JPH10247612A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH10247612A
JPH10247612A JP9065522A JP6552297A JPH10247612A JP H10247612 A JPH10247612 A JP H10247612A JP 9065522 A JP9065522 A JP 9065522A JP 6552297 A JP6552297 A JP 6552297A JP H10247612 A JPH10247612 A JP H10247612A
Authority
JP
Japan
Prior art keywords
film layer
layer
thin film
oxide film
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9065522A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukushi
和彦 福士
Yasuo Sakai
康雄 酒井
Mika Itou
美香 伊藤
Toshikatsu Terao
俊勝 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Towa Electron Ltd
Original Assignee
Fujitsu Towa Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Towa Electron Ltd filed Critical Fujitsu Towa Electron Ltd
Priority to JP9065522A priority Critical patent/JPH10247612A/en
Publication of JPH10247612A publication Critical patent/JPH10247612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor having no increase in leakage current due to thermal stress generated when mounting in the state wherein excellent high frequency characteristics, which are the special character of a conductive high molecular compound, are being maintained. SOLUTION: A conductive high molecular compound layer 4, a graphite layer 5 which is a conductive layer and a silver paste layer 4 are successively formed on an anode member, where a dielectric oxide film layer 2 is formed, in this electrolytic capacitor. The conductive layer is used as an electrode (cathode) 7 on one side, and an anode member 1 is used as the other electrode (anode) 8. In this case, an insulative thin film layer (polyimide thin film layer) 3 is selectively formed on the insulating defective part of the dielectric oxide film layer by an electrodeposition method, the insulating defective part of the dielectric oxide film layer 2 is repaired by the insulative thin film layer (polyimide thin film layer) 3, and the increase of a leakage current caused by the thermal stress at the time of mounting can be prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、共役系高分子化合
物の導電性高分子化合物を固体電解質とする固体電解コ
ンデンサの改良に関し、更に詳しくは、実装時の熱応力
による漏れ電流の増大防止手段が施された固体電解コン
デンサに係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a solid electrolytic capacitor using a conductive polymer compound of a conjugated polymer compound as a solid electrolyte, and more specifically, means for preventing an increase in leakage current due to thermal stress during mounting. The present invention relates to a solid electrolytic capacitor provided with.

【0002】[0002]

【従来の技術】通常、固体電解コンデンサは、タンタル
或いはアルミニウム等の弁作用金属の多孔質成形体を陽
極とし、その酸化皮膜を誘電体とし、そして二酸化マン
ガンや7、7、8、8−テトラシアノキノジメタン(T
CNQ)錯塩等の固体電解質を陰極の一部とする構造を
有している。この場合、固体電解質には多孔質成形体内
部の誘電体全面と電極リードとの間を電気的に接続する
機能を有するが、その上に誘電体酸化皮膜の絶縁欠陥に
起因する電気的短絡を修復する機能を有することが望ま
しい。そのような要請から、導電率は高いが誘電体修復
機能がない金属は固体電解質としては不適当であり、従
来、短絡電流による熱等によって絶縁体に移転する二酸
化マンガン等が固体電解質として用いられてきた。しか
しながら、二酸化マンガンを電極の一部とするものは、
その導電率が充分低くないので、高周波域でのインピー
ダンスが大きい。一方、TCNQ錯塩を電極の一部とす
るものは、TCNQ錯塩が熱分解し易いので、耐熱性に
劣っている等、これらを用いた固体電解コンデンサには
種々の解決課題が残っていた。そこで、近年、高分子の
分野において、新しい固体電解質材料の開発が進めら
れ、その結果、ポリピロール、ポリチオフェン、ポリア
ニリン等の共役系高分子化合物に電子供与性や電子吸引
性化合物(ドーパント)をドーピングした導電性高分子
化合物を固体電解質として用いた固体電解コンデンサが
提案されている。更に説明すれば、該固体電解コンデン
サは、図2に示されているように、タンタル粉末の焼結
体の表面に誘電体酸化皮膜層2が形成されて構成された
陽極体1上に共役系高分子化合物の導電性高分子化合物
層4、陰極となる導電体層としてのグラファイト層5及
び銀ペースト層6が順次積層形成され、該導電体層から
は陰極導出線7が、陽極体1からは陽極導出線8がそれ
ぞれ引き出されて、陽極体1の全周面が外装樹脂材9に
てモールド外装されてなるものである。そして、該固体
電解コンデンサにおいては、その導電性高分子化合物層
4は、例えば、アニリンモノマーを誘電体酸化皮膜層2
上で酸化剤を用いて重合させ導電性高分子化合物層とし
てのポリアニリンを形成させていた。
2. Description of the Related Art In general, a solid electrolytic capacitor is formed by using a porous molded body of a valve metal such as tantalum or aluminum as an anode, an oxide film as a dielectric, and manganese dioxide, 7, 7, 8, 8-tetratetrafluoroethylene. Cyanoquinodimethane (T
It has a structure in which a solid electrolyte such as CNQ) complex salt is part of the cathode. In this case, the solid electrolyte has a function of electrically connecting the entire surface of the dielectric inside the porous molded body and the electrode leads, and furthermore, an electrical short circuit caused by an insulation defect of the dielectric oxide film is formed thereon. It is desirable to have a function to repair. Due to such demands, metals having high conductivity but no dielectric repair function are unsuitable as solid electrolytes.Conventionally, manganese dioxide or the like, which is transferred to an insulator by heat or the like due to short-circuit current, has been used as a solid electrolyte. Have been. However, when manganese dioxide is part of the electrode,
Since the conductivity is not sufficiently low, the impedance in a high frequency range is large. On the other hand, when the TCNQ complex salt is used as a part of the electrode, the TCNQ complex salt is easily decomposed by heat, so that the solid electrolytic capacitor using them has various problems such as poor heat resistance. In recent years, new solid electrolyte materials have been developed in the field of polymers, and as a result, conjugated polymer compounds such as polypyrrole, polythiophene, and polyaniline have been doped with electron-donating or electron-withdrawing compounds (dopants). A solid electrolytic capacitor using a conductive polymer compound as a solid electrolyte has been proposed. More specifically, as shown in FIG. 2, the solid electrolytic capacitor has a conjugated system on an anode body 1 having a dielectric oxide film layer 2 formed on the surface of a sintered body of tantalum powder. A conductive polymer compound layer 4 of a polymer compound, a graphite layer 5 as a conductor layer serving as a cathode, and a silver paste layer 6 are sequentially laminated, and a cathode lead wire 7 extends from the conductor layer to the anode body 1. The anode lead wires 8 are respectively drawn out, and the entire peripheral surface of the anode body 1 is molded with an exterior resin material 9 so as to be molded. In the solid electrolytic capacitor, the conductive polymer compound layer 4 is formed, for example, by adding an aniline monomer to the dielectric oxide film layer 2.
Above, polymerization was carried out using an oxidizing agent to form polyaniline as a conductive polymer compound layer.

【0003】[0003]

【発明が解決しようとする課題】ところが、上述したよ
うに、誘電体酸化皮膜層上で酸化剤を用いて重合させた
導電性高分子化合物を固体電解質とする従来の固体電解
コンデンサは、固体電解質層であるポリアニリン膜が薄
くしか形成されないところから、実装時に加わる熱応力
等によってポリアニリン膜と誘電体酸化皮膜とが剥離す
ることがあり、このとき誘電体酸化皮膜層に損傷が生じ
てコンデンサの漏れ電流が増大するという問題点があつ
た。
However, as described above, a conventional solid electrolytic capacitor using a conductive polymer compound polymerized with an oxidizing agent on a dielectric oxide film layer as a solid electrolyte is a solid electrolytic capacitor. Since the polyaniline film, which is only a thin layer, is formed only thinly, the polyaniline film and the dielectric oxide film may peel off due to thermal stress or the like applied during mounting, causing damage to the dielectric oxide film layer and causing leakage of the capacitor. There is a problem that the current increases.

【0004】本発明は、このような従来の問題点に鑑み
なされたもので、その目的とするところは、導電性高分
子化合物の特徴である優れた高周波特性を維持したま
ま、実装時の熱応力によって漏れ電流が増大することが
ない、共役系高分子化合物を固体電解質とした固体電解
コンデンサを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem, and an object of the present invention is to maintain the high frequency characteristics characteristic of a conductive polymer compound while maintaining the high frequency characteristics during mounting. An object of the present invention is to provide a solid electrolytic capacitor using a conjugated polymer compound as a solid electrolyte without increasing leakage current due to stress.

【0005】[0005]

【課題を解決するための手段】この目的を達成するた
め、本発明は、表面に誘電体酸化皮膜層が形成された陽
極体上に共役系高分子化合物の導電性高分子化合物層、
導電体層が順次積層形成され、該導電体層が一方の電極
とされ、前記陽極体が他方の電極とされてなる固体電解
コンデンサにおいて、前記誘電体酸化皮膜層の絶縁欠陥
部に絶縁性薄膜層が電着法により形成され、該絶縁性薄
膜層により前記誘電体酸化皮膜層の絶縁欠陥部が補修さ
れて実装時の熱応力による漏れ電流の増大が防止される
構成を特徴とするものである。
In order to achieve this object, the present invention provides a conductive polymer compound layer of a conjugated polymer compound on an anode body having a dielectric oxide film layer formed on a surface thereof.
In a solid electrolytic capacitor in which a conductor layer is sequentially formed and the conductor layer is used as one electrode and the anode body is used as the other electrode, an insulating thin film is formed on an insulation defect portion of the dielectric oxide film layer. A layer formed by an electrodeposition method, wherein the insulating thin film layer repairs an insulation defect portion of the dielectric oxide film layer, thereby preventing an increase in leakage current due to thermal stress during mounting. is there.

【0006】[0006]

【発明の実施の形態】発明の実施の形態につき、図2と
の対応部分に同一数字を附して示す図1を参照して説明
すると、本発明に係る固体電解コンデンサは、図1に示
されているように、図2に示された従来構造の固体電解
コンデンサにおいて、電着法により誘電体酸化皮膜層2
の絶縁欠陥部に選択的に絶縁性薄膜層(ポリイミド薄膜
層)3が形成された構成にある。更に説明すると、チタ
ン、タンタル及びアルミニウムのような誘電体酸化皮膜
を形成できる金属粉末の焼結体にして、かつ表面積が大
きくされている焼結体の細孔壁面にコ字形に沿って誘電
体酸化皮膜層2が形成されて陽極となる陽極体1が構成
されるとともに、該陽極体1における誘電体酸化皮膜層
2の表面の補修を要する絶縁欠陥部には、電着法により
絶縁性薄膜層(ポリイミド薄膜層)3が選択的に形成さ
れ、次いで、該絶縁性薄膜層(ポリイミド薄膜層)3上
に共役系高分子化合物の導電性高分子化合物層4、導電
体層としてのグラファイト層5及び銀ペースト層6が順
次積層形成され、該導電体層からは陰極導出線7が、陽
極体1からは陽極導出線8がそれぞれ引き出されて陽極
体1の全周面が外装樹脂材9にてモールド外装されてな
るものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG. 1 in which parts corresponding to those in FIG. 2 are assigned the same reference numerals. The solid electrolytic capacitor according to the present invention is shown in FIG. As shown in FIG. 2, in the solid electrolytic capacitor having the conventional structure shown in FIG.
The insulating thin-film layer (polyimide thin-film layer) 3 is selectively formed in the insulation defect part of (1). More specifically, a sintered body of a metal powder capable of forming a dielectric oxide film such as titanium, tantalum, and aluminum is formed, and a dielectric material is formed along a U-shape on a pore wall surface of the sintered body having a large surface area. An anode body 1 serving as an anode on which the oxide film layer 2 is formed is formed, and an insulating defect portion of the anode body 1 requiring repair of the surface of the dielectric oxide film layer 2 is formed by an electrodeposition method using an insulating thin film. A layer (polyimide thin film layer) 3 is selectively formed, and then a conductive polymer compound layer 4 of a conjugated polymer compound and a graphite layer as a conductive layer are formed on the insulating thin film layer (polyimide thin layer) 3. 5 and a silver paste layer 6 are sequentially laminated, and a cathode lead wire 7 is drawn out from the conductor layer, and an anode lead wire 8 is drawn out from the anode body 1. Molded exterior It become one.

【0007】なお、絶縁性薄膜層3としてのポリイミド
薄膜を形成する方法としてはスピンコート法、真空蒸着
重合法、電着法等が知られているが、スピンコート法や
真空蒸着重合法では、多孔質化した細孔内部への薄膜形
成は困難であるため、本固体電解コンデンサにおいて
は、ポリアミック酸塩を含む溶液を電着液とし、ポリア
ミック酸を電着した後、加熱イミド化してポリイミド薄
膜を形成する電着法を採用した。また、導電性高分子化
合物層4の形成方法は、化学重合法で合成した導電性高
分子層をプレコート層とし、その上に電解重合すること
により形成される。なお、電解重合により形成される導
電性高分子は特に限定されないが、重合反応の容易さか
らピロール、チオフェン、アニリン或いはそれらの誘導
体を繰り返し単位とするものが好ましく、また、酸化剤
を用いて化学酸化重合したポリピロール或いはポリアニ
リン、ポリチオフェンのいずれか、或いはそれらの誘導
体のいずれかが望ましく、更には、ポリアニリン、ポリ
チオフェン、ポリピロールのいずれかを組み合わせても
良い。
As a method of forming a polyimide thin film as the insulating thin film layer 3, a spin coating method, a vacuum deposition polymerization method, an electrodeposition method and the like are known. Because it is difficult to form a thin film inside the pores that have been made porous, in this solid electrolytic capacitor, a solution containing a polyamic acid salt is used as an electrodeposition solution, and a polyamic acid is electrodeposited, and then heated and imidized to form a polyimide thin film. The electrodeposition method of forming was adopted. The conductive polymer compound layer 4 is formed by using a conductive polymer layer synthesized by a chemical polymerization method as a precoat layer, and performing electrolytic polymerization on the precoat layer. The conductive polymer formed by electrolytic polymerization is not particularly limited, but is preferably a compound having pyrrole, thiophene, aniline, or a derivative thereof as a repeating unit because of the ease of polymerization reaction. Oxidatively polymerized polypyrrole, polyaniline, or polythiophene, or any of their derivatives is desirable, and further, any of polyaniline, polythiophene, and polypyrrole may be combined.

【0008】上記のようにして、製造構成された本固体
電解コンデンサは、誘電体酸化皮膜層2の絶縁欠陥部が
絶縁性薄膜層であるポリイミド薄膜層3で補修されるこ
とになり、実装時の熱応力によって漏れ電流が増大する
ことがない固体電解コンデンサとなる。
In the solid electrolytic capacitor manufactured and manufactured as described above, the insulation defect of the dielectric oxide film layer 2 is repaired by the polyimide thin film layer 3 which is an insulating thin film layer. Is a solid electrolytic capacitor in which the leakage current does not increase due to the thermal stress.

【0009】[0009]

【実施例】以下に具体的実施例について説明する。 実施例1 タンタル粉末の角形焼結体(2.1×1.0×1.2m
m)をリン酸水溶液中で陽極酸化(50V)し、焼結体
表面に誘電体酸化皮膜層としてのタンタル酸化皮膜層2
を形成して陽極体1を構成し、該陽極体1をポリアミッ
ク酸塩を含む溶液に浸漬し、40Vで1時間電着し、メ
タノール洗浄後250℃で1時間加熱し、タンタル酸化
皮膜層2上に絶縁性薄膜層としてのイミド化したポリイ
ミド薄膜層3を形成した。なお、電着液の調製は、ビフ
ェニルテトラカルボン酸二無水物1.2g及びP−フェ
ニレンジアミン0.44gをN−メチルピロリドン2
1.8g中で反応させポリアミック酸溶液を調製した。
このポリアミック酸溶液2.1gをN,N−ジメチルホ
ルムアミド33.5gで希釈した後、良く撹拌しながら
トリエチルアミン0.034gを加えポリアミック酸塩
溶液とし、更にこのポリアミック酸塩溶液に撹拌しなが
らメタノール64.4gを加え、ポリアミック酸塩0.
145%の電着液とした。ポリイミド薄膜層3を形成
後、ピロールとエタノールとを重量比で30:70の割
合で含有するピロール液に浸漬した。次いで、ドデシル
ヘンゼンスルホン第二鉄とエタノールとを重量比で4
0:60の割合で含有する温度15℃の酸化剤溶液に浸
漬し、導電性高分子化合物層4を重合させた。反応終了
後、未反応の酸化剤と過剰の酸とを水洗によって洗浄
し、50℃で1時間、真空中で乾燥した。次いで、生成
した導電性高分子化合物層4上に導電体層としてのグラ
ファイト層5及び銀ペースト層6を順次積層形成し、銀
ペースト層6からは陰極導出線7を、陽極体1からは陽
極導出線8をそれぞれ引き出した後、陽極体1の全周面
を外装エポキシ樹脂材9にてモールド外装して固体電解
コンデンサを完成させた。
EXAMPLES Specific examples will be described below. Example 1 A square sintered body of tantalum powder (2.1 × 1.0 × 1.2 m
m) is anodized (50 V) in a phosphoric acid aqueous solution, and a tantalum oxide film layer 2 as a dielectric oxide film layer is formed on the surface of the sintered body.
To form an anode body 1. The anode body 1 is immersed in a solution containing a polyamic acid salt, electrodeposited at 40 V for 1 hour, washed with methanol and heated at 250 ° C. for 1 hour to form a tantalum oxide film layer 2 An imidized polyimide thin film layer 3 as an insulating thin film layer was formed thereon. The electrodeposition solution was prepared by adding 1.2 g of biphenyltetracarboxylic dianhydride and 0.44 g of P-phenylenediamine to N-methylpyrrolidone 2
The reaction was carried out in 1.8 g to prepare a polyamic acid solution.
After diluting 2.1 g of this polyamic acid solution with 33.5 g of N, N-dimethylformamide, 0.034 g of triethylamine was added with good stirring to form a polyamic acid salt solution. Of polyamic acid salt.
A 145% electrodeposition solution was obtained. After forming the polyimide thin film layer 3, it was immersed in a pyrrole solution containing pyrrole and ethanol at a weight ratio of 30:70. Next, ferric dodecyl benzene sulfone and ethanol were added in a weight ratio of 4%.
The conductive polymer compound layer 4 was polymerized by immersion in an oxidizing solution at a temperature of 15 ° C. containing 0:60. After completion of the reaction, the unreacted oxidizing agent and excess acid were washed with water and dried at 50 ° C. for 1 hour in vacuum. Next, a graphite layer 5 and a silver paste layer 6 as conductor layers are sequentially formed on the formed conductive polymer compound layer 4, and a cathode lead wire 7 is provided from the silver paste layer 6, and an anode lead is provided from the anode body 1. After each lead wire 8 was drawn out, the entire peripheral surface of the anode body 1 was molded and packaged with a packaged epoxy resin material 9 to complete a solid electrolytic capacitor.

【0010】実施例2 実施例1と同じ陽極体1における誘電体酸化皮膜層2上
に、実施例1と同様な方法でポリイミド薄膜層3を形成
した。ポリイミド薄膜層3を形成後、アニリンとエタノ
ールとを重量比30:70の割合で含有するアニリン溶
液に浸漬し、次いで、過硫酸アンモニウム、トルエンス
ルホン酸及びエタノールを重量比で20:20:60の
割合で含有する温度15℃の酸化剤溶液に浸漬し、導電
性高分子化合物層4を重合させた。反応終了後、実施例
1と同様な方法で洗浄、乾燥等して固体電解コンデンサ
を完成させた。
Example 2 A polyimide thin film layer 3 was formed on the dielectric oxide film layer 2 of the same anode body 1 as in Example 1 by the same method as in Example 1. After forming the polyimide thin film layer 3, it is immersed in an aniline solution containing aniline and ethanol at a weight ratio of 30:70, and then ammonium persulfate, toluenesulfonic acid and ethanol at a weight ratio of 20:20:60. The conductive polymer compound layer 4 was immersed in an oxidant solution having a temperature of 15 ° C. and polymerized. After the completion of the reaction, the solid electrolytic capacitor was completed by washing and drying in the same manner as in Example 1.

【0011】実施例3 実施例1と同じ陽極体1における誘電体酸化皮膜層2上
に、実施例1と同様な方法でポリイミド薄膜層3を形成
した。ポリイミド薄膜層3を形成後、4gのイソプロパ
ノール中の1.5gのP−トルエンスルホン酸鉄(II
I)と0.5gの3,4−エチレンジオキシーチオフェ
ンの溶液中に浸漬し、導電性高分子化合物層4を重合さ
せた。反応終了後、実施例1と同様な方法で洗浄、乾燥
等して固体電解コンデンサを完成させた。
Example 3 A polyimide thin film layer 3 was formed on the dielectric oxide film layer 2 of the same anode body 1 as in Example 1 by the same method as in Example 1. After forming the polyimide thin film layer 3, 1.5 g of iron P-toluenesulfonate (II) in 4 g of isopropanol
I) was immersed in a solution of 0.5 g of 3,4-ethylenedioxy-thiophene to polymerize the conductive polymer compound layer 4. After the completion of the reaction, the solid electrolytic capacitor was completed by washing and drying in the same manner as in Example 1.

【0012】実施例4 実施例1と同じ陽極体1における誘電体酸化皮膜層2上
に、実施例1と同様な方法でポリイミド薄膜層3を形成
した。ポリイミド薄膜層3を形成後、ドデシルベンゼン
スルホン酸鉄(III)とピロールとの混合溶液に浸漬
し、プレコート層を形成し、次いで、ピロール濃度0.
05モル/L、支持電解質として0.1モル/Lのテト
ラブチルアンモニウムパークロレートを含むアセトニト
リル溶液中で、作用電極であるステンレス線をプレコー
ト層に軽く接触させ、白金を対電極として定電圧3.5
Vを印加して30分間電解重合を行い、導電性高分子化
合物層4を重合させた。反応終了後、実施例1と同様な
方法で洗浄、乾燥等して固体電解コンデンサを完成させ
た。
Example 4 A polyimide thin film layer 3 was formed on the dielectric oxide film layer 2 of the same anode body 1 as in Example 1 by the same method as in Example 1. After forming the polyimide thin film layer 3, it is immersed in a mixed solution of iron (III) dodecylbenzenesulfonate and pyrrole to form a precoat layer, and then has a pyrrole concentration of 0.
In an acetonitrile solution containing 0.05 mol / L of tetrabutylammonium perchlorate as a supporting electrolyte and 0.1 mol / L as a supporting electrolyte, a stainless steel wire serving as a working electrode is lightly contacted with the precoat layer, and platinum is used as a counter electrode to give a constant voltage of 3. 5
Electrolytic polymerization was performed by applying V for 30 minutes to polymerize the conductive polymer compound layer 4. After the completion of the reaction, the solid electrolytic capacitor was completed by washing and drying in the same manner as in Example 1.

【0013】実施例5 エッチングによって拡面した(25μF/cm2)膜厚9
5μm、面積5×3mmのアルミニウム箔(陽極)をホウ
酸アンモニウム中、50Vで陽極酸化して誘電体酸化皮
膜層2を形成した後、実施例1と同様な方法でポリイミ
ド薄膜層3を形成した。ポリイミド薄膜層3を形成後、
アセトンとイソプロパノールの1:2混合物5g中の1
gのメタスルホン酸鉄(III)と0.5gの3,4−エ
チレンジオキシーチオフェンの溶液中に浸漬し、導電性
高分子化合物層4を重合させた。反応終了後、実施例1
と同様な方法で洗浄、乾燥等して固体電解コンデンサを
完成させた。
Example 5 Film thickness 9 (25 μF / cm 2 ) expanded by etching
An aluminum foil (anode) having a size of 5 μm and an area of 5 × 3 mm was anodized in ammonium borate at 50 V to form a dielectric oxide film layer 2, and then a polyimide thin film layer 3 was formed in the same manner as in Example 1. . After forming the polyimide thin film layer 3,
1 in 5 g of a 1: 2 mixture of acetone and isopropanol
g of iron (III) metasulfonate and 0.5 g of 3,4-ethylenedioxy-thiophene, and the conductive polymer layer 4 was polymerized. After completion of the reaction, Example 1
The solid electrolytic capacitor was completed by washing and drying in the same manner as described above.

【0014】以上の実施例1、実施例2、実施例3、実
施例4、実施例5のそれぞれにおいて、ポリイミド薄膜
層3を形成させないこと以外は各実施例におけると同様
の手順で完成させた固体電解コンデンサ(比較例1、比
較例2、比較例3、比較例4、比較例5)と比較した。
In each of Examples 1, 2, 3, 4, and 5, except that the polyimide thin film layer 3 was not formed, the procedure was completed in the same procedure as in each example. It was compared with solid electrolytic capacitors (Comparative Example 1, Comparative Example 2, Comparative Example 3, Comparative Example 4, Comparative Example 5).

【0015】実施例1〜実施例5と比較例1〜比較例5
の各固体電解コンデンサにつき、その容量出現率、10
0KHzにおけるインピーダンス及びはんだ耐熱試験
(270℃−10秒浸漬)前後の漏れ電流を表1に示
す。
Examples 1 to 5 and Comparative Examples 1 to 5
For each solid electrolytic capacitor of
Table 1 shows the impedance at 0 KHz and the leakage current before and after the solder heat resistance test (immersion at 270 ° C. for 10 seconds).

【0016】[0016]

【表1】 [Table 1]

【0017】この表1から明らかなように、本発明に係
る各実施例の固体電解コンデンサは、いずれも、高周波
域におけるインピーダンス特性に優れ、かつ実装時の熱
応力によって漏れ電流が増大することがないことが判
る。
As is clear from Table 1, each of the solid electrolytic capacitors of the embodiments according to the present invention has excellent impedance characteristics in a high frequency range and an increase in leakage current due to thermal stress during mounting. It turns out that there is no.

【0018】[0018]

【発明の効果】しかして、本発明によれば、誘電体酸化
皮膜層の絶縁欠陥部に、電着法により選択的に絶縁性薄
膜層であるポリイミド薄膜層を形成しているので、誘電
体酸化皮膜層の絶縁欠陥部がこの絶縁性薄膜層(ポリイ
ミド薄膜層)で補修されることになって、実装時の熱応
力によって漏れ電流が増大することがない固体電解コン
デンサを提供し得るものである。
According to the present invention, a polyimide thin film layer, which is an insulating thin film layer, is selectively formed on an insulating defect portion of a dielectric oxide film layer by an electrodeposition method. The insulation defect portion of the oxide film layer is repaired by this insulating thin film layer (polyimide thin film layer), so that it is possible to provide a solid electrolytic capacitor in which leakage current does not increase due to thermal stress during mounting. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る固体電解コンデンサの一例での断
面図である。
FIG. 1 is a sectional view of an example of a solid electrolytic capacitor according to the present invention.

【図2】従来例を示す断面図である。FIG. 2 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 陽極体 2 誘電体酸化皮膜層 3 絶縁性薄膜層(ポリイミド薄膜層) 4 導電性高分子化合物層 5 グラファイト層 6 銀ペースト層 7 陰極導出線 8 陽極導出線 9 外装樹脂材 DESCRIPTION OF SYMBOLS 1 Anode body 2 Dielectric oxide film layer 3 Insulating thin film layer (polyimide thin film layer) 4 Conductive polymer compound layer 5 Graphite layer 6 Silver paste layer 7 Cathode lead wire 8 Anode lead wire 9 Exterior resin material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 美香 神奈川県横浜市港北区新横浜3丁目18番3 号 富士通東和エレクトロン株式会社内 (72)発明者 寺尾 俊勝 神奈川県横浜市港北区新横浜3丁目18番3 号 富士通東和エレクトロン株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Mika Ito 3-18-3 Shin-Yokohama, Kohoku-ku, Yokohama, Kanagawa Prefecture Inside Fujitsu Towa Electron Limited (72) Toshikatsu Terao 3-18 Shin-Yokohama, Kohoku-ku, Yokohama, Kanagawa No. 3 Inside Fujitsu Towa Electron Limited

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面に誘電体酸化皮膜層が形成された陽
極体上に共役系高分子化合物の導電性高分子化合物層、
導電体層が順次積層形成され、該導電体層が一方の電極
とされ、前記陽極体が他方の電極とされてなる固体電解
コンデンサにおいて、 前記誘電体酸化皮膜層の絶縁欠陥部に絶縁性薄膜層が電
着法により形成され、該絶縁性薄膜層により前記誘電体
酸化皮膜層の絶縁欠陥部が補修されて実装時の熱応力に
よる漏れ電流の増大が防止される構成を特徴とする固体
電解コンデンサ。
A conductive polymer compound layer of a conjugated polymer compound on an anode body having a dielectric oxide film layer formed on a surface thereof;
In a solid electrolytic capacitor in which a conductor layer is sequentially formed and the conductor layer is used as one electrode and the anode body is used as the other electrode, an insulating thin film is formed on an insulating defect portion of the dielectric oxide film layer. A layer formed by an electrodeposition method, wherein the insulating thin film layer repairs an insulating defect portion of the dielectric oxide film layer to prevent an increase in leakage current due to thermal stress during mounting. Capacitors.
JP9065522A 1997-03-04 1997-03-04 Solid electrolytic capacitor Pending JPH10247612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9065522A JPH10247612A (en) 1997-03-04 1997-03-04 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9065522A JPH10247612A (en) 1997-03-04 1997-03-04 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH10247612A true JPH10247612A (en) 1998-09-14

Family

ID=13289448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9065522A Pending JPH10247612A (en) 1997-03-04 1997-03-04 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH10247612A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6811576B2 (en) * 1999-10-28 2004-11-02 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
JP2007042932A (en) * 2005-08-04 2007-02-15 Nec Tokin Corp Solid-state electrolytic capacitor and distributed constant noise filter
JP2007189199A (en) * 2005-12-12 2007-07-26 Tdk Corp Capacitor and method of manufacturing same
JP2008198681A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2009194266A (en) * 2008-02-18 2009-08-27 Sanyo Electric Co Ltd Solid electrolytic capacitor, and method of manufacturing the same
JP2009267385A (en) * 2008-03-31 2009-11-12 Sanyo Electric Co Ltd Method of manufacturing solid-state electrolytic capacitor
JP2013042181A (en) * 2005-12-12 2013-02-28 Tdk Corp Method of manufacturing a capacitor
US9564270B2 (en) 2013-12-27 2017-02-07 Tdk Corporation Thin film capacitor
US9818539B2 (en) 2014-10-15 2017-11-14 Tdk Corporation Thin film capacitor with improved resistance to dielectric breakdown
US10014113B2 (en) 2015-10-15 2018-07-03 Tdk Corporation Electronic device sheet having insulation patch member on dielectric layer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6811576B2 (en) * 1999-10-28 2004-11-02 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
JP2007042932A (en) * 2005-08-04 2007-02-15 Nec Tokin Corp Solid-state electrolytic capacitor and distributed constant noise filter
JP2007189199A (en) * 2005-12-12 2007-07-26 Tdk Corp Capacitor and method of manufacturing same
JP2013042181A (en) * 2005-12-12 2013-02-28 Tdk Corp Method of manufacturing a capacitor
JP2013062531A (en) * 2005-12-12 2013-04-04 Tdk Corp Capacitor and manufacturing method of the same
JP2008198681A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2009194266A (en) * 2008-02-18 2009-08-27 Sanyo Electric Co Ltd Solid electrolytic capacitor, and method of manufacturing the same
JP2009267385A (en) * 2008-03-31 2009-11-12 Sanyo Electric Co Ltd Method of manufacturing solid-state electrolytic capacitor
US9564270B2 (en) 2013-12-27 2017-02-07 Tdk Corporation Thin film capacitor
US9818539B2 (en) 2014-10-15 2017-11-14 Tdk Corporation Thin film capacitor with improved resistance to dielectric breakdown
US10014113B2 (en) 2015-10-15 2018-07-03 Tdk Corporation Electronic device sheet having insulation patch member on dielectric layer

Similar Documents

Publication Publication Date Title
US6154358A (en) Solid electrolytic capacitor using a conducting polymer
JP2765462B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3065286B2 (en) Solid electrolytic capacitor and method of manufacturing the same
EP0617442B1 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH07135126A (en) Solid electrolytic capacitor and its manufacture
JPH10247612A (en) Solid electrolytic capacitor
JP3228323B2 (en) Solid electrolytic capacitor and method of manufacturing the same
Yamamoto et al. Characteristics of aluminium solid electrolytic capacitors using a conducting polymer
JP2000269070A (en) Manufacturing of capacitor
JP2001110685A (en) Solid electrolytic capacitor
JPH10303080A (en) Method for manufacturing solid electrolytic capacitor
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH11204377A (en) Solid-state electrolytic capacitor
JPH0521295A (en) Manufacture of laminated solid electrolytic capacitor
JP2570979B2 (en) Method for manufacturing solid electrolytic capacitor
JP3067284B2 (en) Capacitor and manufacturing method thereof
JP2783038B2 (en) Capacitor
JPH0430409A (en) Manufacture of solid electrolytic capacitor
JP2003268082A (en) Electroconductive composition, method for producing the same, capacitor using the electroconductive composition and method for producing the same
JPH0494108A (en) Manufacture of solid electrolytic capacitor
JP2000106328A (en) Capacitor and its manufacture
JPH06325984A (en) Solid electrolytic capacitor and manufacture thereof
JPH05304056A (en) Manufacture of solid electrolytic capacitor
JPH0541337A (en) Manufacture of solid electrolytic capacitor
JPH0393219A (en) Manufacture of solid-state electrolytic capacitor