JPH0423410B2 - - Google Patents

Info

Publication number
JPH0423410B2
JPH0423410B2 JP18774087A JP18774087A JPH0423410B2 JP H0423410 B2 JPH0423410 B2 JP H0423410B2 JP 18774087 A JP18774087 A JP 18774087A JP 18774087 A JP18774087 A JP 18774087A JP H0423410 B2 JPH0423410 B2 JP H0423410B2
Authority
JP
Japan
Prior art keywords
film
conductive polymer
polymer film
foil
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18774087A
Other languages
Japanese (ja)
Other versions
JPS6432620A (en
Inventor
Michuki Kono
Minoru Fukuda
Isao Isa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP18774087A priority Critical patent/JPS6432620A/en
Publication of JPS6432620A publication Critical patent/JPS6432620A/en
Publication of JPH0423410B2 publication Critical patent/JPH0423410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は導電性高分子を固体電解質として用い
たコンデンサの製造方法に関する。 (従来の技術) 近年デジタル機器の発展に伴ない、高周波領域
においてインピーダンスの低い高周波特性の優れ
た大容量のコンデンサの出現が待たれ、この分野
の研究が盛んになつている。現在知られている高
周波特性の優れたコンデンサには、フイルム、マ
イカ、セラミツクス等のコンデンサがあるが、
1μF以上の静電容量を得ようとすると、サイイズ
が大きくなり、価格も非常に高くなる。 また大容量のコンデンサとして知られている電
解コンデンサには電解液式と固体式とがある。前
者の電解コンデンサは液状の電解質を用いている
のでイオン伝導であるため、高周波領域において
著しく抵抗が増大し、コンデンサのインピーダン
スが増大する。後者の電解コンデンサには、固体
電解質として、二酸化マンガンを使用するもの
と、7,7,8,8−テトラシアノキノジメタン
(TCNQを略す)錯体を使用するものがある。二
酸化マンガンを固体電解質として用いたコンデン
サにおいては、二酸化マンガンが不溶の固体であ
るため、硝酸マンガンを熱分解して得られる二酸
化マンガンが固体電解質として用いられている。
この熱分解は、通常数回繰り返して行なわれてい
る。二酸化マンガンは比抵抗が比較的高く、また
繰り返して熱分解する際に誘導体である酸化皮膜
を損傷しやすいなどの理由によりインピーダンス
が高く、漏れ電流が大きいなどの欠点がある。
TCNQ錯体を固体電解質として用いたコンデン
サ(特開昭58−191414号、特開昭58−17609号な
ど)では、TCNQ錯体は高い導電性を示すが、
熱安定性に乏しいため、コンデンサ製造過程にお
いて分解し、絶縁体になることがあり、コンデン
サの熱特性などに欠点がある。 まだ実用の域には達していないが電解重合によ
る複素環式化合物の重合体を固体電解質としたコ
ンデンサの製造法が提案された(特開昭60−
244017、特開昭61−2315など)。上記方法は、陽
極酸化皮膜上に電解酸化により複素環式化合物の
ポリマー薄膜層を形成する方法である。この方法
では、陽極酸化皮膜層が絶縁化されているので、
電解酸化により陽極酸化皮膜層上に複素環式化合
物を電解重合させることは不可能か、又は非常に
困難である。また陽極酸化皮膜層のピンポールか
ら電解酸化重合が起こつたとしても不均一な膜と
なり、実用上大きな問題となる。 (発明が解決しようとする問題点) 導電性高分子の合成法は化学酸化重合法および
電解酸化重合法があるが、化学酸化重合法では陽
極酸化皮膜層上に強度の強い膜が形成できず、ま
た電解酸化重合法では陽極酸化皮膜層が電気絶縁
体であるため、電流を通さず、その上に強靭な導
電性高分子膜を形成することができなかつた。 本発明者らは皮膜形成性金属に誘電体酸化皮膜
を形成し、この誘電体酸化皮膜上に化学酸化重合
導電性高分子膜を形成し、更にこの上に導電性高
分子の電解重合膜を形成せしめた構造の固体電解
コンデンサを提案した(特願昭62−4053号)。こ
のコンデンサは、静電容量が大きくかつ電気的特
性、温度特性の優れた固体電解コンデンサである
が、その製造方法についてはまだ検討の余地があ
り、特に電解重合の効率化について改良すべき点
が残つていた。 (問題点を解決するための手段) 本発明者等は電解重合の効率を上げるため種々
検討した結果、皮膜形成性金属箔に誘電体酸化皮
膜を形成し、該誘電体酸化皮膜上に、酸化剤を用
いてピロール、チオフエン、アニリンあるいはフ
ランを化学酸化重合せしめて導電性高分子膜を形
成した後、金属箔の端を切断し金属部を露出せし
めたまま該導電性高分子膜の上に、電解重合法に
より得られる導電性高分子膜を積層せしめること
により、切断せずに導電性高分子の電解重合膜を
化学酸化重合膜上に形成せしめる場合よりも、電
解重合時間が1/5〜1/10に短縮できることを見出
した。 本発明を本発明を方法により得られるコンデン
サの構成を示す第1図により更に詳しく説明する
と、エツチングして表面を粗した皮膜形成性金属
箔1を電解酸化または空気酸化により該金属の酸
化物を生成させ、誘電体酸化皮膜2を作成する。
ついで誘電体酸化皮膜2上に、酸化剤を
0.001mol/〜2mol/含む溶液を塗布または
噴霧などの方法により均一に分散した後導電性高
分子と単量体を少なくとも0.01mol/含む溶液
または無溶媒で接触させるか、または逆に導電性
高分子の単量体を誘電体表面上に均一に分散した
後酸化剤を接触させて、誘電体酸化皮膜層2上に
化学酸化重合による導電性高分子膜3を形成し、
表面を導電化する。ついで表面を導電化した皮膜
形成性金属箔の端を切断しこれを陽極とし、支持
電解質を0.01mol/〜2mol/および導電性高
分子単量体を0.01mol/〜5mol/含む電解液
中にて電解酸化重合を行なうと、酸化剤を用いて
重合した導電性高分子膜3の上に、電解酸化重合
された強靭な導電性高分子膜4が得られる。皮膜
形成性金属箔の切断面は金属が露出し導電性高分
子膜4と接触して漏れ電流が大きいので、高温ま
たは高湿の空気雰囲気下で電圧を長時間印加する
ことにより接触部分の金属表面を化成修復し酸化
皮膜を形成して漏れ電流を防ぐ。更に一般的に用
いられている銀ペーストなどにより対極リードを
取り出し、エポキシ樹脂などにより外装するとコ
ンデンサが得られる。 本発明の皮膜形成性金属箔はアルミニウムまた
はタンタルを用いる。本発明の化学酸化重合に用
いられる酸化剤は、ヨウ粗、臭素、ヨウ化臭素な
どのハロゲン、五フツ化ヒ素、五フツ化アンチモ
ン、四フツ化ケイ素、五塩化リン、五フツ化リ
ン、塩化アルミニウム、塩化モリブデンなどの金
属ハロゲン化、硫酸、硝酸、フルオロ硫酸、トリ
フルオロメタン硫酸、クロロ硫酸などのプロトン
酸、三酸化イオウ、二酸化窒素などの含酸素化合
物、過硫酸ナトリウム、過硫酸カリウム、過硫酸
アンモニウムなどの過硫酸塩、過酸化水素、過酢
酸、ジフルオロスルホニルパーオキサイドなどの
過酸化物などの酸化剤を用いる。本発明の化学酸
化重合により形成される導電性高分子膜は、ポリ
ピロール、ポリチオフエン、ポリアニリン、ポリ
フランを用い、特に好ましくはポリピロールを用
いる。 本発明における支持電解質は陰イオンがヘキサ
フロロリン、ヘキサフロロヒ素、テトラフロロホ
ウ素などのハロゲン化物アニオン、ヨウ素、臭
素、塩素などのハロゲンアニオン、過塩素酸アニ
オン、アルキルベンゼンスルホン酸、ニトロベン
ゼンスルホン酸、アミノベンゼンスルホン酸、ベ
ンゼンスルホン酸、β−ナフタレンスルホン酸等
のスルホン酸アニオンであり、好ましくはスルホ
ン酸アニオンである。また陽イオンがリチウム、
ナトリウム、カリウムなどのアルカリ金属カチオ
ン、アンモニウム、テトラアルキルアンモニウム
などの四級アンモニウムカチオンである。化合物
としては、LiPF6、LiAsF6、LiClO4、NaI、
NaPF6、NaClO4、KI、KPF6、KAsF6
KClO4、LiBF4、トルエンスルホン酸ナトリウ
ム、トリエンスルホン酸テトラブチルアンモニウ
ムなどを挙げることができる。 本発明の電解酸化重合により得られる導電性高
分子はポリピロール、ポリチオフエン、ポリアニ
リン、ポリフランを用い、好ましくはポリピロー
ルを用いる。 本発明において箔を切断する場所は電解重合す
る液に浸漬される部分ならどこでもよい。 以下実施例により本発明を具体的に説明する
が、本発明はこれらの実施例に限定されるもので
はない。 実施例 1 化成処理を施して表面に酸化アルミニウム誘電
体皮膜を形成させた液中容量がそれぞれ2、5、
10、20、100μF/cm2の値を持つ厚さ60μm幅15mm
長さ25mmのアルミニウム陽極箔を、それぞれ過硫
酸アンモニウム0.04mol/の水溶液に減圧下で
10分間浸漬した後、乾燥した。これをピロール単
量体2mol/を含むアセトニトリル溶液に減圧
下で10分間浸漬して、酸化アルミニウム誘電体上
にポリピロール薄膜を化学酸化重合法により形成
させた。ついで上記処理を行なつたアルミニウム
陽極箔をそれぞれ幅5mm長さ8mmに切断し、ピロ
ール単量体0.2mol/、シユウ酸0.02mol/お
よび支持電解質としてトルエンスルホン酸テトラ
ブチルアンモニウム0.05mol/を含む水溶液中
に浸漬した。該アルミニウム陽極箔を陽極とし、
ステンレス板を陰極として電流密度0.5mA/cm2
の条件下で端を切断したアルミニウム陽極箔全面
に電解重合膜が形成されるまで定電流電解を行な
つた結果、均一な濃緑色のポリピロールの薄膜が
表面に生成した。電解重合完了までに要した時間
を第1表に示す。この箔を130℃の空気浴中に入
れ、アルミニウム陽極箔を陽極に、ポリピロール
膜を陰極として、4Vの定電圧を12時間印加して
漏れ電流を防いだ。ついでこの表面に銀ペースト
を用いて対極リードを取り出し、エポキシ樹脂に
より外装しコンデンサを完成させた。得られたコ
ンデンサの初期性能を第2表に示す。 (比較例) 電解酸化により化成処理を施して表面に酸化ア
ルミニウム誘電体を形成させた。液中容量がそれ
ぞれ2、5、10、20、100μF/cm2の値を持つ厚さ
60μm幅15mm長さ25mmのアルミニウム陽極箔に、
前記実施例1と同様にしてポリピロール薄膜の化
学重合膜を形成させた。ついで、上記処理を行な
つたアルミニウム陽極箔を何等切断するとなしに
そのまま前記実施例1と同様の方法で電解重合膜
を形成せしめ、該アルミニウム陽極箔全面に電解
重合膜が形成されるまで定電流電解を行なつた結
果、均一な濃緑色のポリピロールの薄膜が表面に
生成した。電解重合完了までに要した時間を第1
表に示す。得たコンデンサの初期性能を第2表に
示す。
(Industrial Application Field) The present invention relates to a method for manufacturing a capacitor using a conductive polymer as a solid electrolyte. (Prior Art) In recent years, with the development of digital equipment, the emergence of large-capacity capacitors with low impedance and excellent high-frequency characteristics in the high-frequency region has been awaited, and research in this field has become active. Currently known capacitors with excellent high frequency characteristics include capacitors made of film, mica, ceramics, etc.
If you try to obtain a capacitance of 1 μF or more, the size will become large and the price will become extremely high. Furthermore, electrolytic capacitors, which are known as large-capacity capacitors, include electrolyte type and solid type. The former electrolytic capacitor uses a liquid electrolyte and is ionic conductive, so the resistance increases significantly in the high frequency range and the impedance of the capacitor increases. The latter electrolytic capacitors include those that use manganese dioxide and those that use 7,7,8,8-tetracyanoquinodimethane (abbreviated to TCNQ) complex as a solid electrolyte. In capacitors using manganese dioxide as a solid electrolyte, since manganese dioxide is an insoluble solid, manganese dioxide obtained by thermally decomposing manganese nitrate is used as the solid electrolyte.
This thermal decomposition is usually repeated several times. Manganese dioxide has drawbacks such as high impedance and large leakage current due to its relatively high resistivity and its tendency to damage the oxide film of its derivative during repeated thermal decomposition.
In capacitors using TCNQ complexes as solid electrolytes (JP-A-58-191414, JP-A-58-17609, etc.), the TCNQ complex shows high conductivity.
Due to its poor thermal stability, it may decompose during the capacitor manufacturing process and become an insulator, which has disadvantages in the capacitor's thermal characteristics. Although it has not yet reached the level of practical use, a method for manufacturing capacitors using electrolytic polymerization of a polymer of a heterocyclic compound as a solid electrolyte has been proposed (Japanese Patent Application Laid-Open No. 1989-1999).
244017, JP-A-61-2315, etc.). The above method is a method of forming a polymer thin film layer of a heterocyclic compound on an anodic oxide film by electrolytic oxidation. In this method, the anodic oxide film layer is insulated, so
It is impossible or very difficult to electrolytically polymerize a heterocyclic compound onto an anodic oxide film layer by electrolytic oxidation. Furthermore, even if electrolytic oxidation polymerization occurs from pinholes in the anodic oxide film layer, the film will be non-uniform, which poses a serious problem in practice. (Problem to be solved by the invention) There are chemical oxidation polymerization methods and electrolytic oxidation polymerization methods to synthesize conductive polymers, but chemical oxidation polymerization methods cannot form a strong film on the anodic oxide film layer. In addition, in the electrolytic oxidation polymerization method, since the anodic oxide film layer is an electrical insulator, it does not conduct current, making it impossible to form a strong conductive polymer film thereon. The present inventors formed a dielectric oxide film on a film-forming metal, formed a chemically oxidized conductive polymer film on the dielectric oxide film, and further formed an electrolytic polymer film of a conductive polymer on top of this. We proposed a solid electrolytic capacitor with a structure in which it was formed (Patent Application No. 62-4053). This capacitor is a solid electrolytic capacitor with large capacitance and excellent electrical and temperature characteristics, but there is still room for consideration regarding its manufacturing method, and in particular, there are areas that need improvement regarding the efficiency of electrolytic polymerization. It remained. (Means for Solving the Problems) As a result of various studies in order to improve the efficiency of electrolytic polymerization, the present inventors formed a dielectric oxide film on a film-forming metal foil, and added an oxidized film on the dielectric oxide film. After forming a conductive polymer film by chemically oxidizing and polymerizing pyrrole, thiophene, aniline, or furan using a chemical agent, cut the edge of the metal foil and place it on top of the conductive polymer film while leaving the metal part exposed. By laminating conductive polymer films obtained by electrolytic polymerization, the electrolytic polymerization time is 1/5 that of forming an electrolytic polymer film on a chemically oxidized polymer film without cutting. We found that it can be shortened to ~1/10. To explain the present invention in more detail with reference to FIG. 1 showing the structure of a capacitor obtained by the method of the present invention, a film-forming metal foil 1 whose surface has been roughened by etching is subjected to electrolytic oxidation or air oxidation to remove oxides of the metal. A dielectric oxide film 2 is created.
Then, an oxidizing agent is applied on the dielectric oxide film 2.
After uniformly dispersing a solution containing 0.001mol/~2mol/by a method such as coating or spraying, the conductive polymer and the monomer are brought into contact with a solution containing at least 0.01mol/~2mol/without solvent, or conversely, the conductive polymer and the monomer are brought into contact with a solution containing at least 0.01mol/~2mol/ After uniformly dispersing molecular monomers on the dielectric surface, contact with an oxidizing agent to form a conductive polymer film 3 on the dielectric oxide film layer 2 by chemical oxidation polymerization,
Make the surface conductive. Next, the end of the film-forming metal foil whose surface has been made conductive is cut, used as an anode, and placed in an electrolytic solution containing 0.01 mol/~2 mol/of a supporting electrolyte and 0.01 mol/~5 mol/of a conductive polymer monomer. When electrolytic oxidation polymerization is carried out, a tough conductive polymer film 4 that has been electrolytically oxidized and polymerized is obtained on the conductive polymer film 3 that has been polymerized using an oxidizing agent. The cut surface of the film-forming metal foil exposes the metal and comes into contact with the conductive polymer film 4, resulting in a large leakage current. The surface is chemically repaired to form an oxide film to prevent leakage current. Further, a counter electrode lead is taken out using commonly used silver paste or the like and covered with epoxy resin or the like to obtain a capacitor. The film-forming metal foil of the present invention uses aluminum or tantalum. The oxidizing agents used in the chemical oxidative polymerization of the present invention include crude iodine, bromine, halogens such as bromine iodide, arsenic pentafluoride, antimony pentafluoride, silicon tetrafluoride, phosphorus pentachloride, phosphorus pentafluoride, and chloride. Aluminum, metal halides such as molybdenum chloride, protic acids such as sulfuric acid, nitric acid, fluorosulfuric acid, trifluoromethanesulfuric acid, and chlorosulfuric acid, oxygenated compounds such as sulfur trioxide and nitrogen dioxide, sodium persulfate, potassium persulfate, and ammonium persulfate. Oxidizing agents such as persulfates, hydrogen peroxide, peracetic acid, difluorosulfonyl peroxide, and other peroxides are used. The conductive polymer film formed by chemical oxidative polymerization of the present invention uses polypyrrole, polythiophene, polyaniline, or polyfuran, and particularly preferably uses polypyrrole. The supporting electrolyte in the present invention includes anions such as halide anions such as hexafluoroline, hexafluoroarsenic, and tetrafluoroborine, halogen anions such as iodine, bromine, and chlorine, perchlorate anions, alkylbenzenesulfonic acids, nitrobenzenesulfonic acids, and aminobenzene. Sulfonic acid anions such as sulfonic acid, benzenesulfonic acid, and β-naphthalenesulfonic acid, preferably sulfonic acid anions. Also, the cation is lithium,
These are alkali metal cations such as sodium and potassium, and quaternary ammonium cations such as ammonium and tetraalkylammonium. Compounds include LiPF 6 , LiAsF 6 , LiClO 4 , NaI,
NaPF 6 , NaClO 4 , KI, KPF 6 , KAsF 6 ,
Examples include KClO 4 , LiBF 4 , sodium toluenesulfonate, and tetrabutylammonium trienesulfonate. The conductive polymer obtained by electrolytic oxidative polymerization of the present invention includes polypyrrole, polythiophene, polyaniline, and polyfuran, preferably polypyrrole. In the present invention, the foil may be cut anywhere as long as it is immersed in the electrolytically polymerized solution. EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples. Example 1 Chemical conversion treatment was performed to form an aluminum oxide dielectric film on the surface, and the submerged capacity was 2, 5, and 5, respectively.
Thickness 60μm width 15mm with values of 10, 20, 100μF/ cm2
Each 25 mm long aluminum anode foil was placed in an aqueous solution of 0.04 mol/ammonium persulfate under reduced pressure.
After soaking for 10 minutes, it was dried. This was immersed in an acetonitrile solution containing 2 mol of pyrrole monomer for 10 minutes under reduced pressure to form a polypyrrole thin film on the aluminum oxide dielectric by chemical oxidative polymerization. Next, the aluminum anode foils subjected to the above treatment were cut into pieces of 5 mm in width and 8 mm in length, and were treated with an aqueous solution containing 0.2 mol of pyrrole monomer, 0.02 mol of oxalic acid, and 0.05 mol of tetrabutylammonium toluenesulfonate as a supporting electrolyte. immersed in it. The aluminum anode foil is used as an anode,
Current density 0.5mA/cm 2 using stainless steel plate as cathode
Under these conditions, constant current electrolysis was carried out until an electrolytically polymerized film was formed on the entire surface of the aluminum anode foil with the ends cut off, and as a result, a uniform dark green polypyrrole thin film was formed on the surface. Table 1 shows the time required to complete electrolytic polymerization. This foil was placed in an air bath at 130°C, and a constant voltage of 4V was applied for 12 hours using the aluminum anode foil as the anode and the polypyrrole film as the cathode to prevent leakage current. Next, silver paste was applied to this surface to take out the counter electrode lead, which was then covered with epoxy resin to complete the capacitor. Table 2 shows the initial performance of the obtained capacitor. (Comparative Example) A chemical conversion treatment was performed by electrolytic oxidation to form an aluminum oxide dielectric on the surface. Thicknesses with liquid capacitance values of 2, 5, 10, 20, and 100μF/ cm2, respectively.
60μm width 15mm length 25mm aluminum anode foil,
A chemically polymerized polypyrrole thin film was formed in the same manner as in Example 1 above. Next, without cutting the aluminum anode foil that had undergone the above treatment, an electrolytic polymer film was formed in the same manner as in Example 1, and a constant current was applied until an electrolytic polymer film was formed on the entire surface of the aluminum anode foil. As a result of electrolysis, a uniform dark green polypyrrole thin film was formed on the surface. The time required to complete electrolytic polymerization is the first
Shown in the table. Table 2 shows the initial performance of the obtained capacitor.

【表】【table】

【表】 (発明の効果) 先に述べたように電気絶縁体である誘電体酸化
皮膜上に導電性高分子の化学重合膜を形成せし
め、さらに電解重合を行ない強度の高い電解重合
膜を該化学重合膜上に形成させることにより固体
電解コンデンサを製造することが可能となつた
が、本発明の方法、すなわち、化学重合膜を形成
せしめた後に該金属箔の端を切断し金属部を露出
させたまま電解重合を行なう方法により、前記方
法と同一面積の金属薄上に電解重合膜を形成せし
めるのに要する時間に比較して大巾に短縮でき
た。
[Table] (Effects of the invention) As mentioned earlier, a chemical polymer film of conductive polymer is formed on a dielectric oxide film, which is an electrical insulator, and then electrolytic polymerization is performed to form a strong electrolytic polymer film. It has become possible to manufacture solid electrolytic capacitors by forming the film on a chemically polymerized film, but the method of the present invention, that is, after forming the chemically polymerized film, cuts the ends of the metal foil to expose the metal part. The method of performing electrolytic polymerization while the metal is in the same state can significantly shorten the time required to form an electrolytically polymerized film on a thin metal film of the same area as in the previous method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法により得られる固体電解
コンデンサの構成を示す概略断面図である。 1……皮膜形成性金属、2……誘電体酸化皮
膜、3……化学酸化重合により形成した導電性高
分子膜、4……電解重合により得られた導電性高
分子膜。
FIG. 1 is a schematic sectional view showing the structure of a solid electrolytic capacitor obtained by the method of the present invention. 1... Film-forming metal, 2... Dielectric oxide film, 3... Conductive polymer film formed by chemical oxidative polymerization, 4... Conductive polymer film obtained by electrolytic polymerization.

Claims (1)

【特許請求の範囲】 1 皮膜形成性金属箔に誘電体酸化皮膜を形成せ
しめ、該誘電体酸化皮膜上に酸化剤を用いてピロ
ール、チオフエン、アニリンまたはフランの化学
酸化重合導電性高分子膜を形成せしめた後、該皮
膜形成性金属箔の端を切断し金属部を露出させた
後に電解重合することにより該化学酸化重合導電
性高分子膜上にピロール、チオフエン、アニリン
またはフランの電解重合導電性高分子膜を積層せ
しめることを特徴とする箔型固体電解コンデンサ
の製造方法。 2 皮膜形成性金属箔がアルミニウムまたはタン
タルである特許請求の範囲第1項記載の箔型固体
電解コンデンサの製造方法。 3 酸化剤を用いて化学酸化重合せしめた導電性
高分子膜がポリピロールである特許請求の範囲第
1項記載の箔型固体電解コンデンサの製造方法。 4 化学酸化重合導電性高分子膜上に積層せしめ
る電解重合導電性高分子膜がポリピロールである
特許請求の範囲第1項記載の箔型固体電解コンデ
ンサの製造方法。
[Claims] 1. A dielectric oxide film is formed on a film-forming metal foil, and a chemically oxidized and polymerized conductive polymer film of pyrrole, thiophene, aniline, or furan is formed on the dielectric oxide film using an oxidizing agent. After forming, the end of the film-forming metal foil is cut to expose the metal part, and then electrolytically polymerized to form an electrolytically polymerized conductive material of pyrrole, thiophene, aniline, or furan on the chemically oxidized conductive polymer film. 1. A method for manufacturing a foil-type solid electrolytic capacitor, which is characterized by laminating a polymer film. 2. The method for manufacturing a foil solid electrolytic capacitor according to claim 1, wherein the film-forming metal foil is aluminum or tantalum. 3. The method for manufacturing a foil solid electrolytic capacitor according to claim 1, wherein the conductive polymer film subjected to chemical oxidative polymerization using an oxidizing agent is polypyrrole. 4. The method for manufacturing a foil solid electrolytic capacitor according to claim 1, wherein the electrolytically polymerized conductive polymer film laminated on the chemically oxidized conductive polymer film is polypyrrole.
JP18774087A 1987-07-29 1987-07-29 Manufacture of solid electrolytic capacitor Granted JPS6432620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18774087A JPS6432620A (en) 1987-07-29 1987-07-29 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18774087A JPS6432620A (en) 1987-07-29 1987-07-29 Manufacture of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS6432620A JPS6432620A (en) 1989-02-02
JPH0423410B2 true JPH0423410B2 (en) 1992-04-22

Family

ID=16211365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18774087A Granted JPS6432620A (en) 1987-07-29 1987-07-29 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS6432620A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3235475B2 (en) 1996-07-16 2001-12-04 日本電気株式会社 Solid electrolytic capacitor and method of manufacturing the same

Also Published As

Publication number Publication date
JPS6432620A (en) 1989-02-02

Similar Documents

Publication Publication Date Title
EP0274755B1 (en) Solid electrolytic capacitor
JPH0474853B2 (en)
US5119274A (en) Solid capacitor
US6999303B2 (en) Solid electrolytic capacitor and process for its fabrication
JPH0458165B2 (en)
JPH0362298B2 (en)
JP4565730B2 (en) Solid capacitor and manufacturing method thereof
JPH05166681A (en) Manufacture of solid electrolytic capacitor
JPH0682592B2 (en) Method for manufacturing solid electrolytic capacitor
JP2640864B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JP2700420B2 (en) Method for manufacturing aluminum sintered body solid electrolytic capacitor
JP2621087B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0682588B2 (en) Solid electrolytic capacitor
JPH0423410B2 (en)
JPH0365008B2 (en)
JP2945100B2 (en) Method for manufacturing solid electrolytic capacitor
JPH06112094A (en) Manufacture of solid-state electrolytic capacitor
JPH02224316A (en) Manufacture of solid electrolytic capacitor
KR100753612B1 (en) Solid Electrolyte Capacitor and Method for Producing the Same
JPH0487312A (en) Manufacture of capacitor
JPH0365007B2 (en)
JPH04239712A (en) Manufacture of capacitor
JPH0361331B2 (en)
JPH0423411B2 (en)
JPH06112095A (en) Manufacture of solid-state electrolytic capacitor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 16