JPH03228305A - Manufacture of aluminum solid electrolytic capacitor - Google Patents

Manufacture of aluminum solid electrolytic capacitor

Info

Publication number
JPH03228305A
JPH03228305A JP2022040A JP2204090A JPH03228305A JP H03228305 A JPH03228305 A JP H03228305A JP 2022040 A JP2022040 A JP 2022040A JP 2204090 A JP2204090 A JP 2204090A JP H03228305 A JPH03228305 A JP H03228305A
Authority
JP
Japan
Prior art keywords
film
conductive
anode
conductive layer
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022040A
Other languages
Japanese (ja)
Inventor
Minoru Fukuda
実 福田
Hideo Yamamoto
秀雄 山本
Isao Isa
伊佐 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2022040A priority Critical patent/JPH03228305A/en
Publication of JPH03228305A publication Critical patent/JPH03228305A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To enable the title electrolytic capacitor having excellent capacitor characteristics such as small leakage current and dielectric loss to be manufactured by a method wherein a part of an anode lead and/or dielectric oxide film is covered with an insulating film so as to form a conductive layer on the surface of the insulating film and then a conductive high molecular film is formed by electrolytic polymerization using a conductor brought into contact with the conductive layer as an anode. CONSTITUTION:In order to manufacture the title aluminum solid electrolytic capacitor by successively forming a dielectric oxide film 3, a conductive metallic oxide 4 and a conductive high molecular film 8 on the surface of an aluminum 2 connected to an anode lead 1, a part of the anode lead 1 and/or the dielectric oxide film 3 is covered with an insulating film 6 to form a conductive layer 5 on the surface of the insulating layer 6; the conductive layer 5 is brought into contact with a conductor 7 to be an anode; the conductive high molecular film 8 is formed by electrolytic polymerization performed between an outer cathode. For example, the electrolytic polymerization is performed using a stainless wire 7 as an anode brought into contact with a part of the conductive layer 5 as well as a stainless beaker containing water solution containing sodium benzenesulfonic acid and pyrrole monomer as a cathode so as to form the polypyrrole film 8 (conductive high molecular film 8).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、導電性高分子を固体電解質として用いたアル
ミニウム固体電解コンデンサの製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing an aluminum solid electrolytic capacitor using a conductive polymer as a solid electrolyte.

(従来の技術) 先に本発明者らは弁作用金属の表面に誘電体酸化皮膜を
形成し、その表面に金属または導電性を有する金属化合
物の薄膜、および、電解重合により形成される導電性高
分子膜を形成してなる固体電解コンデンサを提案した(
特開昭63−158829)。このコンデンサは、従来
の電解液タイプのコンデンサに比較して温度特性に優れ
、また高周波で低インピーダンスになるなど電気特性の
優れた特徴を有する。しかし、その製造方法、特に電解
重合について効率化を計るなどの改良すべき点が残って
いた。
(Prior Art) First, the present inventors formed a dielectric oxide film on the surface of a valve metal, and then coated the surface with a thin film of a metal or a conductive metal compound, and a conductive film formed by electrolytic polymerization. We proposed a solid electrolytic capacitor formed by forming a polymer film (
Japanese Patent Publication No. 63-158829). This capacitor has superior electrical characteristics, such as superior temperature characteristics and low impedance at high frequencies, compared to conventional electrolyte type capacitors. However, there were still points that needed to be improved, such as improving the efficiency of the manufacturing method, especially electrolytic polymerization.

(発明が解決しようとする課題) 本発明の目的とするところは、誘電体酸化皮膜を形成し
たアルミニウムの表面に導電性を有する金属酸化物の薄
膜と電解重合により形成される導電性高分子膜を形成し
てなる固体電解コンデンサにおいて、電解重合の効率が
良く、かつ、漏れ電流や誘電損失の正接(t anδ)
の小さい優れたコンデンサ特性を持つアルミニウム固体
電解コンデンサの製造方法を提供することである。
(Problems to be Solved by the Invention) The object of the present invention is to form a conductive polymer film formed by electrolytically polymerizing a thin film of a metal oxide having conductivity on the surface of aluminum on which a dielectric oxide film has been formed. In solid electrolytic capacitors formed of
It is an object of the present invention to provide a method for manufacturing an aluminum solid electrolytic capacitor having small capacitor characteristics.

(課題を解決するための手段) 本発明者らは鋭意研究の結果、上記目的を達成しうるア
ルミニウム固体電解コンデンサの製造方法を発明するに
至った。
(Means for Solving the Problems) As a result of intensive research, the present inventors came to invent a method for manufacturing an aluminum solid electrolytic capacitor that can achieve the above object.

すなわち、陽極リードを接続したアルミニウムの表面に
、順次、誘電体酸化皮膜、導電性を有する金属酸化物及
び導電性高分子膜を形成してなるアルミニウム固体電解
コンデンサの製造方法において、陽極リードおよび/ま
たは誘電体酸化皮膜の一部を絶縁層で被覆し、該絶縁層
表面に導電層を形成し、この導電層に導電体を接触させ
て陽極となし、外部陰極との間で電解重合を行ない導電
性高分子膜を形成することを特徴とするアルミニウム固
体電解コンデンサの製造方法である。
That is, in a method of manufacturing an aluminum solid electrolytic capacitor, a dielectric oxide film, a conductive metal oxide, and a conductive polymer film are sequentially formed on the surface of aluminum to which an anode lead is connected. Alternatively, a part of the dielectric oxide film is covered with an insulating layer, a conductive layer is formed on the surface of the insulating layer, a conductor is brought into contact with this conductive layer to serve as an anode, and electrolytic polymerization is performed between it and an external cathode. This is a method for manufacturing an aluminum solid electrolytic capacitor characterized by forming a conductive polymer film.

本発明のアルミニウムは、平板型、捲回型、積層型また
は焼結体などの形状で用いる。
The aluminum of the present invention is used in the form of a flat plate, a wound type, a laminated type, a sintered body, or the like.

次に本発明の具体例を図面により説明する。第1図は焼
結体型アルミコンデンサの概略図である。
Next, specific examples of the present invention will be explained with reference to the drawings. FIG. 1 is a schematic diagram of a sintered aluminum capacitor.

陽極リード1を接続したアルミニウム焼結体2の表面を
エツチングした後誘電体酸化皮膜3を形成せしめる。次
に該誘電体酸化皮膜3の表面に導電性を有する金属酸化
物の薄膜4を形成せしめる。
After etching the surface of the aluminum sintered body 2 to which the anode lead 1 is connected, a dielectric oxide film 3 is formed. Next, a conductive metal oxide thin film 4 is formed on the surface of the dielectric oxide film 3.

陽極リード1の一部は表面に導電層5を形成した絶縁層
6で被覆されている。絶縁層6上に形成された導電層5
の一部に導電体7を接触させ、支持電解質および導電性
高分子単量体を含む電解液に浸漬し導電体7を陽極とし
外部陰極との間で電解重合を行うことにより、導電性を
有する金属酸化物の薄膜4上に電解重合による導電性高
分子膜8を形成する。この電解重合において、絶縁層6
がないと導電体7の接触により誘電体酸化皮膜3や導電
性を有する金属酸化物の薄膜4を損傷しやすく、できあ
がったコンデンサの漏れ電流や誘電損失の正接が太き(
なる。
A portion of the anode lead 1 is covered with an insulating layer 6 on which a conductive layer 5 is formed. Conductive layer 5 formed on insulating layer 6
The conductor 7 is brought into contact with a part of the conductor 7, immersed in an electrolytic solution containing a supporting electrolyte and a conductive polymer monomer, and the conductor 7 is used as an anode to conduct electrolytic polymerization between the external cathode and the conductor 7. A conductive polymer film 8 is formed on the metal oxide thin film 4 by electrolytic polymerization. In this electrolytic polymerization, the insulating layer 6
Otherwise, the dielectric oxide film 3 and the conductive metal oxide thin film 4 will be easily damaged by contact with the conductor 7, and the resulting capacitor will have a large leakage current and dielectric loss tangent (
Become.

本発明に用いる絶縁層の材料は、シリコン樹脂、エポキ
シ樹脂、フッ素樹脂、ポリイミド樹脂、ポリフェニレン
スルフィド樹脂など高分子材料を単独またはシリカ、ア
ルミナなどの無機物と混合して用いる。これらは、接着
、塗布などの方法により陽極リードまたは誘電体酸化皮
膜の一部に形成し被覆する。また熱収縮性シリコンチュ
ーブ、テフロンチューブなどを陽極リードに挿入し収縮
被覆する。
As the material for the insulating layer used in the present invention, polymeric materials such as silicone resin, epoxy resin, fluororesin, polyimide resin, and polyphenylene sulfide resin are used alone or in combination with inorganic materials such as silica and alumina. These are formed and coated on a part of the anode lead or dielectric oxide film by methods such as adhesion and coating. Also, insert a heat-shrinkable silicone tube, Teflon tube, etc. into the anode lead and cover it with shrinkage.

絶縁層表面上に導電層を形成するには、あらかじめ、金
属あるいは金属化合物を蒸着、塗布したり、あるいは導
電性高分子膜を化学酸化重合などの方法により形成せし
める。また、誘電体酸化皮膜上に導電性を有する金属酸
化物を形成する工程において同時に絶縁層表面上に金属
酸化物からなる導電層を形成することもできる。
To form a conductive layer on the surface of an insulating layer, a metal or a metal compound is vapor-deposited or coated in advance, or a conductive polymer film is formed by a method such as chemical oxidation polymerization. Furthermore, in the step of forming a conductive metal oxide on the dielectric oxide film, a conductive layer made of a metal oxide can be formed on the surface of the insulating layer at the same time.

誘電体酸化皮膜表面に形成される導電性を有する金属酸
化物は、チタン、マンガン、鉛、バナジウム、ルテニウ
ム、スズ、コバルト、ニッケル、インジウムなどの酸化
物が掲げられる。形成方法としでは、蒸着、溶媒に分散
した溶液を浸漬乾燥、塩の溶液を浸漬後加熱分解するな
どの方法がある。
Examples of the conductive metal oxide formed on the surface of the dielectric oxide film include oxides of titanium, manganese, lead, vanadium, ruthenium, tin, cobalt, nickel, and indium. Formation methods include vapor deposition, immersion drying of a solution dispersed in a solvent, immersion of a salt solution and then thermal decomposition.

形成の容易さや価格の面から、塩の溶液を浸漬後加熱分
解する方法が好ましく、硝酸マンガン水溶液を浸漬後加
熱分解して二酸化マンガン層を形成する方法は特に好ま
しい。
From the viewpoint of ease of formation and cost, a method in which a salt solution is immersed and then thermally decomposed is preferred, and a method in which a manganese nitrate aqueous solution is immersed and then thermally decomposed to form a manganese dioxide layer is particularly preferred.

電解重合は、支持電解質を0.01mol/1〜2mo
l/lおよび導電性高分子モノマーを0.01mol/
1〜5mol/l含む電解液中で行う。
In electrolytic polymerization, the supporting electrolyte is 0.01 mol/1 to 2 mol
l/l and 0.01 mol/l of conductive polymer monomer
It is carried out in an electrolytic solution containing 1 to 5 mol/l.

本発明に用いる導電性高分子としてはポリピロール、ポ
リチオフェン、ポリフラン、ポリアニリンおよびこれら
の誘導体を用い、導電性高分子の安定性の面からポリピ
ロールが好ましい。
As the conductive polymer used in the present invention, polypyrrole, polythiophene, polyfuran, polyaniline, and derivatives thereof are used, and polypyrrole is preferable from the viewpoint of stability of the conductive polymer.

本発明の電解重合に用いる支持電解質は、通常使用され
ているものでよく、これらは例えば特開昭63−158
829に開示されている。完成したコンデンサの高温で
の特性の安定性の面からは、ベンゼンスルホン酸アニオ
ン、トルエンスルホン酸アニオンなどの芳香族スルホン
酸アニオンからなる支持電解質が好ましい。
The supporting electrolyte used in the electrolytic polymerization of the present invention may be one that is commonly used, and these include, for example, JP-A No. 63-158
829. From the viewpoint of the stability of the characteristics of the completed capacitor at high temperatures, a supporting electrolyte made of an aromatic sulfonate anion such as benzenesulfonate anion or toluenesulfonate anion is preferable.

このようにして固体電解質層を形成した素子をコロイダ
ルカーボンに浸漬してカーボン層を形成し、更にその上
に導電性ペーストにより導電性塗膜層を形成し、その一
部に陰極引出し用のリード線を接続する。以上のように
構成されたアルミニウム固体電解コンデンサ素子は、樹
脂モールドまたは樹脂ケース、金属ケースに密閉するな
どの外装を施し、アルミニウム固体電解コンデンサを得
る。
The element with the solid electrolyte layer formed in this way is immersed in colloidal carbon to form a carbon layer, and then a conductive coating layer is formed using conductive paste on top of it, and a part of it is covered with a lead for drawing out the cathode. Connect the lines. The aluminum solid electrolytic capacitor element configured as described above is packaged by sealing it in a resin mold, a resin case, or a metal case to obtain an aluminum solid electrolytic capacitor.

(作  用) 本発明の方法のように、陽極リードおよび/または誘電
体酸化皮膜の一部を絶縁層で被覆し、該絶縁層表面に導
電層を形成し、この導電層に導電体を接触させて陽極と
なし電解重合する方法により製造した固体電解質コンデ
ンサは、電解重合時に導電体が酸化皮膜や導電性を有す
る金属酸化物の薄膜を損傷するおそれが少なく、漏れ電
流が著しく小さくかつ誘電損失の正接(tanδ)の小
さいアルミ固体電解コンデンサが得られる。
(Function) As in the method of the present invention, a part of the anode lead and/or the dielectric oxide film is coated with an insulating layer, a conductive layer is formed on the surface of the insulating layer, and a conductor is brought into contact with the conductive layer. Solid electrolyte capacitors manufactured using a method of electrolytically polymerizing the anode and the conductor are less likely to damage the conductor's oxide film or conductive metal oxide thin film during electrolytic polymerization, have extremely low leakage current, and have low dielectric loss. An aluminum solid electrolytic capacitor with a small tangent (tan δ) of is obtained.

(実 施 例) 以下、実施例により本発明を具体的に説明する。(Example) Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 陽極リードを取り出したアルミニウム焼結体素子を10
0vで化成し表面に誘電体酸化皮膜を形成した。
Example 1 10 aluminum sintered elements with anode leads taken out
A dielectric oxide film was formed on the surface by chemical conversion at 0V.

この素子を20%の硝酸マンガン水溶液に浸漬したのち
、300℃で熱分解を行った。この操作を硝酸マンガン
水溶液濃度を30,40.50および80%と変化させ
合わせて5回繰り返し誘電体酸化皮膜表面に二酸化マン
ガンを形成した。
This element was immersed in a 20% manganese nitrate aqueous solution and then thermally decomposed at 300°C. This operation was repeated five times by changing the concentration of the manganese nitrate aqueous solution to 30, 40.50 and 80% to form manganese dioxide on the surface of the dielectric oxide film.

次に、熱収縮シリコンチューブ(信越シリコン製5T−
3DG)を、ビロール溶液に5秒浸漬後0.1M過硫酸
アンモニウム水溶液に2分間浸漬して洗浄、乾燥し表面
にあらかじめ導電層を形成した。このチューブを1mm
に切断し、陽極リードに挿入し加熱硬化し第1図のよう
に陽極リードの一部を、表面に導電層を形成した絶縁層
で被覆した。この絶縁層上の化学重合によるポリピロー
ル導電層の一部にステンレスワイヤーを接触させて陽極
とし、ベンゼンジスルホン酸ナトリウム0.2 m o
 l / l 1 ピロールモノ?−0,2mol/l
を含む水溶液からなる電解液の入ったステンレスビーカ
ー中に浸漬し、ステンレスビーカーを陰極とし2mAで
30分定電流で電解重合した。
Next, heat-shrinkable silicone tube (Shin-Etsu Silicon 5T-
3DG) was immersed in a virol solution for 5 seconds, then immersed in a 0.1 M ammonium persulfate aqueous solution for 2 minutes, washed, and dried to form a conductive layer on the surface in advance. This tube is 1mm
It was cut into pieces, inserted into an anode lead, and cured by heating, so that a part of the anode lead was covered with an insulating layer with a conductive layer formed on the surface, as shown in FIG. A stainless steel wire was brought into contact with a part of the chemically polymerized polypyrrole conductive layer on this insulating layer to serve as an anode, and 0.2 m of sodium benzene disulfonate was added.
l/l 1 Pyrrole mono? -0.2 mol/l
The sample was immersed in a stainless steel beaker containing an electrolytic solution consisting of an aqueous solution containing .

その結果、二酸化マンガン層の上に電解重合によるポリ
ピロール膜が形成された。
As a result, a polypyrrole film was formed on the manganese dioxide layer by electrolytic polymerization.

ステンレスワイヤーを取り除き、洗浄、乾燥後、該素子
をコロイダルカーボンおよび銀ペーストを塗布して陽極
リードを取り付け、エポキシ樹脂でモールドして定格電
圧35V1公称容量1.5μFのアルミコンデンサを得
た。完成したコンデンサの静電容量(C)、誘電損失の
正接(t anδ)、35Vでの漏れ電流(LC)を第
1表に示す。
After removing the stainless steel wire, washing and drying, the device was coated with colloidal carbon and silver paste, an anode lead was attached, and molded with epoxy resin to obtain an aluminum capacitor with a rated voltage of 35 V and a nominal capacity of 1.5 μF. Table 1 shows the capacitance (C), tangent of dielectric loss (tanδ), and leakage current (LC) at 35V of the completed capacitor.

実施例2 表面に誘電体酸化皮膜を形成した厚さ75μm1幅3m
mのアルミニウム箔に、かしめ付けにより陽極リードを
取り付け20mmの長さに切断して陽極箔を得た。
Example 2 Dielectric oxide film formed on the surface, thickness 75 μm, width 3 m
An anode lead was attached to a 20 mm aluminum foil by caulking, and the anode lead was cut into a length of 20 mm to obtain an anode foil.

陽極箔の上端の一部にエポキシ樹脂(住友ベークライト
製 スミマック9080)とシリカ微粉(試薬 二酸化
ケイ素)を1:1に混合した絶縁体を塗布乾燥し絶縁層
を形成した。
An insulator made of a 1:1 mixture of epoxy resin (Sumimac 9080 manufactured by Sumitomo Bakelite Co., Ltd.) and fine silica powder (reagent silicon dioxide) was applied to a part of the upper end of the anode foil and dried to form an insulating layer.

この箔を40%の硝酸マンガン水溶液に浸漬したのち、
350℃で熱分解を行った。この操作を2回繰り返した
ところ誘電体酸化皮膜表面及び絶縁層表面に二酸化マン
ガン層が形成した。次に、絶縁層上の二酸化マンガン層
表面の一部にステンレスワイヤーを接触させて陽極とし
、テトラエチルアンモニウムパラトルエンスルホン mol/11ピロールモノ?−0 、2mo l/ 1
を含むアセトニトリル溶液の入ったステンレスビーカー
に浸漬し、ステンレスビーカーを陰極として1mAで4
0分定電流電解重合を行った。その結果、二酸化マンガ
ン層の上に電解重合によるポリピロール膜が形成された
After immersing this foil in a 40% manganese nitrate aqueous solution,
Thermal decomposition was carried out at 350°C. When this operation was repeated twice, a manganese dioxide layer was formed on the surface of the dielectric oxide film and the surface of the insulating layer. Next, a stainless steel wire was brought into contact with a part of the surface of the manganese dioxide layer on the insulating layer to serve as an anode, and tetraethylammonium para-toluene sulfone mol/11 pyrrole mono? -0, 2mol/1
immersed in a stainless steel beaker containing an acetonitrile solution containing
Constant current electrolytic polymerization was performed for 0 minutes. As a result, a polypyrrole film was formed on the manganese dioxide layer by electrolytic polymerization.

ステンレスワイヤーを取り除き、洗浄、乾燥後、該素子
をコロイダルカーボンおよび銀ペーストを塗布して陽極
リードを取り付け、エポキシ樹脂でモールドして定格電
圧8.3V1公称容量6.7μFのアルミコンデンサを
得た。完成したコンデンサの静電容量(C) 、M電損
失の正接(t anδ)および6.3vでの漏れ電流(
LC)を第1表に示す。
After removing the stainless steel wire, washing and drying, the device was coated with colloidal carbon and silver paste, an anode lead was attached, and molded with epoxy resin to obtain an aluminum capacitor with a rated voltage of 8.3 V and a nominal capacity of 6.7 μF. The capacitance (C) of the completed capacitor, the tangent of the M electric loss (tanδ) and the leakage current at 6.3v (
LC) are shown in Table 1.

第  1  表 実施例3 表面に誘電体酸化皮膜を形成した厚さ90μm1幅2m
mのアルミニウム箔に、かしめ付けにより陽極リードを
取り付け20mmの長さに切断して陽極箔を得た。
Table 1 Example 3 Dielectric oxide film formed on the surface, thickness 90 μm, width 2 m
An anode lead was attached to a 20 mm aluminum foil by caulking, and the anode lead was cut into a length of 20 mm to obtain an anode foil.

この素子を、酢酸鉛0.08mol/l及び過硫酸アン
モニウム0.2mol/lを含む水溶液に浸漬し70″
Cで30分反応させ乾燥した。この操作を4回繰返し、
誘電体酸化皮膜表面に二酸化鉛を含む導電性を有する薄
膜層を形成した。次に、熱収縮シリコンチューブ(信越
シリコン製5T−3DG)を、ピロール溶液に5秒間浸
漬後0.1M過硫酸アンモニウム水溶液に2分間浸漬し
て洗浄、乾燥し表面にあらかじめ導電層を形成した。
This element was immersed for 70'' in an aqueous solution containing 0.08 mol/l of lead acetate and 0.2 mol/l of ammonium persulfate.
The mixture was reacted at C for 30 minutes and dried. Repeat this operation 4 times,
A conductive thin film layer containing lead dioxide was formed on the surface of the dielectric oxide film. Next, a heat-shrinkable silicone tube (5T-3DG manufactured by Shin-Etsu Silicon) was immersed in a pyrrole solution for 5 seconds and then in a 0.1 M ammonium persulfate aqueous solution for 2 minutes, washed, and dried to form a conductive layer on the surface in advance.

このチューブを1mmに切断し、陽極リードに挿入し加
熱硬化し第1図のように陽極リードの一部を、表面に導
電層を形成した絶縁層で被覆した。
This tube was cut into 1 mm pieces, inserted into the anode lead, and heated and cured, so that a part of the anode lead was covered with an insulating layer with a conductive layer formed on the surface, as shown in FIG.

この絶縁層上の化学重合によるポリピロール導電層の一
部にステンレスワイヤーを接触させて陽極とし、テトラ
エチルアンモニウムパラトルエンスルホン酸0.3 r
n o l / I N ピロールモノマー0.3mo
l/1を含むアセトニトリル溶液の入ったステンレスビ
ーカーに浸漬し、ステンレスビーカーを陰極として1m
Aで30分定電流電解重合を行った。その結果、二酸化
鉛を含む導電層の上に電解重合によるポリピロール膜が
形成された。
A stainless steel wire was brought into contact with a part of the chemically polymerized polypyrrole conductive layer on this insulating layer to serve as an anode, and 0.3 r of tetraethylammonium para-toluenesulfonic acid was added.
n o l / I N pyrrole monomer 0.3 mo
Immerse it in a stainless steel beaker containing an acetonitrile solution containing l/1, and use the stainless steel beaker as a cathode for 1 m.
Constant current electrolytic polymerization was carried out at A for 30 minutes. As a result, a polypyrrole film was formed by electrolytic polymerization on the conductive layer containing lead dioxide.

ステンレスワイヤーを取り除き、洗浄、乾燥後、該素子
をコロイダルカーボンおよび銀ペーストを塗布して陽極
リードを取り付け、エポキシ樹脂でモールドして定格電
圧10V1公称容量1.0μFのアルミコンデンサを得
た。完成したコンデンサの静電容量(C)、誘電損失の
正接(t anδ)および10Vでの漏れ電流(LC)
を第1表に示す。
After removing the stainless steel wire, washing and drying, the device was coated with colloidal carbon and silver paste, an anode lead was attached, and molded with epoxy resin to obtain an aluminum capacitor with a rated voltage of 10 V and a nominal capacity of 1.0 μF. Capacitance (C), tangent of dielectric loss (tanδ) and leakage current (LC) at 10V of the completed capacitor
are shown in Table 1.

(発明の効果) 誘電体酸化皮膜を形成したアルミニウムの表面に導電性
を有する金属酸化物の薄膜と電解重合により形成される
導電性高分子膜を形成してなるアルミニウム固体電解コ
ンデンサにおいて、陽極リードおよび/または誘電体酸
化皮膜の一部を絶縁層で被覆し、該絶縁層表面に導電層
を形成し、この導電層に導電体を接触させて陽極となし
電解重合する方法により製造した固体電解質コンデンサ
は、電解重合時に導電体が酸化皮膜や導電性を有する金
属化合物の薄膜を損傷するおそれが少なく、漏れ電流が
著しく小さく、かつ、誘電損失の正接(tanδ)の小
さいアルミニウム固体電解コンデンサが得られる。
(Effect of the invention) In an aluminum solid electrolytic capacitor formed by forming a conductive polymer film formed by electrolytic polymerization and a thin film of a metal oxide having conductivity on the surface of aluminum on which a dielectric oxide film is formed, the anode lead and/or a solid electrolyte manufactured by a method in which a part of the dielectric oxide film is covered with an insulating layer, a conductive layer is formed on the surface of the insulating layer, a conductor is brought into contact with this conductive layer, and the conductor is used as an anode and electropolymerized. For capacitors, aluminum solid electrolytic capacitors are available that have less risk of the conductor damaging the oxide film or the thin film of the conductive metal compound during electrolytic polymerization, have extremely low leakage current, and have a small tangent of dielectric loss (tanδ). It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は中心部より陽極リードを引き出した焼結体型ア
ルミニウム固体電解コンデンサの概略断面図である。 1・拳陽極リード 2・・アルミニウム焼結体3・・誘
電体酸化皮膜 4・O導電性を有する金属酸化物 5・・導電層 6・・絶縁層 7・拳導電体8・・電解
重合による導電性高分子膜
FIG. 1 is a schematic cross-sectional view of a sintered aluminum solid electrolytic capacitor with an anode lead drawn out from the center. 1. Fist anode lead 2. Aluminum sintered body 3. Dielectric oxide film 4. Metal oxide with O conductivity 5. Conductive layer 6. Insulating layer 7. Fist conductor 8. By electrolytic polymerization conductive polymer membrane

Claims (1)

【特許請求の範囲】 1 陽極リードを接続したアルミニウムの表面に、順次
、誘電体酸化皮膜、導電性を有する金属酸化物及び導電
性高分子膜を形成してなるアルミニウム固体電解コンデ
ンサの製造方法において、陽極リードおよび/または誘
電体酸化皮膜の一部を絶縁層で被覆し、該絶縁層表面に
導電層を形成し、この導電層に導電体を接触させて陽極
となし、外部陰極との間で電解重合を行ない導電性高分
子膜を形成することを特徴とするアルミニウム固体電解
コンデンサの製造方法。 2 導電性を有する金属酸化物が二酸化マンガンまたは
二酸化鉛である請求項1記載のアルミニウム固体電解コ
ンデンサの製造方法。 3 導電性高分子がポリピロールである請求項1記載の
アルミニウム固体電解コンデンサの製造方法。
[Claims] 1. A method for manufacturing an aluminum solid electrolytic capacitor, in which a dielectric oxide film, a conductive metal oxide, and a conductive polymer film are sequentially formed on the surface of aluminum to which an anode lead is connected. , a part of the anode lead and/or the dielectric oxide film is covered with an insulating layer, a conductive layer is formed on the surface of the insulating layer, a conductor is brought into contact with this conductive layer to form an anode, and a part of the dielectric oxide film is coated with an external cathode. 1. A method for producing an aluminum solid electrolytic capacitor, which comprises performing electrolytic polymerization to form a conductive polymer film. 2. The method for manufacturing an aluminum solid electrolytic capacitor according to claim 1, wherein the conductive metal oxide is manganese dioxide or lead dioxide. 3. The method for manufacturing an aluminum solid electrolytic capacitor according to claim 1, wherein the conductive polymer is polypyrrole.
JP2022040A 1990-02-02 1990-02-02 Manufacture of aluminum solid electrolytic capacitor Pending JPH03228305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022040A JPH03228305A (en) 1990-02-02 1990-02-02 Manufacture of aluminum solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022040A JPH03228305A (en) 1990-02-02 1990-02-02 Manufacture of aluminum solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH03228305A true JPH03228305A (en) 1991-10-09

Family

ID=12071832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022040A Pending JPH03228305A (en) 1990-02-02 1990-02-02 Manufacture of aluminum solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH03228305A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG83774A1 (en) * 1999-02-16 2001-10-16 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and method of manufacturing the same
SG90095A1 (en) * 1999-02-17 2002-07-23 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor, and method of manufacturing the same
JP2008085261A (en) * 2006-09-29 2008-04-10 Nippon Chemicon Corp Solid electrolytic capacitor and method of manufacturing same
EP2264727A3 (en) * 1999-04-30 2011-01-05 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor having an insulating part between anode and cathode and method for producing the same
US7876549B2 (en) * 2007-05-30 2011-01-25 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG83774A1 (en) * 1999-02-16 2001-10-16 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and method of manufacturing the same
SG90095A1 (en) * 1999-02-17 2002-07-23 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor, and method of manufacturing the same
EP1030326A3 (en) * 1999-02-17 2005-02-09 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor, and method of manufacturing the same
EP2264727A3 (en) * 1999-04-30 2011-01-05 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor having an insulating part between anode and cathode and method for producing the same
JP2008085261A (en) * 2006-09-29 2008-04-10 Nippon Chemicon Corp Solid electrolytic capacitor and method of manufacturing same
US7876549B2 (en) * 2007-05-30 2011-01-25 Sanyo Electric Co., Ltd. Solid electrolytic capacitor and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3157748B2 (en) Solid electrolytic capacitor using conductive polymer and method for manufacturing the same
JP2765462B2 (en) Solid electrolytic capacitor and method of manufacturing the same
KR100279098B1 (en) Manufacturing method of solid electrolytic capacitor
JPH11186110A (en) Electrolytic capacitor and manufacture thereof
US5223120A (en) Method for fabricating solid electrolytic capacitors using an organic conductive layer
JP3245567B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0448710A (en) Solid electrolytic capacitor
JPH03228305A (en) Manufacture of aluminum solid electrolytic capacitor
JPH1050558A (en) Manufacture of solid state electrolytic capacitor
JP3671828B2 (en) Manufacturing method of solid electrolytic capacitor
JP2001006982A (en) Electrolytic capacitor, electrode therefor, and their manufacture
JP2001110685A (en) Solid electrolytic capacitor
JP3284993B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2640866B2 (en) Method for manufacturing solid electrolytic capacitor
JP2696982B2 (en) Solid electrolytic capacitors
JPH11204377A (en) Solid-state electrolytic capacitor
JP3974706B2 (en) Manufacturing method of solid electrolytic capacitor
JP2000228331A (en) Manufacture of electrolytic capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JPH1174155A (en) Manufacture of solid electrolytic capacitor
JP2000106330A (en) Capacitor and its manufacture
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor
JPH02219211A (en) Manufacture of solid electrolytic capacitor
JPH0430409A (en) Manufacture of solid electrolytic capacitor
JPH0393214A (en) Manufacture of solid-state electrolytic capacitor