JPH0474853B2 - - Google Patents

Info

Publication number
JPH0474853B2
JPH0474853B2 JP62004053A JP405387A JPH0474853B2 JP H0474853 B2 JPH0474853 B2 JP H0474853B2 JP 62004053 A JP62004053 A JP 62004053A JP 405387 A JP405387 A JP 405387A JP H0474853 B2 JPH0474853 B2 JP H0474853B2
Authority
JP
Japan
Prior art keywords
conductive polymer
film
mol
electrolytic
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62004053A
Other languages
Japanese (ja)
Other versions
JPS63173313A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP62004053A priority Critical patent/JPS63173313A/en
Priority to US07/138,591 priority patent/US4780796A/en
Priority to DE8787119399T priority patent/DE3773166D1/en
Priority to KR1019870015438A priority patent/KR910009477B1/en
Priority to EP87119399A priority patent/EP0274755B1/en
Publication of JPS63173313A publication Critical patent/JPS63173313A/en
Publication of JPH0474853B2 publication Critical patent/JPH0474853B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は導電性高分子を固体電解質として用い
たコンデンサに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a capacitor using a conductive polymer as a solid electrolyte.

(従来の技術) 近年デジタル機器の発展に伴ない、高周波領域
においてインピーダンスの低い高周特性の優れた
大容量のコンデンサの出現が待たれ、この分野の
研究が盛んになつている。現在知られている高周
波特性の優れたコンデンサには、フイルム、マイ
カ、セラミツクス等のコンデンサがあるが、1μF
以上の静電容量を得ようとすると、サイズが大き
くなり、価格も非常に高くなる。
(Prior Art) In recent years, with the development of digital equipment, the emergence of large-capacity capacitors with low impedance and excellent high-frequency characteristics in the high-frequency region has been awaited, and research in this field has become active. Currently known capacitors with excellent high frequency characteristics include capacitors made of film, mica, ceramics, etc.
Attempting to obtain a larger capacitance would result in a larger size and a significantly higher price.

また大容量のコンデンサとして知られている電
解コンデンサには電解液式と固体式とがある。前
者の電解コンデンサは液状の電解質を用いている
のでイオン伝導であるため、高周波領域において
著しく抵抗が増大し、コンデンサのインピーダン
スが増大する。後者の電解コンデンサには、固体
電解質として、二酸化マンガンを使用するもの
と、7,7,8,8−テトラシアノキノジメタン
(TCNQと略す)錯体を使用するものがある。二
酸化マンガンを固体電解質として用いたコンデン
サにおいては、二酸化マンガンが不溶の固体であ
るため、硝酸マンガンを熱分解して得られる二酸
化マンガンが固体電解質として用いられている。
この熱分解は、通常数回繰り返して行なわれてい
る。二酸化マンガンは比抵抗が比較的高く、また
繰り返して熱分解する際に誘電体である酸化皮膜
を損傷しやすいなどの理由によりインピーダンス
が高く、漏れ電流が大きいなどの欠点がある。
TCNQ錯体を固体電解質として用いたコンデン
サ(特開昭58−191414号、特開昭58−17609号な
ど)では、TCNQ錯体は高い導電性を示すが、
熱安定性に乏しいため、コンデンサ製造過程にお
いて分解し、絶縁体になることがあり、コンデン
サの熱特性などに欠点がある。
Furthermore, electrolytic capacitors, which are known as large-capacity capacitors, include electrolyte type and solid type. The former electrolytic capacitor uses a liquid electrolyte and is ionic conductive, so the resistance increases significantly in the high frequency range and the impedance of the capacitor increases. The latter electrolytic capacitors include those that use manganese dioxide and those that use 7,7,8,8-tetracyanoquinodimethane (abbreviated as TCNQ) complex as a solid electrolyte. In capacitors using manganese dioxide as a solid electrolyte, since manganese dioxide is an insoluble solid, manganese dioxide obtained by thermally decomposing manganese nitrate is used as the solid electrolyte.
This thermal decomposition is usually repeated several times. Manganese dioxide has drawbacks such as high impedance and large leakage current due to its relatively high resistivity and its tendency to damage the dielectric oxide film during repeated thermal decomposition.
In capacitors using TCNQ complexes as solid electrolytes (JP-A-58-191414, JP-A-58-17609, etc.), the TCNQ complex shows high conductivity.
Due to its poor thermal stability, it may decompose during the capacitor manufacturing process and become an insulator, which has disadvantages in the capacitor's thermal characteristics.

まだ実用の域には達していないが電解重合によ
る複素環式化合物の重合体を固体電解質としたコ
ンデンサの製造法が提案された(特開昭60−
244017、特開昭61−2315など)。上記方法は、陽
極酸化皮膜上に電解酸化により複素環式化合物の
ポリマー薄膜層を形成する方法である。この方法
では、陽極酸化皮膜層が絶縁化されているので、
電解酸化により陽極酸化皮膜層上に複素環式化合
物を電解重合させることは不可能か、又は非常に
困難である。また陽極酸化皮膜層のピンホールか
ら電解酸化重合が起こつたとしても不均一な膜と
なり、実用上大きな問題となる。
Although it has not yet reached the level of practical use, a method for manufacturing capacitors using electrolytic polymerization of a polymer of a heterocyclic compound as a solid electrolyte has been proposed (Japanese Patent Application Laid-Open No. 1989-1999).
244017, JP-A-61-2315, etc.). The above method is a method of forming a polymer thin film layer of a heterocyclic compound on an anodic oxide film by electrolytic oxidation. In this method, the anodic oxide film layer is insulated, so
It is impossible or very difficult to electrolytically polymerize a heterocyclic compound onto an anodic oxide film layer by electrolytic oxidation. Further, even if electrolytic oxidation polymerization occurs through pinholes in the anodic oxide film layer, the film will be non-uniform, which poses a serious problem in practice.

(発明が解決しようとする問題点) 導電性高分子の合成法は化学的酸化重合法およ
び電解酸化重合法があるが、化学的酸化重合法で
は陽極酸化皮膜層上に強度の強い膜が形成でき
ず、また電解酸化重合法法では陽極酸化皮膜層が
電気絶縁体であるため、電流を通さず、その上に
強靭な導電性高分子膜を形成することができなか
つた。本発明の目的は電解重合法により得られた
導電性高分子膜を固体電解質として使用し、静電
容量が大きくかつ電気的特性、温度特性の優れた
固体電解コンデンサを提供することにある。
(Problem to be solved by the invention) There are two methods for synthesizing conductive polymers: chemical oxidative polymerization and electrolytic oxidative polymerization. However, in chemical oxidative polymerization, a strong film is formed on the anodic oxide film layer. Moreover, in the electrolytic oxidation polymerization method, since the anodic oxide film layer is an electrical insulator, it does not conduct current, and it was not possible to form a strong conductive polymer film thereon. An object of the present invention is to provide a solid electrolytic capacitor that uses a conductive polymer membrane obtained by an electrolytic polymerization method as a solid electrolyte and has a large capacitance and excellent electrical characteristics and temperature characteristics.

(問題点を解決するための手段) 本発明者らは上記問題点を解決するため種々検
討した結果、皮膜形成金属に誘電体酸化皮膜を形
成し、該誘電体酸化皮膜上に、酸化剤を用いて化
学酸化重合した導電性高分子膜を形成し、更に該
導電性高分子膜の上に、電解重合法により得られ
る導電性高分子膜を積層して、二重に形成された
導電性高分子膜を固体電解質として用いることに
より、静電容量の大きくかつ電気特性、温度特性
の優れた固体電解コンデンサを提供することがで
きた。
(Means for Solving the Problems) As a result of various studies to solve the above problems, the present inventors formed a dielectric oxide film on the film-forming metal, and applied an oxidizing agent on the dielectric oxide film. A conductive polymer film obtained by chemical oxidation polymerization is formed using a conductive polymer film, and then a conductive polymer film obtained by an electrolytic polymerization method is laminated on top of the conductive polymer film to form a double-formed conductive polymer film. By using a polymer membrane as a solid electrolyte, it was possible to provide a solid electrolytic capacitor with large capacitance and excellent electrical and temperature characteristics.

本発明を本発明の構成を示す第1図により更に
詳しく説明すると、エツチングして表面を粗した
皮膜形成金属1を電解酸化または空気酸化により
該金属の酸化物を生成させ、誘電体酸化皮膜2を
形成する。ついで誘電体酸化皮膜2上に、酸化剤
を0.001mol/1〜〜2mol/1含む溶液を塗布ま
たは噴霧などの方法により均一に分散した後導電
性高分子の単量体を少なくとも0.01mol/1含む
溶液または無溶媒で接触させるか、または逆に導
電性高分子の単量体を誘電体表面上に均一に分散
した後酸化剤を接触させて、誘電体酸化皮膜2上
に化学酸化重合による導電性高分子膜3を形成
し、表面を導電化する。ついで形成した導電性高
分子膜3を陽極とし、支持電解質を0.01mol/1
〜2mol/1および導電性高分子単量体を
0.01mol/1〜5mol/1含む電解液中にて電解酸
化重合を行なうと、酸化剤を用いて重合した導電
性高分子膜3の上に、電解酸化重合された強靭な
導電性高分子膜4が得られる。更に一般的に用い
られている銀ペーストなどにより対極リードを取
り出し、エポキシ樹脂などにより外装すると本発
明のコンデンサとなる。
To explain the present invention in more detail with reference to FIG. 1 showing the structure of the present invention, a film-forming metal 1 whose surface has been roughened by etching is electrolytically oxidized or air oxidized to generate an oxide of the metal, and a dielectric oxide film 2 is formed. form. Next, a solution containing 0.001 mol/1 to 2 mol/1 of an oxidizing agent is uniformly dispersed on the dielectric oxide film 2 by a method such as coating or spraying, and then at least 0.01 mol/1 of a conductive polymer monomer is applied to the dielectric oxide film 2. The conductive polymer monomer is uniformly dispersed on the dielectric surface, and then an oxidizing agent is brought into contact with the dielectric oxide film 2 by chemical oxidation polymerization. A conductive polymer film 3 is formed to make the surface conductive. Next, the formed conductive polymer film 3 was used as an anode, and the supporting electrolyte was 0.01 mol/1.
~2mol/1 and conductive polymer monomer
When electrolytic oxidative polymerization is performed in an electrolytic solution containing 0.01 mol/1 to 5 mol/1, a strong conductive polymer film that has been electrolytically oxidized and polymerized is formed on the conductive polymer film 3 that has been polymerized using an oxidizing agent. 4 is obtained. Furthermore, the counter electrode lead is taken out using commonly used silver paste or the like, and then covered with epoxy resin or the like to obtain the capacitor of the present invention.

本発明の皮膜形成金属はアルミニウムまたはタ
ンタルを用いる。本発明の化学的酸化重合に用い
られる酸化剤は、ヨウ素、臭素、ヨウ化臭素など
のハロゲン、五フツ化ヒ素、五フツ化アンチモ
ン、四フツ化ケイ素、五塩化リン、五フツ化リ
ン、塩化アルミニウム、塩化モリブデンなどの金
属ハロゲン化物、硫酸、硝酸、フルオロ硫酸、ト
リフルオロメタン硫酸、クロロ硫酸などのプロト
ン酸、三酸化イオウ、二酸化窒素などの含酸素化
合物、過硫酸ナトリウム、過硫酸カリウム、過硫
酸アンモニウムなどの過硫酸塩、過酸化水素、過
酢酸、ジフルオロスルホニルパーオキサイドなど
の過酸化物などの酸化剤を用いる。本発明の化学
的酸化重合により形成される導電性高分子膜は、
ポリピロール、ポリチオフエン、ポリアニリン、
ポリフランを用い、特に好ましくはポリピロール
を用いる。
The film-forming metal of the present invention is aluminum or tantalum. The oxidizing agents used in the chemical oxidative polymerization of the present invention include halogens such as iodine, bromine, and bromine iodide, arsenic pentafluoride, antimony pentafluoride, silicon tetrafluoride, phosphorus pentafluoride, phosphorus pentafluoride, and chloride. Metal halides such as aluminum and molybdenum chloride, protic acids such as sulfuric acid, nitric acid, fluorosulfuric acid, trifluoromethanesulfuric acid, and chlorosulfuric acid, oxygenated compounds such as sulfur trioxide and nitrogen dioxide, sodium persulfate, potassium persulfate, and ammonium persulfate. Oxidizing agents such as persulfates, hydrogen peroxide, peracetic acid, difluorosulfonyl peroxide, and other peroxides are used. The conductive polymer film formed by chemical oxidative polymerization of the present invention is
polypyrrole, polythiophene, polyaniline,
Polyfuran is used, particularly preferably polypyrrole.

本発明における支持電解質は陰イオンがヘキサ
フロロリン、ヘキサフロロヒ素、テトラフロロホ
ウ素などのハロゲン化物アニオワ、ヨウ素、臭
素、塩素などのハロゲンアニオン、過塩素酸アニ
オン、アルキルベンゼンスルホン酸、ニトロベン
ゼンスルホン酸、アミノベンゼンスルホン酸、ベ
ンゼンスルホン酸、β−ナフタレンスルホン酸等
のスルホン酸アニオンであり、好ましくはスルホ
ン酸アニオンである。また陽イオンがリチウム、
ナトリウム、カリウムなどのアルカリ金属カチオ
ン、アンモニウム、テトラアルキルアンモニウム
などの四級アンモニウムカチオンである。化合物
としては、LiPF6、LiAsF6、LiCIO4、NaI、
NaPF6、NaCIO、KI、KPF6、KASF6
KCIO4、LiBF4、トルエンスルホン酸ナトリウ
ム、トルエンスルホン酸テトラブチルアンモニウ
ムなどを掲げることができる。
The supporting electrolyte in the present invention includes anions such as halides such as hexafluoroline, hexafluoroarsenic, and tetrafluoroborine, halogen anions such as iodine, bromine, and chlorine, perchlorate anions, alkylbenzenesulfonic acids, nitrobenzenesulfonic acids, and aminobenzenes. Sulfonic acid anions such as sulfonic acid, benzenesulfonic acid, and β-naphthalenesulfonic acid, preferably sulfonic acid anions. Also, the cation is lithium,
These are alkali metal cations such as sodium and potassium, and quaternary ammonium cations such as ammonium and tetraalkylammonium. Compounds include LiPF 6 , LiAsF 6 , LiCIO 4 , NaI,
NaPF 6 , NaCIO, KI, KPF 6 , KASF 6 ,
Examples include KCIO 4 , LiBF 4 , sodium toluenesulfonate, and tetrabutylammonium toluenesulfonate.

本発明の電解酸化重合により得られる導電性高
分子はポリピロール、ポリチオフエン、ポリアニ
リン、ポリフランを用い、好ましくはポリピロー
ルを用いる。
The conductive polymer obtained by electrolytic oxidative polymerization of the present invention includes polypyrrole, polythiophene, polyaniline, and polyfuran, preferably polypyrrole.

以下実施例により本発明を具体的に説明する
が、本発明はこれらの実施例に限定されるもので
はない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例 1 電解酸化により化成処理を施して表面に酸化ア
ルミニウム誘電体を形成させた厚さ60μmのアル
ミニウム箔を、過硫酸アンモニウム0.04mol/l
の水溶液に減圧下で10分間浸漬した後、乾燥し
た。これをピロール単量体2mol/lを含むアセ
トニトリル溶液に減圧下で10分間浸漬して、酸化
アルミニウム誘電体上にポリピロール薄膜を化学
酸化重合法により形成させた。ついで上記処理を
行なつたアルミニウム箔をピロール単量体
0.2mol/l、シユウ酸0.02mol/lおよび支持電
解質としてトルエンスルホン酸テトラブチルアン
モニウム0.05mol/lを含む水溶液中に浸漬し
た。該アルミニウム箔上に形成したポリピロール
薄膜を陽極とし、ステンレス板を陰極として電流
密度0.5mA/cm2の条件下で150分間定電流電解を
行なつた結果、均一な黒色のポリピロールの薄膜
が表面に生成した。ついでこの表面に銀ペースト
を用いて対極リードを取り出し、エポキシ樹脂に
より外装しコンデンサを完成させた。得られたコ
ンデンサは120Hzにおいて静電容量2.2μF/cm2で損
失角の正接(tanδ)は1.5%であつた。なおこの
箔の液中容量は2.0μF/cm2であるので110%の容量
達成率であつた。
Example 1 A 60 μm thick aluminum foil that had been chemically treated by electrolytic oxidation to form an aluminum oxide dielectric on its surface was treated with 0.04 mol/l of ammonium persulfate.
After being immersed in an aqueous solution of for 10 minutes under reduced pressure, it was dried. This was immersed in an acetonitrile solution containing 2 mol/l of pyrrole monomer under reduced pressure for 10 minutes to form a polypyrrole thin film on the aluminum oxide dielectric by chemical oxidative polymerization. Then, the aluminum foil subjected to the above treatment is treated with pyrrole monomer.
0.2 mol/l, 0.02 mol/l of oxalic acid, and 0.05 mol/l of tetrabutylammonium toluenesulfonate as a supporting electrolyte. Using the polypyrrole thin film formed on the aluminum foil as an anode and the stainless steel plate as a cathode, constant current electrolysis was performed for 150 minutes at a current density of 0.5 mA/cm 2 , resulting in a uniform black polypyrrole thin film on the surface. generated. Next, silver paste was applied to this surface to take out the counter electrode lead, which was then covered with epoxy resin to complete the capacitor. The capacitor obtained had a capacitance of 2.2 μF/cm 2 at 120 Hz and a loss angle tangent (tan δ) of 1.5%. Note that since the liquid capacity of this foil was 2.0 μF/cm 2 , the capacity achievement rate was 110%.

比較例 1 アルミニウム箔上に化学酸化重合法によるポリ
ピロール薄膜を形成せずに実施例1に準じて電解
を行なつたが、酸化アルミニウム誘電体上の一部
にしかポリピロールが得られず、膜を形成するこ
とができなかつた。
Comparative Example 1 Electrolysis was carried out according to Example 1 without forming a polypyrrole thin film by chemical oxidation polymerization on aluminum foil, but polypyrrole was obtained only on a part of the aluminum oxide dielectric, and the film was not formed. could not be formed.

実施例 2 ヨウ素0.1mol/lを含むエチルエーテル溶液
を調製し、電解酸化により化成処理を施して表面
に酸化アルミニウム誘電体皮膜を形成させた厚さ
60μmのアルミニウム箔上に、先に調製したエチ
ルエーテル溶液を噴霧して乾燥した。上記処理を
行なつたアルミニウム箔をピロール単量体中に30
分間減圧下で浸漬し、化学酸化重合法により黒色
のポリピロール薄膜を形成した。以下実施例1に
準じてコンデンサを完成した。得られたコンデン
サは120Hzにおいて、静電容量2.0μF/cm2、tanδは
1.3%であつた。
Example 2 An ethyl ether solution containing 0.1 mol/l of iodine was prepared, and a chemical conversion treatment was performed by electrolytic oxidation to form an aluminum oxide dielectric film on the surface.
The previously prepared ethyl ether solution was sprayed onto a 60 μm aluminum foil and dried. The aluminum foil treated above is placed in pyrrole monomer for 30 minutes.
A black polypyrrole thin film was formed by a chemical oxidative polymerization method by immersing the sample under reduced pressure for a minute. A capacitor was then completed according to Example 1. The obtained capacitor has a capacitance of 2.0μF/cm 2 at 120Hz, and tanδ is
It was 1.3%.

実施例 3 電解酸化により化成処理を施して表面を酸化ア
ルミニウム誘電体皮膜を形成させた厚さ60μmの
アルミニウム箔を塩化第二鉄0.02mol/lを含む
水溶液に減圧下で2分間浸漬した後、乾燥した。
これをピロール単量体0.1mol/lを含む水溶液
に30分間浸漬し、化学酸化重合法により黒色のポ
リピロール薄膜を形成した。以下実施例1に準じ
てコンデンサを完成した。得られたコンデンサは
120Hzにおいて、静電容量2.1μF/cm2、tanδは1.8
%であつた。
Example 3 A 60 μm thick aluminum foil that had been chemically treated by electrolytic oxidation to form an aluminum oxide dielectric film on its surface was immersed in an aqueous solution containing 0.02 mol/l of ferric chloride for 2 minutes under reduced pressure. Dry.
This was immersed in an aqueous solution containing 0.1 mol/l of pyrrole monomer for 30 minutes, and a black polypyrrole thin film was formed by chemical oxidative polymerization. A capacitor was then completed according to Example 1. The resulting capacitor is
At 120Hz, capacitance is 2.1μF/cm 2 and tanδ is 1.8
It was %.

実施例 4 化成処理を施して表面に酸化タンタル誘電体皮
膜を形成させたタンタル焼結体を過硫酸アンモニ
ウム塩0.04mol/lの水溶液に減圧下で5分間浸
漬した後、乾燥した。これをピロール単量体
0.2mol/lおよびアジピン酸0.02mol/lを含む
水溶液に減圧下で10分間浸漬して、酸化タンタル
誘電体上にポリピロール薄膜を化学酸化重合法に
より形成させた。ついで上記処理を行なつたタン
タル焼結体をピロール単量体0.2mol/l、シユ
ウ酸0.02mol/lおよび支持電解質として過塩素
酸リチウム0.05mol/lを含む水溶液中に浸漬し
た。該タンタル焼結体上に形成したポリピロール
薄膜を陽極とし、ステンレス板を陰極として、電
流密度0.5mA/cm2の条件下で150分間、定電流電
解を行なつた結果、均一な黒色のポリピロールの
薄膜が表面に生成した。ついでこの表面に銀ペー
ストを用いて対極リードを取り出し、エポキシ樹
脂により外装しコンデンサを完成させた。得られ
たコンデンサは120Hzにおいて、静電容量は
1.2μF/cm2であり、損失角の正接(tanδ)は1.0%
であつた。尚このタンタル焼結体の液中容量は
1.0μF/cm2であるので容量達成率は120%であつ
た。
Example 4 A tantalum sintered body that had been subjected to a chemical conversion treatment to form a tantalum oxide dielectric film on its surface was immersed in an aqueous solution of ammonium persulfate salt of 0.04 mol/l under reduced pressure for 5 minutes, and then dried. This is pyrrole monomer
A polypyrrole thin film was formed on the tantalum oxide dielectric by a chemical oxidative polymerization method by immersing it in an aqueous solution containing 0.2 mol/l and adipic acid 0.02 mol/l under reduced pressure for 10 minutes. The tantalum sintered body subjected to the above treatment was then immersed in an aqueous solution containing 0.2 mol/l of pyrrole monomer, 0.02 mol/l of oxalic acid, and 0.05 mol/l of lithium perchlorate as a supporting electrolyte. Using the polypyrrole thin film formed on the tantalum sintered body as an anode and a stainless steel plate as a cathode, constant current electrolysis was performed for 150 minutes at a current density of 0.5 mA/cm 2 . As a result, uniform black polypyrrole was formed. A thin film formed on the surface. Next, silver paste was applied to this surface to take out the counter electrode lead, which was then covered with epoxy resin to complete the capacitor. The capacitance of the obtained capacitor at 120Hz is
1.2μF/cm 2 , and the loss angle tangent (tanδ) is 1.0%
It was hot. The liquid capacity of this tantalum sintered body is
Since it was 1.0 μF/cm 2 , the capacity achievement rate was 120%.

(発明の効果) 先に述べたように固体電解コンデンサの固体電
解質に有機半導体であるTCNQ錯体を用いると
電気特性とくに高周波特性の優れたコンデンサが
得られることがすでに知られているが、その熱安
定性および溶解性が悪いため製造上大きな問題と
なつている。また電気絶縁体である誘電体酸化皮
膜上に直接電解重合によつて得られる強靭な導電
性高分子膜を重合することは不可能であつたが本
発明により可能となり、導電性高分子膜を固体電
解質として用いた温度特性、電気特性の優れた固
体電解コンデンサを提供することができた。
(Effects of the Invention) As mentioned above, it is already known that when a TCNQ complex, which is an organic semiconductor, is used as the solid electrolyte of a solid electrolytic capacitor, a capacitor with excellent electrical properties, especially high frequency properties, can be obtained. It poses a major manufacturing problem due to its poor stability and solubility. In addition, it has been impossible to polymerize a strong conductive polymer film obtained by direct electrolytic polymerization on a dielectric oxide film, which is an electrical insulator, but this invention has made it possible. We were able to provide a solid electrolytic capacitor that was used as a solid electrolyte and had excellent temperature and electrical characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の固体電解コンデンサの構成を
示す概略断面図である。 1……皮膜形成金属、2……誘電体酸化皮膜、
3……化学酸化重合により形成した導電性高分子
膜、4……電解重合により得られた導電性高分子
膜。
FIG. 1 is a schematic sectional view showing the structure of a solid electrolytic capacitor of the present invention. 1...Film forming metal, 2...Dielectric oxide film,
3... Conductive polymer membrane formed by chemical oxidative polymerization, 4... Conductive polymer membrane obtained by electrolytic polymerization.

Claims (1)

【特許請求の範囲】 1 皮膜形成金属に誘電体酸化皮膜を形成し、該
誘電体酸化皮膜上に酸化剤を用いて化学酸化重合
した導電性高分子膜を形成し、更に該導電性高分
子膜上に電解重合により得られる導電性高分子膜
を積層して、二重に形成された導電性高分子膜を
固体電解質として用いることを特徴とする固体電
解コンデンサ。 2 皮膜形成金属がアルミニウムまたはタンタル
である特許請求の範囲第1項記載の固体電解コン
デンサ。 3 酸化剤を用いて化学酸化重合した導電性高分
子膜がポリピロールである特許請求の範囲第1項
記載の固体電解コンデンサ。 4 電解重合により得られる導電性高分子膜がポ
リピロールである特許請求の範囲第1項記載の固
体電解コンデンサ。
[Scope of Claims] 1. A dielectric oxide film is formed on a film-forming metal, a conductive polymer film is formed on the dielectric oxide film by chemical oxidation polymerization using an oxidizing agent, and the conductive polymer A solid electrolytic capacitor characterized in that a conductive polymer film obtained by electrolytic polymerization is laminated on a membrane, and the double-formed conductive polymer film is used as a solid electrolyte. 2. The solid electrolytic capacitor according to claim 1, wherein the film-forming metal is aluminum or tantalum. 3. The solid electrolytic capacitor according to claim 1, wherein the conductive polymer film chemically oxidized and polymerized using an oxidizing agent is polypyrrole. 4. The solid electrolytic capacitor according to claim 1, wherein the conductive polymer film obtained by electrolytic polymerization is polypyrrole.
JP62004053A 1987-01-13 1987-01-13 Solid electrolytic capacitor Granted JPS63173313A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62004053A JPS63173313A (en) 1987-01-13 1987-01-13 Solid electrolytic capacitor
US07/138,591 US4780796A (en) 1987-01-13 1987-12-28 Solid electrolytic capacitor
DE8787119399T DE3773166D1 (en) 1987-01-13 1987-12-30 FIXED ELECTROLYTE CAPACITOR.
KR1019870015438A KR910009477B1 (en) 1987-01-13 1987-12-30 Solid electrolytic capacitor
EP87119399A EP0274755B1 (en) 1987-01-13 1987-12-30 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62004053A JPS63173313A (en) 1987-01-13 1987-01-13 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS63173313A JPS63173313A (en) 1988-07-16
JPH0474853B2 true JPH0474853B2 (en) 1992-11-27

Family

ID=11574142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62004053A Granted JPS63173313A (en) 1987-01-13 1987-01-13 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS63173313A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049574A (en) * 2007-03-15 2012-03-08 Sanyo Electric Co Ltd Manufacturing method for solid electrolytic capacitor and solid electrolytic capacitor

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232521A (en) * 1988-07-22 1990-02-02 Marcon Electron Co Ltd Solid electrolytic capacitor
JP2764938B2 (en) * 1988-09-01 1998-06-11 松下電器産業株式会社 Method for manufacturing solid electrolytic capacitor
JPH0297008A (en) * 1988-10-04 1990-04-09 Marcon Electron Co Ltd Solid electrolytic capacitor and manufacture thereof
JPH02234410A (en) * 1989-03-07 1990-09-17 Shinei Tsushin Kogyo Kk Manufacture of solid electrolytic capacitor
JP2826341B2 (en) * 1989-05-13 1998-11-18 日本ケミコン株式会社 Method for manufacturing solid electrolytic capacitor
JPH077740B2 (en) * 1989-12-29 1995-01-30 松下電器産業株式会社 Capacitor
JPH0736375B2 (en) * 1991-04-05 1995-04-19 松下電器産業株式会社 Method for manufacturing solid electrolytic capacitor
JP3694038B2 (en) * 1993-09-09 2005-09-14 日東電工株式会社 Solid electrolytic capacitor
JP3070408B2 (en) * 1993-12-28 2000-07-31 日本電気株式会社 Solid electrolytic capacitor and method of manufacturing the same
JP2770746B2 (en) * 1994-09-02 1998-07-02 日本電気株式会社 Solid electrolytic capacitor and method of manufacturing the same
US5812367A (en) 1996-04-04 1998-09-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors comprising a conductive layer made of a polymer of pyrrole or its derivative
JP2828035B2 (en) * 1996-05-30 1998-11-25 日本電気株式会社 Method for manufacturing solid electrolytic capacitor
US6731497B2 (en) 2001-07-11 2004-05-04 Tdk Corporation Solid electrolytic capacitor and method for manufacturing the same
TWI254333B (en) 2002-03-18 2006-05-01 Sanyo Electric Co Solid electrolytic capacitor and method of manufacturing same
JP4383204B2 (en) 2003-03-31 2009-12-16 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof
CN101880460B (en) 2003-06-18 2011-12-28 信越聚合物株式会社 Conductive composition and process for producing the same
TWI303832B (en) 2004-08-30 2008-12-01 Shinetsu Polymer Co Conductive composition and conductive cross-linked product, capacitor and production method thereof, and antistatic coating material, antistatic coating, antistatic film, optical filter, bnd optical information recording medium
JP4689222B2 (en) 2004-09-22 2011-05-25 信越ポリマー株式会社 Conductive coating film and method for producing the same
TWI325007B (en) 2004-10-08 2010-05-21 Shinetsu Polymer Co Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof
JP4553770B2 (en) 2005-03-29 2010-09-29 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP4804235B2 (en) 2005-08-29 2011-11-02 三洋電機株式会社 Solid electrolytic capacitor element, manufacturing method thereof and solid electrolytic capacitor
TWI479509B (en) 2006-02-09 2015-04-01 信越聚合物股份有限公司 Conductive polymer solution, conductive coating, capacitor and method for producing capacitor
TWI404090B (en) 2006-02-21 2013-08-01 Shinetsu Polymer Co Capacitor and capacitor manufacturing method
JP2009267232A (en) 2008-04-28 2009-11-12 Shin Etsu Polymer Co Ltd Capacitor, and manufacturing method thereof
JP2011082313A (en) 2009-10-06 2011-04-21 Shin Etsu Polymer Co Ltd Solid electrolytic capacitor and method of manufacturing the same
JP5308982B2 (en) 2009-10-06 2013-10-09 信越ポリマー株式会社 Solid electrolytic capacitor, manufacturing method thereof, and solution for solid electrolytic capacitor
JP5444057B2 (en) 2010-03-16 2014-03-19 信越ポリマー株式会社 Solid electrolytic capacitor, manufacturing method thereof, and solution for solid electrolytic capacitor
EP4361320A1 (en) * 2022-10-24 2024-05-01 Gramm Technik GmbH Electrochemical substitution under vacuum of oxide layers on light metals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037114A (en) * 1983-08-09 1985-02-26 昭和電工株式会社 Solid electrolytic condenser
JPS60245209A (en) * 1984-05-21 1985-12-05 日本ケミコン株式会社 Capacitor
JPS6122613A (en) * 1984-07-10 1986-01-31 昭和電工株式会社 Solid electrolytic condenser
JPS6147625A (en) * 1984-08-14 1986-03-08 昭和電工株式会社 Solid electrolytic condenser
JPS62118511A (en) * 1985-11-19 1987-05-29 昭和電工株式会社 Manufacture of solid electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037114A (en) * 1983-08-09 1985-02-26 昭和電工株式会社 Solid electrolytic condenser
JPS60245209A (en) * 1984-05-21 1985-12-05 日本ケミコン株式会社 Capacitor
JPS6122613A (en) * 1984-07-10 1986-01-31 昭和電工株式会社 Solid electrolytic condenser
JPS6147625A (en) * 1984-08-14 1986-03-08 昭和電工株式会社 Solid electrolytic condenser
JPS62118511A (en) * 1985-11-19 1987-05-29 昭和電工株式会社 Manufacture of solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049574A (en) * 2007-03-15 2012-03-08 Sanyo Electric Co Ltd Manufacturing method for solid electrolytic capacitor and solid electrolytic capacitor

Also Published As

Publication number Publication date
JPS63173313A (en) 1988-07-16

Similar Documents

Publication Publication Date Title
JPH0474853B2 (en)
KR910009477B1 (en) Solid electrolytic capacitor
US5119274A (en) Solid capacitor
JPH0831400B2 (en) Solid electrolytic capacitor
JPH0458165B2 (en)
JPH0362298B2 (en)
JPH0682592B2 (en) Method for manufacturing solid electrolytic capacitor
JP2640864B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JP2621093B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JP2700420B2 (en) Method for manufacturing aluminum sintered body solid electrolytic capacitor
JP2621087B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0682588B2 (en) Solid electrolytic capacitor
JPH02224316A (en) Manufacture of solid electrolytic capacitor
JPH0365008B2 (en)
JP2945100B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06112094A (en) Manufacture of solid-state electrolytic capacitor
JPH0361331B2 (en)
JP3175747B2 (en) Method for manufacturing solid electrolytic capacitor
JPH033220A (en) Tantalum solid-state electrolytic capacitor
JPH0423410B2 (en)
JPH0722068B2 (en) Capacitor manufacturing method
JPH04239712A (en) Manufacture of capacitor
JP2898443B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06112095A (en) Manufacture of solid-state electrolytic capacitor
JPH05175080A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term