkylnaphthalenesulfonate, and n.
Prepared by mixing 10 g butanol. Chemical oxidation polymerization was performed by repeating the operation of immersing the anode conductor in this polymerization solution and drying it in the air at 40 ° C. to 150 ° C. three times. Sequentially, at a reforming voltage of 18 V, the concentration is about 0.0
The dielectric layer was repaired by re-chemical conversion in a 5% phosphoric acid solution.
Furthermore, the anode conductor is washed in pure water at about 90 ° C.
It was dried in the atmosphere at 0 ° C. Thus, an anode conductor having a dielectric layer and a conductive polymer film formed by chemical oxidative polymerization as a film-forming matrix for electrolytic oxidative polymerization was obtained.

【0052】電解酸化重合のための電極の配置は、図3
に示したとおりとした。陽極として線径50μmの炭素
繊維を、膜形成母体の近傍に固定し、これを、陰極とと
もに重合溶液に浸漬した。重合溶液は、40重量%アル
キルナフタレンスルホン酸ナトリウム水溶液100g、
3,4−エチレンジオキシチオフェン10g、水500
g、所定量の硫酸を混合して調製した。ここで、硫酸
は、pHが所定値(2,4.5,7または10)となる
ように添加した。
The arrangement of electrodes for electrolytic oxidative polymerization is shown in FIG.
As shown in. Carbon fiber having a wire diameter of 50 μm was fixed in the vicinity of the film-forming base as an anode, and this was immersed in a polymerization solution together with the cathode. The polymerization solution was 100 g of a 40 wt% sodium alkylnaphthalene sulfonate aqueous solution,
3,4-ethylenedioxythiophene 10g, water 500
g and a predetermined amount of sulfuric acid were mixed and prepared. Here, the sulfuric acid was added so that the pH would be a predetermined value (2, 4.5, 7 or 10).

【0053】電解酸化重合は、印加電圧2.5Vで行っ
た。重合時間は、膜形成母体表層の導電性高分子層の厚
みがいずれも20μm程度となるように調整した。
The electrolytic oxidative polymerization was carried out at an applied voltage of 2.5V. The polymerization time was adjusted so that the thickness of the conductive polymer layer on the surface layer of the film-forming matrix was about 20 μm.

【0054】引き続き、導電性高分子層を形成した陽極
導体を、カーボン微粒子を含有する水性サスペンション
液に浸漬し、130℃の大気中で30分放置し、サスペ
ンション液を乾燥・固化させた。こうして、導電性高分
子層上にカーボン層を形成した。さらに、銀ペイント液
中に浸漬して室温で1時間放置し、引き上げて145℃
の大気中で1時間放置し、銀ペイント液を乾燥・固化さ
せた。こうして、カーボン層上に外装銀導電性樹脂層を
形成した。
Subsequently, the anode conductor on which the conductive polymer layer was formed was dipped in an aqueous suspension solution containing carbon fine particles and allowed to stand in the atmosphere at 130 ° C. for 30 minutes to dry and solidify the suspension solution. Thus, a carbon layer was formed on the conductive polymer layer. Furthermore, it is immersed in a silver paint solution, left at room temperature for 1 hour, and then pulled up to 145 ° C.
It was left to stand in the atmosphere for 1 hour to dry and solidify the silver paint solution. Thus, the exterior silver conductive resin layer was formed on the carbon layer.

【0055】さらに、カーボン層と外装銀導電性樹脂層
とからなる陰極導体に陰極リード端子を銀導電性接着剤
で接続し、陽極導体から引き出されたタンタルワイヤー
を陽極リード端子に溶接した。最後に、コンデンサ素子
をエポキシ樹脂で外装して、固体電解コンデンサを完成
させた。
Further, a cathode lead terminal was connected to a cathode conductor composed of a carbon layer and an exterior silver conductive resin layer with a silver conductive adhesive, and a tantalum wire pulled out from the anode conductor was welded to the anode lead terminal. Finally, the capacitor element was covered with epoxy resin to complete the solid electrolytic capacitor.

【0056】こうして得た各固体電解コンデンサについ
て、周波数120Hzおよび100kHzにおける静電
容量と、周波数100kHzおよび1MHzにおけるE
SRとを測定した。さらに、各固体電解コンデンサに電
圧10Vを印加し、1分後の電流を測定して漏れ電流と
した。結果を(表1)に示す。(表1)では、上段にサ
ンプル数20個についての最大値および最小値を、下段
に平均値をそれぞれ示す。
For each of the solid electrolytic capacitors thus obtained, the electrostatic capacity at frequencies of 120 Hz and 100 kHz and the E at frequencies of 100 kHz and 1 MHz.
SR and was measured. Furthermore, a voltage of 10 V was applied to each solid electrolytic capacitor, and the current after 1 minute was measured to obtain the leakage current. The results are shown in (Table 1). In (Table 1), the maximum value and the minimum value for 20 samples are shown in the upper part, and the average value is shown in the lower part.

【0057】[0057]

【表1】 [Table 1]

【0058】(表1)に示したとおり、120Hzでの
容量はpHが高いほど大きくなり、100kHzでの容
量はpHが低いほど大きくなった。これは、120Hz
程度の低周波帯域では細孔内部の高抵抗領域の容量を引
き出すことが可能であるが、100kHz付近にまで周
波数が高くなると低抵抗領域の容量しか引き出せなくな
り、導電性高分子自体の抵抗値の影響が相対的に高まっ
たためと考えられる。高いpHで形成した細粒状の導電
性高分子は、細孔に充填されやすく、また乾燥による膜
収縮に伴う膜剥離が生じにくい。これに対し、低いpH
で形成した導電性高分子は抵抗値が低くなる。
As shown in (Table 1), the capacity at 120 Hz increased as the pH increased, and the capacity at 100 kHz increased as the pH decreased. This is 120Hz
It is possible to draw out the capacity in the high resistance region inside the pores in a low frequency band of about a certain degree, but when the frequency increases up to around 100 kHz, only the capacity in the low resistance region can be drawn out, and the resistance value of the conductive polymer itself is This is probably because the impact was relatively high. The fine granular conductive polymer formed at a high pH is likely to be filled in the pores, and peeling of the film due to film shrinkage due to drying hardly occurs. In contrast, low pH
The conductive polymer formed in step 1 has a low resistance value.

【0059】また、100kHzでのESRはpHが低
いほど小さくなり、1MHzでのESRはpHが高いほ
ど小さくなった。この結果は、100kHz程度の帯域
では導電性高分子の抵抗値を低くして集電効果を高く保
つほうが有利であるが、1MHz程度の高周波帯域では
むしろ陰極導体との接触抵抗の影響を重視すべきことを
示唆している。
The ESR at 100 kHz was smaller as the pH was lower, and the ESR at 1 MHz was smaller as the pH was higher. As a result, it is more advantageous to lower the resistance value of the conductive polymer in the band of about 100 kHz to keep the current collecting effect high, but in the high frequency band of about 1 MHz, the influence of the contact resistance with the cathode conductor is more important. Suggests something to do.

【0060】実際に各重合溶液を用いて形成した導電性
高分子層を走査型電子顕微鏡(SEM)で観察したとこ
ろ、重合溶液のpHが高いほど導電性高分子層が細粒化
することが確認できた。SEM観察によると、pHが
2,7および10のとき、各導電性高分子層を構成する
粒子の平均粒径は、それぞれ1.5μm、0.5μmお
よび0.07μmであり、最大粒径はそれぞれ20μ
m、5μmおよび1μmであった。pH2で形成した膜
には、pH10で形成した膜の最大粒径(1μm)以下
の粒径を有する粒子は実質的には含まれていなかった。
このように、相対的にpHが低い重合溶液から形成した
導電性高分子膜は、相対的に高い導電性高分子膜で形成
した膜を構成する複数の粒子の最大粒径よりも大きな粒
径を有する粒子から構成されているか、または単一の粒
子として(連続したフィルム状に)形成されていること
が好ましい。
When the electroconductive polymer layer actually formed by using each polymerization solution was observed by a scanning electron microscope (SEM), the electroconductive polymer layer became finer as the pH of the polymerization solution was higher. It could be confirmed. According to SEM observation, when the pH is 2, 7 and 10, the average particle diameters of the particles constituting each conductive polymer layer are 1.5 μm, 0.5 μm and 0.07 μm, respectively, and the maximum particle diameter is 20μ each
m, 5 μm and 1 μm. The film formed at pH 2 was substantially free of particles having a particle size equal to or smaller than the maximum particle size (1 μm) of the film formed at pH 10.
As described above, the conductive polymer film formed from the polymerization solution having a relatively low pH has a particle size larger than the maximum particle size of the plurality of particles forming the film formed of the relatively high conductive polymer film. It is preferable that it is composed of particles having the above or is formed as a single particle (in the form of a continuous film).

【0061】漏れ電流は、低いpHで小さくなった。こ
れは、端子接続や外装樹脂のモールドの際に生じる機械
的ストレスに対する保護膜としては、粒径が大きい導電
性高分子膜がより優れているためと考えられる。
The leakage current decreased at low pH. It is considered that this is because a conductive polymer film having a large particle size is more excellent as a protective film against mechanical stress generated during terminal connection or molding of the exterior resin.

【0062】上記で作製した陽極導体の細孔分布を、自
動ポロシメータを用いて測定した。具体的には、島津製
作所製「オートポアIV9520型」を用いて測定した。
結果を図9に示す。この陽極導体の細孔径の最頻値は、
約0.35μmであった。大容量化のためにさらに比表
面積を大きくするために、例えば100000μF・V
/g以上にまで比表面積が大きい金属微粉末を用いるこ
とが望ましい。この場合に容量を引き出すには、導電性
高分子層をさらに細粒化し、例えば最大粒径を0.1μ
m以下、平均粒径を0.07μm以下とすることが望ま
れる。
The pore distribution of the anode conductor produced above was measured using an automatic porosimeter. Specifically, it was measured using "Autopore IV9520 type" manufactured by Shimadzu Corporation.
The results are shown in Fig. 9. The mode of the pore size of this anode conductor is
It was about 0.35 μm. In order to further increase the specific surface area for increasing the capacity, for example, 100,000 μF · V
It is desirable to use a fine metal powder having a large specific surface area of up to / g or more. In this case, in order to draw out the capacity, the conductive polymer layer is further made into fine particles, for example, the maximum particle diameter is
m or less, and the average particle size is preferably 0.07 μm or less.

【0063】[サンプルの作製]以上の結果に基づき、
pHが異なる2種の重合溶液を用いて電解酸化重合を実
施した。
[Preparation of Sample] Based on the above results,
Electrolytic oxidative polymerization was carried out using two kinds of polymerization solutions having different pH.

【0064】化学酸化重合による導電性高分子膜の形成
までは上記予備実験と同様とした。
Up to the formation of the conductive polymer film by chemical oxidative polymerization, the same procedure as in the above preliminary experiment was performed.

【0065】また、電解酸化重合では、重合溶液、電極
の配置、印加電圧などは、上記予備実験と同様とした。
ただし、ここでは、異なるpHの重合溶液を順次用いて
電解酸化重合を行った。
In the electrolytic oxidative polymerization, the polymerization solution, the arrangement of electrodes, the applied voltage, etc. were the same as in the above preliminary experiment.
However, here, electrolytic oxidative polymerization was carried out by sequentially using polymerization solutions having different pHs.

【0066】まず、pH10の重合溶液を用いて40分
間電解酸化重合を行って第1導電性高分子膜を形成し、
次いでpH2の重合溶液を用いて15分間電解酸化重合
を行って第2導電性高分子膜を形成した。以下、上記予
備実験と同様にして固体電解コンデンサ(サンプル1)
を得た。
First, electrolytic oxidation polymerization was carried out for 40 minutes using a polymerization solution having a pH of 10 to form a first conductive polymer film,
Next, electrolytic oxidation polymerization was carried out for 15 minutes using a polymerization solution of pH 2 to form a second conductive polymer film. Hereinafter, in the same manner as the above preliminary experiment, a solid electrolytic capacitor (Sample 1)
Got

【0067】これとは別に、pH10の重合溶液を用い
て40分間電解酸化重合を行って第1導電性高分子膜を
形成し、次いでpH2の重合溶液を用いて12分間電解
酸化重合を行って第2導電性高分子膜を形成し、さらに
pH7の重合溶液を用いて5分間電解酸化重合を行って
第3導電性高分子膜を形成した。以下、上記予備実験と
同様にして固体電解コンデンサ(サンプル2)を得た。
Separately from this, a first conductive polymer film was formed by performing electrolytic oxidative polymerization for 40 minutes using a polymerization solution having a pH of 10, and then performing electrolytic oxidative polymerization for 12 minutes using a polymerization solution having a pH of 2. A second conductive polymer film was formed, and electrolytic oxidation polymerization was further performed for 5 minutes using a polymerization solution having a pH of 7 to form a third conductive polymer film. Hereinafter, a solid electrolytic capacitor (Sample 2) was obtained in the same manner as the above preliminary experiment.

【0068】なお、電解酸化重合に用いた電流量の総量
は、サンプル1,2でほぼ同じである。また、サンプル
1について、電解酸化重合に消費した電流量は、第2導
電性高分子膜の形成のための電流量を1として、第1導
電性高分子膜については1とした。サンプル2につい
て、電解酸化重合に消費した電流量は、同じく第2導電
性高分子膜の形成のための電流量を1として、第1導電
性高分子膜については1.25、第3導電性高分子膜に
ついては0.3とした。この消費された電流量の比率
は、各導電性高分子膜の重量比に相当する。
The total amount of electric current used for electrolytic oxidation polymerization was substantially the same in Samples 1 and 2. Regarding Sample 1, the amount of current consumed for electrolytic oxidation polymerization was 1 for the first conductive polymer film and 1 for the formation of the second conductive polymer film. Regarding Sample 2, the amount of current consumed for electrolytic oxidation polymerization was 1.25 for the first conductive polymer film, and 1.25 for the first conductive polymer film, similarly with the current amount for forming the second conductive polymer film being 1. The polymer film was 0.3. The ratio of the consumed current amount corresponds to the weight ratio of each conductive polymer film.

【0069】サンプル1,2について、予備実験と同様
の測定を行った。結果を(表2)に示す。
The samples 1 and 2 were measured in the same manner as in the preliminary experiment. The results are shown in (Table 2).

【0070】[0070]

【表2】 [Table 2]

【0071】(表2)より、サンプル1,2とも、低周
波帯域から高周波帯域にかけて、容量が大きくESRが
小さくなり、さらに漏れ電流も抑制された。
From Table 2, in both Samples 1 and 2, the capacitance was large and the ESR was small from the low frequency band to the high frequency band, and the leakage current was also suppressed.

【0072】さらに、厚さ25μmのタンタル箔の両面
にタンタル粉末を塗料化したインクを厚さ40μm程度
となるように形成し、脱バインダ、真空焼結により、陽
極導体を作製した。この陽極導体の細孔の平均深さは4
0μmである。この陽極導体について、サンプル2と同
様にして固体電解コンデンサを作製し(サンプル3)、
さらに第1導電性高分子膜を第2導電性高分子膜と同じ
重合溶液で同量形成した以外はサンプル2と同様にして
別の固体電解コンデンサを作製した(サンプル4)。両
コンデンサの特性を比較すると、120Hzの容量にお
いてサンプル4がやや劣っていた。しかし、細粒状の第
1導電性高分子膜の省略による特性の劣化の程度は、弁
金属をタンタルとした細孔が深い固体電解コンデンサよ
りも遙かに小さかった。
Further, an ink containing tantalum powder as a paint was formed on both sides of a tantalum foil having a thickness of 25 μm so as to have a thickness of about 40 μm, and binder removal and vacuum sintering were performed to produce an anode conductor. The average depth of the pores of this anode conductor is 4
It is 0 μm. Using this anode conductor, a solid electrolytic capacitor was prepared in the same manner as in Sample 2 (Sample 3),
Further, another solid electrolytic capacitor was prepared in the same manner as in Sample 2 except that the same amount of the first conductive polymer film was formed using the same polymerization solution as the second conductive polymer film (Sample 4). Comparing the characteristics of both capacitors, Sample 4 was slightly inferior at a capacity of 120 Hz. However, the degree of deterioration of the characteristics due to the omission of the fine granular first conductive polymer film was much smaller than that of the solid electrolytic capacitor having deep tantalum valve metal pores.

【0073】(実施例2)実施例2では、重合法として
化学酸化重合を用いた。
Example 2 In Example 2, chemical oxidative polymerization was used as the polymerization method.

【0074】イソプロピルアルコールを10体積%含有
する水溶液中にモノマーとしてピロールを0.1mol
/lとアルキルナフタレンスルホン酸0.02mol/
lのNa塩とを溶解させ、これに硫酸または水酸化ナト
リウムを添加し、pHが2、4.5、7、10のモノマ
ー溶液を調製した。一方、イソプロピルアルコール10
体積%を含有する水溶液に酸化剤として過硫酸ナトリウ
ム0.1mol/lとアルキルナフタレンスルホン酸
0.05mol/lのNa塩とを溶解させ、これに硫酸
または水酸化ナトリウムを添加して、pHが2、4.
5、7、10の酸化剤溶液を調製した。
0.1 mol of pyrrole was used as a monomer in an aqueous solution containing 10% by volume of isopropyl alcohol.
/ L and alkyl naphthalene sulfonic acid 0.02 mol /
1 of Na salt was dissolved and sulfuric acid or sodium hydroxide was added thereto to prepare a monomer solution having a pH of 2, 4.5, 7, 10. On the other hand, isopropyl alcohol 10
Sodium persulfate 0.1 mol / l and Na salt of alkylnaphthalene sulfonic acid 0.05 mol / l were dissolved as an oxidizing agent in an aqueous solution containing 10% by volume, and sulfuric acid or sodium hydroxide was added thereto to adjust pH. 2, 4.
5, 7, and 10 oxidant solutions were prepared.

【0075】実施例1と同様にして誘電体層を形成した
陽極導体を、上記pH2のモノマー溶液に浸漬した後、
上記pH2の酸化剤溶液に浸漬することにより、誘電体
層上にポリピロール膜を形成し、さらに洗浄、乾燥を行
った。このポリピロール膜形成工程を40回繰り返しな
がら、適宜、濃度約0.05%のリン酸溶液中で陽極導
体を再化成し、誘電体層を修復した。再化成電圧は18
Vとした。次いで、陽極導体を約90℃の純水中で洗浄
し、約120℃の大気中で乾燥させ、導電性高分子層を
形成した。以下、実施例1と同様にして固体電解コンデ
ンサを得た。また、各pHについて同様にして固体電解
コンデンサを得た。
The anode conductor on which the dielectric layer was formed in the same manner as in Example 1 was immersed in the above-mentioned monomer solution of pH 2 and
A polypyrrole film was formed on the dielectric layer by immersing it in the oxidant solution of pH 2 described above, and further washed and dried. While repeating this polypyrrole film forming step 40 times, the anode conductor was appropriately re-formed in a phosphoric acid solution having a concentration of about 0.05% to restore the dielectric layer. Reforming voltage is 18
It was set to V. Next, the anode conductor was washed in pure water at about 90 ° C. and dried in the atmosphere at about 120 ° C. to form a conductive polymer layer. Hereinafter, a solid electrolytic capacitor was obtained in the same manner as in Example 1. In addition, a solid electrolytic capacitor was similarly obtained for each pH.

【0076】これらの固体電解コンデンサについて上記
と同様にして特性を測定したところ、重合溶液のpHに
よる固体電解コンデンサの特性変化の傾向は、実施例1
と同様となった。なお、ここでは、重合速度を一定に制
御するためにモノマー溶液と酸化剤溶液とのpHを同じ
としたが、本発明を化学酸化重合に適用する形態がこれ
に限られるわけではない。モノマー溶液のpHの調整の
みによっても上記と同様の傾向は得られる。
When the characteristics of these solid electrolytic capacitors were measured in the same manner as described above, the tendency of the characteristic changes of the solid electrolytic capacitors depending on the pH of the polymerization solution was found to be that of Example 1.
It became the same as. Here, the pH of the monomer solution and the oxidant solution are set to be the same in order to control the polymerization rate to be constant, but the form in which the present invention is applied to the chemical oxidative polymerization is not limited to this. The same tendency as above can be obtained only by adjusting the pH of the monomer solution.

【0077】さらに、導電性高分子として、ポリピロー
ルに代えてポリ−3,4−エチレンジオキシチオフェン
を用いた場合にも、化学酸化重合用の重合溶液のpHに
よる膜質の変化の傾向は同様となった。ただし、ポリ−
3,4−エチレンジオキシチオフェンの重合速度は非常
に遅いために、各層の導電性高分子層を形成するための
pHをピロールの場合と比較して相対的に小さく調整す
る必要がある。
Further, when poly-3,4-ethylenedioxythiophene is used instead of polypyrrole as the conductive polymer, the tendency of change in film quality depending on the pH of the polymerization solution for chemical oxidative polymerization is the same. became. However, poly-
Since the polymerization rate of 3,4-ethylenedioxythiophene is very slow, it is necessary to adjust the pH for forming the conductive polymer layer of each layer to be relatively small as compared with the case of pyrrole.

【0078】このポリ−3,4−エチレンジオキシチオ
フェン膜は、40重量%アルキルナフタレンスルホン酸
ナトリウム水溶液100gと3,4−エチレンジオキシ
チオフェン10gと水500gとを混合し、適宜硫酸を
添加したモノマー溶液と、イソプロピルアルコール10
体積%を含有する水溶液に酸化剤として過硫酸ナトリウ
ム0.1mol/lと、アルキルナフタレンスルホン酸
0.05mol/lのNa塩とを溶解させ、これに硫酸
または水酸化ナトリウムを適宜添加した酸化剤溶液とを
用いて形成した。
This poly-3,4-ethylenedioxythiophene film was prepared by mixing 100 g of a 40 wt% sodium alkylnaphthalenesulfonate aqueous solution, 10 g of 3,4-ethylenedioxythiophene and 500 g of water, and adding sulfuric acid as appropriate. Monomer solution and isopropyl alcohol 10
Oxidizing agent prepared by dissolving 0.1 mol / l of sodium persulfate and 0.05 mol / l of Na salt of alkylnaphthalenesulfonic acid as an oxidizing agent in an aqueous solution containing 10% by volume, and adding sulfuric acid or sodium hydroxide thereto. Formed with the solution.

【0079】[0079]

【発明の効果】本発明によれば、固体電解コンデンサに
おける低いESRと大きい容量との両立、さらには低い
損失の実現、が容易となる。
According to the present invention, it is easy to achieve both low ESR and large capacitance in a solid electrolytic capacitor and to realize low loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による固体電解コンデンサおける内部
電極(コンデンサ素子)の一例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of internal electrodes (capacitor elements) in a solid electrolytic capacitor according to the present invention.

【図2】 図1の断面図の部分拡大図である。FIG. 2 is a partially enlarged view of the cross-sectional view of FIG.

【図3】 本発明の方法の実施に用いる重合用電極の配
置の一例を示す図である。
FIG. 3 is a diagram showing an example of arrangement of polymerization electrodes used for carrying out the method of the present invention.

【図4】 本発明の方法の実施に用いる重合用電極の配
置の別の一例を示す図である。
FIG. 4 is a diagram showing another example of arrangement of polymerization electrodes used for carrying out the method of the present invention.

【図5】 本発明の方法の実施に用いる重合用電極の配
置のまた別の一例を示す図である。
FIG. 5 is a diagram showing another example of arrangement of the polymerization electrodes used for carrying out the method of the present invention.

【図6】 本発明の方法の実施に用いる重合用電極の配
置のさらに別の一例を示す図である。
FIG. 6 is a view showing still another example of the arrangement of the polymerization electrodes used for carrying out the method of the present invention.

【図7】 本発明の方法の実施に用いる重合用電極の配
置のまたさらに別の一例を示す図である。
FIG. 7 is a view showing still another example of the arrangement of the polymerization electrodes used for carrying out the method of the present invention.

【図8】 本発明の方法を複数の膜形成母体に対して同
時に適用するときの重合用電極の配置の一例を示す図で
ある。
FIG. 8 is a diagram showing an example of the arrangement of polymerization electrodes when the method of the present invention is simultaneously applied to a plurality of film-forming bases.

【図9】 陽極導体に形成された細孔の孔径についての
体積含有率分布の一例を示す図である。
FIG. 9 is a diagram showing an example of a volume content distribution of pore diameters of pores formed in the anode conductor.

【符号の説明】[Explanation of symbols]

1 陽極導体 2 誘電体層 3 固体電解質 4 陰極導体 5 カーボン層 6 外装銀導電性樹脂層 7 重合用陽極(陽電極) 8 重合用陰極(陰電極) 9 重合溶液 10 膜形成母体 301 第1導電性高分子膜 302 第2導電性高分子膜 303 第3導電性高分子膜 1 Anode conductor 2 Dielectric layer 3 Solid electrolyte 4 cathode conductor 5 carbon layer 6 Exterior silver conductive resin layer 7 Polymerization anode (positive electrode) 8 Polymerization cathode (cathode) 9 Polymerization solution 10 Film forming matrix 301 First conductive polymer film 302 Second conductive polymer film 303 Third conductive polymer film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中田 泰彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuhiko Nakata             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd.

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 弁金属からなる陽極導体と、前記陽極導
体の表面に形成された誘電体層と、前記誘電体層の表面
に形成され、導電性高分子層を含む固体電解質とを含む
固体電解コンデンサの製造方法であって、 前記導電性高分子層の一部となる第1導電性高分子膜を
第1溶液内で形成する工程と、 前記導電性高分子層の別の一部となる第2導電性高分子
膜を、前記第1溶液のpHよりも低いpHを有する第2
溶液内で形成する工程と、を含み、 前記第1導電性高分子膜と前記第2導電性高分子膜と
を、ともに電解酸化重合により形成することを特徴とす
る固体電解コンデンサの製造方法。
1. A solid including an anode conductor made of a valve metal, a dielectric layer formed on the surface of the anode conductor, and a solid electrolyte formed on the surface of the dielectric layer and containing a conductive polymer layer. A method of manufacturing an electrolytic capacitor, comprising a step of forming a first conductive polymer film which is a part of the conductive polymer layer in a first solution, and another part of the conductive polymer layer. And a second conductive polymer film having a pH lower than the pH of the first solution.
A step of forming in a solution, wherein the first conductive polymer film and the second conductive polymer film are both formed by electrolytic oxidation polymerization.
【請求項2】 前記第1導電性高分子膜および前記第2
導電性高分子膜を、ともに、電解酸化重合に代えて化学
酸化重合により形成する請求項1に記載の固体電解コン
デンサの製造方法。
2. The first conductive polymer film and the second conductive polymer film.
The method for producing a solid electrolytic capacitor according to claim 1, wherein both of the conductive polymer films are formed by chemical oxidative polymerization instead of electrolytic oxidative polymerization.
【請求項3】 前記第1導電性高分子膜上に前記第2導
電性高分子膜を形成する請求項1に記載の固体電解コン
デンサの製造方法。
3. The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the second conductive polymer film is formed on the first conductive polymer film.
【請求項4】 前記第1導電性高分子膜を少なくともそ
の一部が前記陽極導体に形成された複数の孔の内部に配
置されるように形成し、前記第2導電性高分子膜を前記
複数の孔の開口を覆うように形成する請求項3に記載の
固体電解コンデンサの製造方法。
4. The first conductive polymer film is formed such that at least a part of the first conductive polymer film is arranged inside a plurality of holes formed in the anode conductor, and the second conductive polymer film is formed as described above. The method for manufacturing a solid electrolytic capacitor according to claim 3, wherein the solid electrolytic capacitor is formed so as to cover the openings of the plurality of holes.
【請求項5】 前記導電性高分子層のまた別の一部とな
る第3導電性高分子膜を、前記第2溶液よりも高いpH
を有する第3溶液内で前記第2導電性高分子膜上に形成
する工程をさらに含む請求項3に記載の固体電解コンデ
ンサの製造方法。
5. The third conductive polymer film, which is another part of the conductive polymer layer, has a higher pH than that of the second solution.
The method for producing a solid electrolytic capacitor according to claim 3, further comprising a step of forming the second conductive polymer film on the second conductive polymer film in a third solution containing
【請求項6】 前記第1導電性高分子膜を少なくともそ
の一部が前記陽極導体に形成された複数の孔の内部に配
置されるように形成し、前記第2導電性高分子膜を前記
複数の孔の開口を覆うように形成し、前記第3導電性高
分子膜を前記導電性高分子層の最外膜として形成する請
求項5に記載の固体電解コンデンサの製造方法。
6. The first conductive polymer film is formed such that at least a part of the first conductive polymer film is arranged inside a plurality of holes formed in the anode conductor, and the second conductive polymer film is formed by the method described above. The method for producing a solid electrolytic capacitor according to claim 5, wherein the third conductive polymer film is formed so as to cover the openings of the plurality of holes, and the third conductive polymer film is formed as an outermost film of the conductive polymer layer.
【請求項7】 前記第2導電性高分子膜上に前記第1導
電性高分子膜を前記導電性高分子層の最外膜として形成
する請求項1に記載の固体電解コンデンサの製造方法。
7. The method for producing a solid electrolytic capacitor according to claim 1, wherein the first conductive polymer film is formed on the second conductive polymer film as an outermost film of the conductive polymer layer.
【請求項8】 前記第1溶液のpHと前記第2溶液のp
Hとの差が2.5以上である請求項1に記載の固体電解
コンデンサの製造方法。
8. The pH of the first solution and the p of the second solution
The method for producing a solid electrolytic capacitor according to claim 1, wherein the difference from H is 2.5 or more.
【請求項9】 前記第1溶液をアルカリ性とし、前記第
2溶液を酸性とする請求項1に記載の固体電解コンデン
サの製造方法。
9. The method for producing a solid electrolytic capacitor according to claim 1, wherein the first solution is alkaline and the second solution is acidic.
【請求項10】 陽電極と陰電極とを、これら電極の間
に前記陽極導体および前記誘電体層を含む膜形成母体の
少なくとも一部が介在するように配置し、前記陽電極お
よび前記陰電極を用いて電解酸化重合を行うことによ
り、前記第1導電性高分子膜および前記第2導電性高分
子膜から選ばれる少なくとも一方を形成する請求項1に
記載の固体電解コンデンサの製造方法。
10. A positive electrode and a negative electrode are arranged such that at least a part of a film forming matrix including the anode conductor and the dielectric layer is interposed between these electrodes, and the positive electrode and the negative electrode. The method for producing a solid electrolytic capacitor according to claim 1, wherein at least one selected from the first conductive polymer film and the second conductive polymer film is formed by performing electrolytic oxidation polymerization using.
【請求項11】 複数の膜形成母体と、前記複数の膜形
成母体のそれぞれに対応する複数の陽電極とを準備し、 前記複数の陽電極のそれぞれについて、陽電極に最も近
い陰電極と当該陽電極との間に、当該陽電極に対応する
膜形成母体の少なくとも一部を介在させる請求項10に
記載の固体電解コンデンサの製造方法。
11. A plurality of film forming bases and a plurality of positive electrodes corresponding to each of the plurality of film forming bases are prepared, and for each of the plurality of positive electrodes, a negative electrode closest to the positive electrode and The method for producing a solid electrolytic capacitor according to claim 10, wherein at least a part of the film forming matrix corresponding to the positive electrode is interposed between the positive electrode and the positive electrode.
【請求項12】 弁金属からなる陽極導体と、前記陽極
導体の表面に形成された誘電体層と、前記誘電体層の表
面に形成され、導電性高分子層を含む固体電解質とを含
む固体電解コンデンサの製造方法であって、 前記導電性高分子層の少なくとも一部を電解酸化重合に
より形成し、 前記陽極導体に形成された複数の孔の深さの平均値が
40μmを超えるときには、 前記電解酸化重合の第1工程として、前記導電性高分子
層の一部となる第1導電性高分子膜を、第1溶液内にお
いて少なくともその一部が前記複数の孔の内部に配置さ
れるように形成し、 前記電解酸化重合の第2工程として、前記導電性高分子
層の別の一部となる第2導電性高分子膜を、前記第1溶
液よりも低いpHを有する第2溶液内において前記複数
の孔の開口を覆うように形成し、 前記陽極導体に形成された複数の孔の深さの平均値が
40μm以下であるときには、 前記電解酸化重合の第1工程として、前記導電性高分子
層の一部となる第2導電性高分子膜を、第2溶液内にお
いて前記陽極導体に形成された複数の孔の開口を覆うよ
うに形成し、 前記電解酸化重合の第2工程として、前記導電性高分子
層の別の一部となる第1導電性高分子膜を、前記第2溶
液よりも高いpHを有する第1溶液内において前記導電
性高分子層の最外膜として形成する、ことを特徴とする
固体電解コンデンサの製造方法。
12. A solid comprising an anode conductor made of a valve metal, a dielectric layer formed on the surface of the anode conductor, and a solid electrolyte formed on the surface of the dielectric layer and containing a conductive polymer layer. A method of manufacturing an electrolytic capacitor, wherein at least a part of the conductive polymer layer is formed by electrolytic oxidation polymerization, and when the average value of the depths of the plurality of holes formed in the anode conductor exceeds 40 μm, As a first step of electrolytic oxidative polymerization, a first conductive polymer film, which is a part of the conductive polymer layer, is arranged so that at least a part thereof is arranged inside the plurality of holes in the first solution. And forming a second conductive polymer film, which is another part of the conductive polymer layer, in a second solution having a pH lower than that of the first solution as a second step of the electrolytic oxidation polymerization. To cover the openings of the plurality of holes in When the average value of the depths of the plurality of holes formed in the anode conductor is 40 μm or less, as the first step of the electrolytic oxidative polymerization, the second conductive layer that becomes a part of the conductive polymer layer is formed. A conductive polymer film is formed in the second solution so as to cover the openings of the plurality of holes formed in the anode conductor, and as the second step of the electrolytic oxidation polymerization, another conductive polymer layer is formed. The first electroconductive polymer film that becomes a part is formed as an outermost film of the electroconductive polymer layer in a first solution having a pH higher than that of the second solution. Production method.
【請求項13】 弁金属からなる陽極導体と、前記陽極
導体の表面に形成された誘電体層と、前記誘電体層の表
面に形成され、導電性高分子層を含む固体電解質と、を
含む固体電解コンデンサであって、 前記陽極導体が複数の孔を含み、 前記導電性高分子層が、複数の粒子からなる第1導電性
高分子膜と、前記複数の粒子の平均粒径よりも大きな平
均粒径を有する第2導電性高分子膜とを含み、 前記第2導電性高分子膜が、前記複数の孔の開口を覆う
ように形成され、 前記第1導電性高分子膜が、少なくともその一部が前記
複数の孔の内部に配置されるように形成されるか、また
は、前記導電性高分子層の最外膜として配置されたこと
を特徴とする固体電解コンデンサ。
13. An anode conductor made of a valve metal, a dielectric layer formed on the surface of the anode conductor, and a solid electrolyte formed on the surface of the dielectric layer and containing a conductive polymer layer. A solid electrolytic capacitor, wherein the anode conductor includes a plurality of holes, the conductive polymer layer is larger than a first conductive polymer film composed of a plurality of particles and an average particle size of the plurality of particles. A second conductive polymer film having an average particle diameter, the second conductive polymer film is formed to cover the openings of the plurality of holes, and the first conductive polymer film is at least A solid electrolytic capacitor, wherein a part of the solid electrolytic capacitor is formed so as to be arranged inside the plurality of holes or is arranged as an outermost film of the conductive polymer layer.
【請求項14】 前記導電性高分子層が、前記第2導電
性高分子膜の平均粒径よりも小さい平均粒径を有する複
数の粒子からなる第3導電性高分子膜をさらに含み、前
記第1導電性高分子膜が、少なくともその一部が前記複
数の孔の内部に配置されるように形成され、前記第3導
電性高分子膜が前記導電性高分子層の最外膜として配置
された請求項13に記載の固体電解コンデンサ。
14. The conductive polymer layer further comprises a third conductive polymer film composed of a plurality of particles having an average particle size smaller than that of the second conductive polymer film, The first conductive polymer film is formed so that at least a part thereof is arranged inside the plurality of holes, and the third conductive polymer film is arranged as the outermost film of the conductive polymer layer. The solid electrolytic capacitor according to claim 13, which has been applied.
【請求項15】 前記第1導電性高分子膜が前記導電性
高分子層の最外膜として配置され、前記第1導電性高分
子膜を構成する複数の粒子の平均粒径が5μm以下であ
る請求項13に記載の固体電解コンデンサ。
15. The first conductive polymer film is disposed as an outermost film of the conductive polymer layer, and a plurality of particles forming the first conductive polymer film has an average particle size of 5 μm or less. The solid electrolytic capacitor according to claim 13.
【請求項16】 前記第1導電性高分子膜が、少なくと
もその一部が前記複数の孔の内部に配置されるように形
成され、前記第1導電性高分子膜を構成する複数の粒子
の平均粒径が0.1μm以下である請求項13に記載の
固体電解コンデンサ。
16. The plurality of particles forming the first conductive polymer film, wherein the first conductive polymer film is formed so that at least a part thereof is arranged inside the plurality of holes. The solid electrolytic capacitor according to claim 13, which has an average particle diameter of 0.1 μm or less.
【請求項17】 前記第1導電性高分子膜が、少なくと
もその一部が前記複数の孔の内部に配置されるように形
成され、前記第1導電性高分子層を構成する複数の粒子
の平均粒径が、前記複数の孔の孔径についての体積含有
率分布の最頻値に対応する孔径の20%以下である請求
項13に記載の固体電解コンデンサ。
17. The plurality of particles forming the first conductive polymer layer, wherein the first conductive polymer film is formed so that at least a part thereof is arranged inside the plurality of holes. The solid electrolytic capacitor according to claim 13, wherein the average particle diameter is 20% or less of the pore diameter corresponding to the mode of the volume content distribution regarding the pore diameters of the plurality of pores.
【請求項18】 前記第1導電性高分子膜が、少なくと
もその一部が前記複数の孔の内部に配置されるように形
成され、前記複数の孔の深さの平均値が40μmを超え
る請求項13に記載の固体電解コンデンサ。
18. The first conductive polymer film is formed such that at least a part thereof is disposed inside the plurality of holes, and the average depth of the plurality of holes exceeds 40 μm. Item 13. The solid electrolytic capacitor as described in Item 13.
【請求項19】 前記弁金属が、アルミニウム、タンタ
ルおよびニオブから選ばれる少なくとも1種である請求
項13に記載の固体電解コンデンサ。
19. The solid electrolytic capacitor according to claim 13, wherein the valve metal is at least one selected from aluminum, tantalum and niobium.
【請求項20】 前記第1導電性高分子膜および前記第
2導電性高分子膜から選ばれる少なくとも一方が、ピロ
ール、チオフェン、3,4−エチレンジオキシチオフェ
ンおよびこれらの誘導体から選ばれる少なくとも1種の
重合体を含む請求項13に記載の固体電解コンデンサ。
20. At least one selected from the first conductive polymer film and the second conductive polymer film is at least one selected from pyrrole, thiophene, 3,4-ethylenedioxythiophene and derivatives thereof. 14. The solid electrolytic capacitor of claim 13, which comprises a polymer of a species.
JP2002348984A 2001-11-30 2002-11-29 Solid electrolytic capacitor and manufacturing method thereof Pending JP2003229330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348984A JP2003229330A (en) 2001-11-30 2002-11-29 Solid electrolytic capacitor and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001365847 2001-11-30
JP2001-365847 2001-11-30
JP2002348984A JP2003229330A (en) 2001-11-30 2002-11-29 Solid electrolytic capacitor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2003229330A true JP2003229330A (en) 2003-08-15

Family

ID=27759515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348984A Pending JP2003229330A (en) 2001-11-30 2002-11-29 Solid electrolytic capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2003229330A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1713103A1 (en) * 2005-04-11 2006-10-18 H.C. Starck GmbH Electrolytic capacitors having a polymeric outer layer and process of their production
WO2006132141A1 (en) * 2005-06-09 2006-12-14 National University Corporation, Tokyo University Of Agriculture And Technology Electrolytic capacitor element and process for producing the same
JP2007281268A (en) * 2006-04-10 2007-10-25 Nichicon Corp Solid electrolytic capacitor and its manufacturing method
JP2008053512A (en) * 2006-08-25 2008-03-06 Nec Tokin Corp Solid electrolytic capacitor
JP2008166364A (en) * 2006-12-27 2008-07-17 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2008258307A (en) * 2007-04-03 2008-10-23 Sanyo Electric Co Ltd Electrolytic capacitor and its manufacturing method
JP2009010238A (en) * 2007-06-29 2009-01-15 Sanyo Electric Co Ltd Solid-state electrolytic capacitor
JP2009508341A (en) * 2005-09-13 2009-02-26 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrolytic capacitor manufacturing method
JP2009508342A (en) * 2005-09-13 2009-02-26 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for manufacturing an electrolyte capacitor having a high nominal voltage
WO2009047059A1 (en) * 2007-10-08 2009-04-16 H.C. Starck Gmbh Method for the production of electrolyte capacitors with polymer intermediate layer
DE102008053830A1 (en) 2007-10-30 2009-05-28 Nec Tokin Corp., Sendai Solid electrolytic capacitor with improved moisture resistance properties and method of manufacturing the same
JP2009302592A (en) * 2009-09-30 2009-12-24 Sanyo Electric Co Ltd Solid electrolytic capacitor
WO2010003874A2 (en) * 2008-07-11 2010-01-14 H.C. Starck Clevios Gmbh Method for production of electrolyte capacitors
JP2014192231A (en) * 2013-03-26 2014-10-06 San Denshi Kogyo Kk Method for manufacturing solid electrolytic capacitor
US10720283B2 (en) 2015-05-18 2020-07-21 Avx Corporation Solid electrolytic capacitor having a high capacitance

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1713103A1 (en) * 2005-04-11 2006-10-18 H.C. Starck GmbH Electrolytic capacitors having a polymeric outer layer and process of their production
JP2012199595A (en) * 2005-04-11 2012-10-18 Hc Starck Gmbh Electrolytic capacitor having polymeric outer layer and manufacturing method of the same
US7377947B2 (en) 2005-04-11 2008-05-27 H.C. Starck Gmbh Electrolyte capacitors having a polymeric outer layer and process for their production
JP2010177695A (en) * 2005-04-11 2010-08-12 Hc Starck Gmbh Electrolytic capacitor having polymer outer layer and manufacturing method thereof
WO2006132141A1 (en) * 2005-06-09 2006-12-14 National University Corporation, Tokyo University Of Agriculture And Technology Electrolytic capacitor element and process for producing the same
US8644003B2 (en) 2005-06-09 2014-02-04 National University Corporation, Tokyo University Of Agriculture And Technology Electrolytic capacitor element and process for producing the same
JP4787967B2 (en) * 2005-06-09 2011-10-05 国立大学法人東京農工大学 Electrolytic capacitor element and manufacturing method thereof
JP2009508341A (en) * 2005-09-13 2009-02-26 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Electrolytic capacitor manufacturing method
US8699208B2 (en) 2005-09-13 2014-04-15 Heraeus Precious Metals Gmbh & Co. Kg Process for the production of electrolyte capacitors
JP2009508342A (en) * 2005-09-13 2009-02-26 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for manufacturing an electrolyte capacitor having a high nominal voltage
US9959981B2 (en) 2005-09-13 2018-05-01 Heraeus Precious Metals Gmbh & Co. Kg Process for the production of electrolyte capacitors of high nominal voltage
US9514888B2 (en) 2005-09-13 2016-12-06 Heraeus Deutschland GmbH & Co. KG Process for the production of electrolyte capacitors of high nominal voltage
US8313538B2 (en) 2005-09-13 2012-11-20 Heraeus Precious Metals Gmbh & Co. Kg Process for the production of electrolyte capacitors of high nominal voltage
US8058135B2 (en) 2005-09-13 2011-11-15 H. C. Starck Gmbh Process for the production of electrolyte capacitors
JP2007281268A (en) * 2006-04-10 2007-10-25 Nichicon Corp Solid electrolytic capacitor and its manufacturing method
JP2008053512A (en) * 2006-08-25 2008-03-06 Nec Tokin Corp Solid electrolytic capacitor
JP2008166364A (en) * 2006-12-27 2008-07-17 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2008258307A (en) * 2007-04-03 2008-10-23 Sanyo Electric Co Ltd Electrolytic capacitor and its manufacturing method
US7859829B2 (en) 2007-04-03 2010-12-28 Sanyo Electric Co., Ltd. Electrolytic capacitor and method of producing the same
JP2009010238A (en) * 2007-06-29 2009-01-15 Sanyo Electric Co Ltd Solid-state electrolytic capacitor
US9251961B2 (en) 2007-10-08 2016-02-02 Heraeus Precious Metals Gmbh & Co. Kg Methods for producing electrolytic capacitors having a polymeric intermediate layer, capacitors produced thereby and uses thereof
JP2010541260A (en) * 2007-10-08 2010-12-24 エイチ・シー・スタルク・クレビオス・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method for manufacturing electrolytic capacitor having polymer intermediate layer
WO2009047059A1 (en) * 2007-10-08 2009-04-16 H.C. Starck Gmbh Method for the production of electrolyte capacitors with polymer intermediate layer
KR20100123814A (en) * 2007-10-08 2010-11-25 하.체.스타르크 클레비오스 게엠베하 Method for the production of electrolyte capacitors with polymer intermediate layer
JP2014030046A (en) * 2007-10-08 2014-02-13 Hc Starck Clevios Gmbh Manufacturing method of electrolytic capacitor having polymer intermediate layer
KR101638993B1 (en) * 2007-10-08 2016-07-12 헤레우스 도이칠란트 게엠베하 운트 코. 카게 Method for the production of electrolyte capacitors with polymer intermediate layer
DE102008053830A1 (en) 2007-10-30 2009-05-28 Nec Tokin Corp., Sendai Solid electrolytic capacitor with improved moisture resistance properties and method of manufacturing the same
US8456803B2 (en) 2008-07-11 2013-06-04 Heraeus Precious Metals Gmbh & Co. Kg Method for production of electrolyte capacitors
WO2010003874A3 (en) * 2008-07-11 2010-03-18 H.C. Starck Clevios Gmbh Method for producing solid electrolyte capacitors
WO2010003874A2 (en) * 2008-07-11 2010-01-14 H.C. Starck Clevios Gmbh Method for production of electrolyte capacitors
JP2009302592A (en) * 2009-09-30 2009-12-24 Sanyo Electric Co Ltd Solid electrolytic capacitor
JP2014192231A (en) * 2013-03-26 2014-10-06 San Denshi Kogyo Kk Method for manufacturing solid electrolytic capacitor
US10720283B2 (en) 2015-05-18 2020-07-21 Avx Corporation Solid electrolytic capacitor having a high capacitance

Similar Documents

Publication Publication Date Title
US6671168B2 (en) Solid electrolytic capacitor and method for manufacturing the same
US7859829B2 (en) Electrolytic capacitor and method of producing the same
KR101554049B1 (en) Solid Electrolytic Capacitor and Method of Manufacturing thereof
KR100442073B1 (en) Solid Electrolyte Capacitor and its Manufacture
US20130141841A1 (en) Wet Electrolytic Capacitor Containing a Gelled Working Electrolyte
JP4983744B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003229330A (en) Solid electrolytic capacitor and manufacturing method thereof
KR102104424B1 (en) Method for manufacturing solid electrolytic capacitor, and solid electrolytic capacitor
KR20090045021A (en) Solid electrolytic capacitor with improved moisture resistance properties and method of manufacturing the same
US9048024B2 (en) Solid electrolytic capacitor and method for producing the same
JP4285523B2 (en) Electrode foil for solid electrolytic capacitor and manufacturing method thereof
JP3478987B2 (en) Method for manufacturing solid electrolytic capacitor
JP3711964B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001217159A (en) Solid electrolytic capacitor and its manufacturing method
JPH09306788A (en) Capacitor and manufacture thereof
JPH10135080A (en) Solid-state electrolytic capacitor and its manufacture
JP4329800B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006261438A (en) Solid electrolytic capacitor and its manufacturing method
JP2010003772A (en) Solid electrolytic capacitor
JP3663104B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
WO2022163400A1 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
JP2000297142A (en) Polymerization liquid for forming solid electrolyte, its preparation, and preparation of solid electrolytic capacitor using same
JP4241495B2 (en) Method and apparatus for producing conductive polymer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060620