JPH06232012A - Laminated solid electrolytic capacitor and its manufacture - Google Patents

Laminated solid electrolytic capacitor and its manufacture

Info

Publication number
JPH06232012A
JPH06232012A JP5034787A JP3478793A JPH06232012A JP H06232012 A JPH06232012 A JP H06232012A JP 5034787 A JP5034787 A JP 5034787A JP 3478793 A JP3478793 A JP 3478793A JP H06232012 A JPH06232012 A JP H06232012A
Authority
JP
Japan
Prior art keywords
anode
film
polymer layer
conductive polymer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5034787A
Other languages
Japanese (ja)
Inventor
Kazuhiro Higuchi
和浩 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP5034787A priority Critical patent/JPH06232012A/en
Publication of JPH06232012A publication Critical patent/JPH06232012A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a solid electrolytic capacitor which has an excellent leakage current, ESR, and impedance characteristics and uses a conductive high polymer layer having a large volume-capacitance ratio as a solid electrolyte. CONSTITUTION:An element-laminated body 22 is manufactured by forming a conductive high polymer layer 20 composed of a chemically polymerized film and electrolytically polymerized film on a dielectric oxide film 1 which is formed by working metallic foil exerting a valve action equipped with six piece sections 12, 13, 14, 15, 16, and 17 connected to a zigzag weld uniting section 11 firmly fixed with an anode line 18 and protruded in the same direction nearly perpendicular to the section 11 at intervals and constitutes the surface of an anode base body and a cathode layer 21 on the external surface of the high polymer layer 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電性高分子層を固体
電解質とする固体電解コンデンサ及びその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor having a conductive polymer layer as a solid electrolyte and a method for manufacturing the same.

【0002】[0002]

【従来の技術】一般に、固体電解コンデンサとしては、
アルミニウム、タンタル、ニオブなどの弁作用金属を陽
極体とし、この陽極体に形成した誘電体酸化皮膜上に、
固体電解質としての二酸化マンガンや、例えば7.7.
8.8.−テトラシアノキノジメタンのTCNQ錯体か
らなる有機半導体を形成し、これらの固体電解質上に陰
極層を形成して構成したものであり、コンデンサの小形
高性能化の一翼を担っている。
2. Description of the Related Art Generally, as a solid electrolytic capacitor,
Aluminum, tantalum, valve metal such as niobium is used as the anode body, and on the dielectric oxide film formed on this anode body,
Manganese dioxide as a solid electrolyte, for example, 7.7.
8.8. — An organic semiconductor composed of a TCNQ complex of tetracyanoquinodimethane is formed, and a cathode layer is formed on these solid electrolytes, which contributes to miniaturization and high performance of capacitors.

【0003】また、近年、コンデンサの小形高性能化の
さらなる要請に応え得たものとして、ポリピロール,ポ
リチオフェン,ポリフランなどの導電性高分子を固体電
解質として用いた固体電解コンデンサが注目を集めてい
る。
Further, in recent years, solid electrolytic capacitors using a conductive polymer such as polypyrrole, polythiophene and polyfuran as a solid electrolyte have been attracting attention in order to meet further demands for miniaturization and high performance of capacitors.

【0004】この導電性高分子は、その電導度が約10
2 S/cmと、二酸化マンガン(10-2S/cm)や、
TCNQ錯体(10S/cm)に比べ非常に高く、ま
た、熱安定性に優れるなどの特長を有しているため、こ
の導電性高分子を固体電解質として用いることにより、
インピーダンスの周波数特性、漏れ電流特性などの電気
的諸特性に優れ、広い範囲での温度特性に優れた固体電
解コンデンサを得ることが可能である。
This conductive polymer has an electric conductivity of about 10
2 S / cm and manganese dioxide (10 -2 S / cm),
Compared with TCNQ complex (10 S / cm), it is very high and has excellent thermal stability. Therefore, by using this conductive polymer as a solid electrolyte,
It is possible to obtain a solid electrolytic capacitor having excellent electrical characteristics such as impedance frequency characteristics and leakage current characteristics and excellent temperature characteristics in a wide range.

【0005】しかして、電子部品の軽薄短小化に伴い、
導電性高分子を固体電解質として用いた固体電解コンデ
ンサにおいても、単位体積当たりの容量増大の目的で、
陽極体を積層一体化する各種の技術が提案されている。
However, as electronic parts have become lighter, thinner, shorter, and smaller,
Even in a solid electrolytic capacitor using a conductive polymer as a solid electrolyte, for the purpose of increasing the capacity per unit volume,
Various techniques for stacking and integrating anode bodies have been proposed.

【0006】すなわち、積層化を必要とする陽極体をあ
らかじめ多層積層し、その後、導電性高分子層を形成す
ることも考えられるが、このような技術の場合は弁作用
金属箔を三層以上一括溶接することは不可能で、積層数
としては二層が限度である現状にある。
[0006] That is, it is conceivable that the anode bodies that require lamination are laminated in advance and then the conductive polymer layer is formed, but in the case of such a technique, three or more layers of valve action metal foil are formed. It is impossible to perform batch welding, and the number of layers is limited to two.

【0007】そのため、三層以上の積層化構造の場合
は、あらかじめ粗面化された陽極基体に陽極線を接続
し、その後、前記陽極基体上に誘電体酸化皮膜層、固体
電解質としての導電性高分子層、陰極層を順次形成した
コンデンサ基板を複数枚積層し積層体を構成するもので
あるが、積層化過程で誘電体酸化皮膜、導電性高分子
層、陰極層を形成した部分への機械的ストレスを防ぎき
れず、導電性高分子層、陰極層へのクラックはもとよ
り、陽極酸化皮膜に損傷が生じるが、固体電解質として
の導電性高分子は皮膜修復能力がないため、漏れ電流特
性、ESR特性、インピーダンス特性を劣化する欠点を
持っていた。
Therefore, in the case of a laminated structure of three or more layers, an anode wire is connected to an anode substrate which has been roughened in advance, and then a dielectric oxide film layer on the anode substrate and conductivity as a solid electrolyte. A multilayer structure is formed by laminating a plurality of capacitor substrates in which a polymer layer and a cathode layer are sequentially formed.The dielectric oxide film, the conductive polymer layer, and the portion where the cathode layer is formed are formed in the lamination process. Mechanical stress cannot be prevented, and not only the conductive polymer layer and the cathode layer are cracked, but also the anodic oxide film is damaged, but the conductive polymer as a solid electrolyte has no film repairing ability, so the leakage current characteristics , ESR characteristics and impedance characteristics were deteriorated.

【0008】[0008]

【発明が解決しようとする課題】上記構成になる従来技
術では、漏れ電流特性、ESR特性、インピーダンス特
性良好な多層化構造としては二層が限度であり、それ以
上に単位体積当たりの容量増大を果たす場合はあらかじ
め導電性高分子層を形成し、コンデンサ基板を積層し一
体化しなければならず、コンデンサ基板の一体化過程で
誘電体酸化皮膜、導電性高分子層、陰極層を形成した部
分への機械的ストレスを防ぎきれず、導電性高分子層、
陰極層へのクラックはもとより陽極酸化皮膜に損傷が生
じ、固体電解質としての導電性高分子は皮膜修復能力が
ないため、漏れ電流特性、ESR特性、インピーダンス
特性を劣化する欠点を持っていた。
In the prior art having the above-mentioned structure, two layers are the limit for a multilayer structure having good leakage current characteristics, ESR characteristics, and impedance characteristics, and further increase in capacity per unit volume is required. If this is to be achieved, a conductive polymer layer must be formed in advance, and the capacitor boards must be laminated and integrated, and to the part where the dielectric oxide film, conductive polymer layer, and cathode layer were formed during the integration process of the capacitor boards. Cannot prevent the mechanical stress of the conductive polymer layer,
Since the anodic oxide film is damaged not only by the cracks on the cathode layer but the conductive polymer as a solid electrolyte has no film repair ability, it has a drawback that the leakage current characteristic, ESR characteristic and impedance characteristic are deteriorated.

【0009】本発明は、上記の問題を解決するために成
されたもので、その目的は漏れ電流、ESR、インピー
ダンスなどの電気的特性の安定した三層以上の積層化構
造からなる積層形固体電解コンデンサ及びその製造方法
を提供するものである。
The present invention was made to solve the above problems, and its purpose is to provide a laminated solid having a laminated structure of three or more layers with stable electric characteristics such as leakage current, ESR, and impedance. An electrolytic capacitor and a method for manufacturing the same are provided.

【0010】[0010]

【課題を解決するための手段】本発明による積層形固体
電解コンデンサは、任意な箇所に陽極線を固着した重ね
面同士が溶接された少なくとも三辺のつづら折り溶接一
体化部と、このつづら折り溶接一体化部各辺両端を構成
する各片部を前記つづら折り溶接一体化部に対してほぼ
垂直に、且つ、相互に間隔を有し同一方向に突出した弁
作用金属箔からなる陽極基体と、この陽極基体表面に形
成した誘電体酸化皮膜と、この誘電体酸化皮膜の上に形
成した化学重合膜と電解重合膜からなる導電性高分子層
と、この導電性高分子層上の外表面上に形成した陰極層
からなることを特徴とするものである。
SUMMARY OF THE INVENTION A laminated solid electrolytic capacitor according to the present invention comprises a zigzag-welding integrated portion of at least three sides, in which overlapping surfaces having anode wires fixed to each other are welded together, and the zigzag-folding integrated part. An anode base made of a valve action metal foil that protrudes in the same direction at a distance from each other, and each piece forming each end of each side of the oxidization portion is substantially perpendicular to the above-described folded and welded integrated portion, and this anode Dielectric oxide film formed on substrate surface, conductive polymer layer consisting of chemical polymerization film and electrolytic polymerization film formed on this dielectric oxide film, and formed on outer surface of this conductive polymer layer It is characterized in that it is composed of a cathode layer.

【0011】また、本発明による積層形固体電解コンデ
ンサの製造方法は、一枚の弁作用金属箔の少なくとも二
カ所両端から中心に向け同じ長さに分割されることなく
切れ目を入れて、この切れ目を結ぶ線に沿ってつづら折
りし、且つ、つづら折り重ね面同士を溶接し三辺のつづ
ら折り溶接一体化部を形成し、このつづら折り溶接一体
化部各辺両端を構成する各片部をつづら折り溶接一体化
部に対してほぼ垂直に相互に間隔を有し同一方向に突出
させて前記つづら折り溶接一体化部の任意な箇所に陽極
線を固着して陽極基体を形成する工程と、前記片部上に
誘電体酸化皮膜を形成する工程と、この誘電体酸化皮膜
上に化学酸化重合手段を講じ化学重合膜を形成し、しか
る後、電解酸化重合手段を講じ電解重合膜を形成して化
学重合膜と電解重合膜からなる導電性高分子層を形成す
る工程と、この導電性高分子層上の外表面上に陰極層を
形成する工程を順次経ることを特徴とするものである。
Further, in the method for manufacturing a laminated solid electrolytic capacitor according to the present invention, at least two locations of one valve metal foil are cut from both ends toward the center without being divided into the same length, and the cut is made. Fold along the line connecting the two parts, and weld the zigzag folded surfaces together to form a three-sided zigzag-weld integrated part, and form a zigzag-weld integrated part. Part of the zigzag-welding-integrated part and fixing the anode wire to an arbitrary part of the zigzag-welding integrated part so as to form an anode substrate, and the dielectric part is formed on the one part. The process of forming a body oxide film, and the chemical oxidation polymerization means is formed on this dielectric oxide film to form a chemically polymerized film. Heavy Forming a conductive polymer layer formed of film, and is characterized in successively undergoes that the step of forming a cathode layer on the outer surface on the conductive polymer layer.

【0012】[0012]

【作用】このような構成によれば、つづら折り溶接一体
化部がつづら折り重ね面同士を溶接することによって形
成するものであるため、三層以上の多層化構成が容易に
得られ、且つ、陽極基体に対する陽極線の固着箇所が一
か所で陽極線も一本で済み、従来技術のように複数の陽
極線を溶接することがないため、インピーダンス特性改
善に寄与し、また、陽極基体形成後、再化成を行うこと
により誘電体酸化皮膜の修復が可能となり、その後陽極
基体に機械的ストレスが加わらないので、漏れ電流特性
改善に寄与し、さらに、積層構造となる各片部間に陰極
層を形成しない構造であるため、各片部間を極力狭くで
き、小形軽量化に大きく寄与する。
According to this structure, since the zigzag-welding integrated portion is formed by welding the zigzag folded surfaces together, a multi-layered structure having three or more layers can be easily obtained, and the anode base body can be easily obtained. The anode wire is fixed at one place with respect to, and only one anode wire is required, and since there is no need to weld a plurality of anode wires as in the prior art, it contributes to the improvement of impedance characteristics, and after forming the anode substrate, By performing re-formation, the dielectric oxide film can be repaired, and since mechanical stress is not applied to the anode substrate after that, it contributes to the improvement of leakage current characteristics, and furthermore, a cathode layer is provided between each part of the laminated structure. Since it is a structure that is not formed, the space between each piece can be made as narrow as possible, which greatly contributes to the reduction in size and weight.

【0013】[0013]

【実施例】以下、本発明の一実施例について図面を参照
して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】図2(A)(a)に示すように公知の手段
を講じ粗面化後、例えばアジピン酸アンモニウム水溶液
中で電圧を印加して誘電体酸化皮膜1を生成した一枚の
弁作用金属箔2を二か所両端から中心に向け同じ長さ
に、分割されることなく切れ目3,4,5,6を設け、
且つ、この切れ目3,4,5,6によって区分された辺
7,8,9の一辺7に溶接孔10を設け、次に、図1
(B)(b)に示すように辺7を前記切れ目3,4を結
ぶ線に沿って折り曲げて、辺8と辺7を折り重ねて両者
を熔接し、次に、図2(C)(c)に示すように前記辺
9を前記切れ目5,6を結ぶ線に沿って辺7の折り曲げ
方向と相対する方向に折り曲げ、辺9と辺8を折り重ね
て、前記溶接孔10を通じて辺9と辺8を溶接し、辺
7,8,9をつづら折り溶接一体化部11を形成し、次
に、図3に示すように、このつづら折り溶接一体化部1
1両端を構成する各片部12,13,14,15,1
6,17をつづら折り溶接一体化部11に対してほぼ垂
直に相互に間隔を有し同一方向に突出させ、前記つづら
折り溶接一体化部11の任意な箇所に陽極線18を固着
して陽極基体19を形成する。
As shown in FIGS. 2 (A) and 2 (a), after a known means is used to roughen the surface, a voltage is applied in, for example, an aqueous solution of ammonium adipate to form a dielectric oxide film 1, which is a valve action. Cut the metal foil 2 from two ends toward the center to the same length, and make cuts 3, 4, 5, 6 without being divided,
In addition, a welding hole 10 is provided on one side 7 of the sides 7, 8, 9 divided by the cut lines 3, 4, 5, 6.
As shown in (B) and (b), the side 7 is bent along the line connecting the cuts 3 and 4, the side 8 and the side 7 are folded and welded together, and then, as shown in FIG. As shown in c), the side 9 is bent along a line connecting the cuts 5 and 6 in a direction opposite to the folding direction of the side 7, and the side 9 and the side 8 are overlapped and the side 9 is passed through the welding hole 10. And the side 8 are welded together to form the fold-welding integrated portion 11 which is formed by joining the sides 7, 8 and 9, and then, as shown in FIG.
Each piece 12, 13, 14, 15, 1 that constitutes one end
6 and 17 are protruded in the same direction at intervals substantially perpendicular to the zigzag fold-welding integrated part 11, and the anode wire 18 is fixed to an arbitrary part of the zigzag fold-welding integrated part 11 to form an anode substrate 19. To form.

【0015】次に、この陽極基体19の形成過程で生じ
た前記誘電体酸化皮膜1の損傷を修復するため再化成を
行い、次に図1に示すように、前記陽極基体19を例え
ば2M−ピロール/エタノール溶液に5分間浸漬した
後、さらに、0.5M−過硫酸アンモニウム水溶液に5
分間浸漬して、化学酸化重合を施し、誘電体酸化皮膜1
上にポリピロールからなる化学重合膜を形成し、しかる
後、例えば支持電解質としてアルキルナフタレンスルホ
ン酸塩0.05モル/リットル及びピロールモノマー
0.2モル/リットルを含む電解酸化重合液中におい
て、前段の処理で形成した化学重合膜を陽極とし、外部
電極との間で定電流電解酸化重合(1mA/cm2 ,1
時間)を行い、ポリピロールからなる電解重合膜を形成
する。すなわち、これらの処理により、陽極基体19の
誘電体酸化皮膜1上に、化学重合膜と電解重合膜からな
る導電性高分子層20を形成し、この導電性高分子層2
0の外表面上に陰極引出用として、グラファイト層、銀
ペースト層を順次形成することで陰極層21を形成し素
子積層体22を形成する。
Next, re-formation is carried out in order to repair the damage of the dielectric oxide film 1 generated in the process of forming the anode substrate 19, and as shown in FIG. After being immersed in a pyrrole / ethanol solution for 5 minutes, it was further immersed in a 0.5M-ammonium persulfate aqueous solution.
Dipping for 1 minute, chemical oxidation polymerization, dielectric oxide film 1
A chemically polymerized film made of polypyrrole is formed on the above, and thereafter, for example, in an electrolytic oxidative polymerization solution containing 0.05 mol / liter of alkylnaphthalene sulfonate and 0.2 mol / liter of pyrrole monomer as a supporting electrolyte, The chemically polymerized film formed by the treatment is used as an anode, and constant current electrolytic oxidation polymerization (1 mA / cm 2 , 1
Time) to form an electrolytically polymerized film of polypyrrole. That is, by these treatments, a conductive polymer layer 20 composed of a chemically polymerized film and an electrolytic polymerized film is formed on the dielectric oxide film 1 of the anode substrate 19, and the conductive polymer layer 2 is formed.
On the outer surface of No. 0, a cathode layer 21 is formed by sequentially forming a graphite layer and a silver paste layer for drawing out a cathode, thereby forming an element stack 22.

【0016】しかして、図4に示すように前記素子積層
体22の陰極層21に陰極電極端子23を接続するとと
もに、前記陽極線18に陽極電極端子24を接続し、し
かる後、図5に示すように、例えばトランスファーモー
ルドにより樹脂外装25を施しコンデンサ本体26を形
成し、このコンデンサ本体26の側面から導出された陰
極電極端子23と陽極電極端子24をコンデンサ本体2
6側面に沿ってコンデンサ本体26の底面にまで至るよ
うに折り曲げ加工し完成品としてなるものである。
As shown in FIG. 4, the cathode layer 21 of the element laminate 22 is connected to the cathode electrode terminal 23, and the anode wire 18 is connected to the anode electrode terminal 24. After that, as shown in FIG. As shown, for example, transfer molding is used to form a resin body 25 to form a capacitor body 26, and the cathode electrode terminal 23 and the anode electrode terminal 24 led out from the side surface of the capacitor body 26 are connected to the capacitor body 2.
The finished product is formed by bending along the six side surfaces to reach the bottom surface of the capacitor body 26.

【0017】以上のような構成になる積層形固体電解コ
ンデンサによれば、素子積層体22が一枚の弁作用金属
箔2により形成されるものであり、つづら折り溶接一体
化部11が辺8と辺7を折り重ねて両者を溶接し、辺9
を切れ目5,6を結ぶ線に沿って辺7の折り曲げ方向と
相対する方向に折り曲げ、辺9と辺8を折り重ねて溶接
孔10を通して辺9と辺8を溶接し、つづら折り重ね面
同士を溶接することによって形成するものであるため、
三層以上の多層化構成が容易に得られ、且つ、陽極基体
19に対する陽極線18の固着箇所がつづら折り溶接一
体化部11の一か所で陽極線18も一本で済むため、従
来技術のように複数の陽極線を一体化するための溶接す
ることがなく、インピーダンス特性劣化要因が解消され
る。
According to the laminated solid electrolytic capacitor having the above-mentioned structure, the element laminated body 22 is formed by one piece of the valve action metal foil 2, and the zigzag folded and welded integrated portion 11 and the side 8 are formed. Side 7 is folded and welded together, side 9
Along the line connecting the cuts 5 and 6 in the direction opposite to the folding direction of the side 7, fold the side 9 and the side 8 and weld the side 9 and the side 8 through the welding hole 10 to form a zigzag folded surface. Since it is formed by welding,
A multilayer structure of three or more layers can be easily obtained, and the anode wire 18 can be fixed to the anode substrate 19 only at one place of the zigzag-welded integrated portion 11 so that only one anode wire 18 is required. As described above, there is no welding for integrating a plurality of anode wires, and the factor of impedance characteristic deterioration is eliminated.

【0018】また、素子積層体22形成後、再化成を行
うことにより誘電体酸化皮膜1の修復が可能となり、そ
の後に機械的ストレスが加わらないので、誘電体酸化皮
膜1の破壊がなくなり、漏れ電流特性劣化要因が解消さ
れる。
Further, the dielectric oxide film 1 can be repaired by re-forming after the formation of the element laminate 22, and no mechanical stress is applied thereafter, so that the dielectric oxide film 1 is not destroyed and leaks. The cause of current characteristic deterioration is eliminated.

【0019】さらに、素子積層体22形成後に導電性高
分子層20の外表面上に陰極層21を形成するもので、
積層構造となる各片部12,13,14,15,16,
17間に陰極層21を形成しない構造であるため、各片
部12,13,14,15,16,17間を極力狭くで
き、従来技術のように陰極層形成後に積層するものに比
べて余分な陰極層部分がなく、体積容量率の優れたもの
となる。
Further, the cathode layer 21 is formed on the outer surface of the conductive polymer layer 20 after the element laminate 22 is formed.
Each piece 12, 13, 14, 15, 16, which has a laminated structure,
Since the cathode layer 21 is not formed between the layers 17, the space between the individual pieces 12, 13, 14, 15, 16, 17 can be made as small as possible, which is extra compared to the prior art in which the cathode layers are laminated. There is no cathode layer portion and the volume capacity ratio is excellent.

【0020】次に、本発明による実施例と従来技術の特
性比較について述べる。
Next, a characteristic comparison between the embodiment according to the present invention and the prior art will be described.

【0021】(実施例)エッチングにより粗面化後、ア
ジピン酸アンモニウム水溶液中で化成処理し誘電体酸化
皮膜を生成した6mm×7mmのアルミニウム箔を用
い、前述の手段で形成したつづら折り溶接一体化部の任
意な箇所に直径0.2mmの陽極線を超音波にて固着し
て片部が6層からなる陽極基体を形成し、しかる後、再
化成を行い、且つ前述の手段で誘電体酸化皮膜上に導電
性高分子層を形成し、この導電性高分子層の外表面上に
陰極引出用として、グラファイト層、銀ペースト層を順
次形成することで陰極層を形成し得られた素子積層体
を、陰極層は導電性接着剤若しくははんだ付けにより、
陽極線は電気溶接により、それぞれ端子に接続した後、
前述した手段で製作したチップ構造の積層形固体電解コ
ンデンサ。
(Example) After the surface was roughened by etching, a zigzag fold welding integrated portion formed by the above-mentioned means was used by using a 6 mm × 7 mm aluminum foil having a dielectric oxide film formed by chemical conversion treatment in an aqueous solution of ammonium adipate. An anode wire having a diameter of 0.2 mm is ultrasonically fixed to an arbitrary portion of the above to form an anode base having six layers on one side, and then re-formation is performed, and the dielectric oxide film is formed by the above-mentioned means. An element laminate obtained by forming a conductive polymer layer on the conductive polymer layer, and forming a cathode layer by sequentially forming a graphite layer and a silver paste layer on the outer surface of the conductive polymer layer for drawing out a cathode. , The cathode layer is a conductive adhesive or soldering,
After connecting the anode wire to each terminal by electric welding,
A laminated solid electrolytic capacitor having a chip structure manufactured by the above-mentioned means.

【0022】(従来例)エッチングにより粗面化後、ア
ジピン酸アンモニウム水溶液中で化成処理し誘電体酸化
皮膜を生成したアルミニウム箔を用い、絶縁性樹脂で陽
極側と陰極側に区分し、陰極形成側の有効面積を3mm
×3mmとした陽極基体の陰極側に、前記本発明と同様
の方法で導電性高分子層を形成し、さらに、この導電性
高分子層上に、グラファイト層、銀ペースト層を順次形
成することで陰極層を形成したコンデンサ素板を、陽極
側と陰極側を互いに対応させて6枚積層し、陰極層を銀
接着剤を介在させて固着し、陽極側を電気溶接で一体化
した素子積層体を形成し、その後、前記実施例と同様な
手段を講じて製作したチップ構造の積層形固体電解コン
デンサ。
(Conventional example) After roughening by etching, an aluminum foil on which a dielectric oxide film has been formed by chemical conversion treatment in an aqueous solution of ammonium adipate is used, and is divided into an anode side and a cathode side with an insulating resin to form a cathode. Side effective area 3mm
A conductive polymer layer is formed on the cathode side of an anode substrate having a size of 3 mm by the same method as that of the present invention, and a graphite layer and a silver paste layer are sequentially formed on the conductive polymer layer. The element layer is formed by stacking 6 capacitor base plates with the cathode layer formed on the anode side and the cathode side in correspondence with each other, fixing the cathode layer with a silver adhesive interposed, and integrating the anode side by electric welding. A laminated solid electrolytic capacitor having a chip structure manufactured by forming a body and then performing the same means as in the above-mentioned embodiment.

【0023】しかして、上記実施例と従来例の初期特性
を調べたところ、下記の表1に示すような結果が得られ
た。この表1において、各欄の上段の数値は平均値、下
段の数値は分布範囲を示しており、ESRは、周波数1
00kHzにおける抵抗値である。
When the initial characteristics of the above-mentioned embodiment and the conventional example were examined, the results shown in Table 1 below were obtained. In this Table 1, the numerical value in the upper row of each column shows the average value, and the numerical value in the lower row shows the distribution range, and ESR is the frequency 1
It is a resistance value at 00 kHz.

【0024】また、それぞれの周波数−インピーダンス
特性を調べたところ、図6に示すような結果が得られ
た。
Further, when the frequency-impedance characteristics of each of them were examined, the results shown in FIG. 6 were obtained.

【0025】なお、試料は、実施例、従来例とも定格1
0V−6.8μFで、数量はそれぞれ100個である。
The sample is rated 1 in both the embodiment and the conventional example.
It is 0V-6.8 μF, and the quantity is 100 pieces each.

【0026】[0026]

【表1】 [Table 1]

【0027】表1及び図6から明らかなように、従来例
のものは漏れ電流特性、ESR特性、インピーダンス特
性の劣化がみられるが、この理由は、コンデンサ素板を
積層化する際の機械的なストレスにより、陰極層及び導
電性高分子層にクラックが生じ、この部分全体として抵
抗値が上昇し、この際に、陰極層及び導電性高分子層へ
のクラック発生に止まらず陽極酸化皮膜に損傷が生じ、
漏れ電流の増大につながるものと考えられる。
As is clear from Table 1 and FIG. 6, the conventional example shows deterioration of the leakage current characteristic, ESR characteristic, and impedance characteristic, which is because of the mechanical effect when laminating the capacitor base plates. The stress causes cracks in the cathode layer and the conductive polymer layer, and the resistance value increases as a whole in this portion.At this time, cracks in the cathode layer and the conductive polymer layer do not stop and the anodized film is formed. Damage occurs,
It is considered to lead to an increase in leakage current.

【0028】これに対して、実施例のものは機械的なス
トレスによる陰極層及び導電性高分子層のクラック発生
がなく、勿論、陽極酸化皮膜の損傷要因が解消され、い
ずれの特性も安定した状態を示し、この種導電性高分子
層を固体電解質としたチップ構造の積層形固体電解コン
デンサにおける本発明の優れた効果を実証した。
On the other hand, in the examples, cracks did not occur in the cathode layer and the conductive polymer layer due to mechanical stress, and of course, the cause of damage to the anodic oxide film was eliminated, and all characteristics were stable. The state was demonstrated, and the excellent effect of the present invention was demonstrated in a laminated solid electrolytic capacitor having a chip structure in which this kind of conductive polymer layer was used as a solid electrolyte.

【0029】また、ここでは具体的に示さなかったが、
実施例のものはアルミニウム箔に導電性高分子層及び陰
極層を形成したものを積層する従来例と比較し、積層化
後導電性高分子層及び陰極層を形成するものであるた
め、陰極層を必要最小限に止めることができ、同一定格
のもので大幅に小形化が可能で、昨今要請の強い軽薄短
小化に応え得ることができる。
Although not specifically shown here,
Compared with the conventional example in which the conductive polymer layer and the cathode layer are formed on the aluminum foil are laminated, the example is one in which the conductive polymer layer and the cathode layer are formed after lamination, so that the cathode layer Can be kept to the minimum necessary and the size can be greatly reduced with the same rating, and it is possible to meet the recent demand for light, thin, short and small products.

【0030】なお、上記実施例では、弁作用金属箔への
切れ目を一直線状に二か所設け、6個の片部を積層化し
た構造を例示して説明したが、これに限定されるもので
はなく、切れ目をそれ以上設けてつづら折り溶接一体化
部の枚数より多くし、重ね面同士を溶接するために必要
な溶接孔をつづら折り溶接一体化部となる任意な箇所に
設け、片部の数を上記8個以上にしたものでもよいこと
は勿論である。
In the above-mentioned embodiment, the structure in which the cuts on the valve action metal foil are provided in two straight lines and six pieces are laminated is explained, but the invention is not limited to this. Rather than making more cuts than the number of the folded and welded integrated part, the welding holes necessary for welding the overlapping surfaces are provided at any place that is the folded and welded integrated part. Needless to say, the number may be eight or more.

【0031】また、弁作用金属箔としては、アルミニウ
ムの他に、タンタル、チタン、ニオブなども使用可能で
ある。
As the valve action metal foil, tantalum, titanium, niobium or the like can be used in addition to aluminum.

【0032】上記実施例では、チップ構造の積層形固体
電解コンデンサを例示しているが、外部端子として例え
ば錫めっきCP線を用い、例えば流動浸漬法やデップ法
などにより外装を施し、リード線構造とすることも可能
である。
In the above-mentioned embodiment, the laminated solid electrolytic capacitor having a chip structure is illustrated. However, for example, a tin-plated CP wire is used as an external terminal, and a lead wire structure is formed by applying an exterior by, for example, a fluid immersion method or a dip method. It is also possible to

【0033】さらに、導電性高分子層及び陰極層の具体
的な形成方法などは、自由に選択可能である。そしてま
た、本発明は、前記の定格に限らず、各種の定格の積層
形固体電解コンデンサに適用可能であり、優れた作用効
果を得られるものである。
Further, the specific method of forming the conductive polymer layer and the cathode layer can be freely selected. Further, the present invention is applicable not only to the above ratings but also to various types of laminated solid electrolytic capacitors having various ratings, and excellent effects can be obtained.

【0034】[0034]

【発明の効果】以上述べたように、本発明によれば、一
枚の弁作用金属箔から積層構造を形成することが可能と
なり、よって、漏れ電流特性、ESR特性及びインピー
ダンス特性が著しく改善され、且つ、体積容量率の大き
な実用的価値の高い積層形固体電解コンデンサ及びその
製造方法を得ることができる。
As described above, according to the present invention, it is possible to form a laminated structure from a single piece of valve action metal foil, and therefore leakage current characteristics, ESR characteristics and impedance characteristics are remarkably improved. Further, it is possible to obtain a laminated solid electrolytic capacitor having a large volume capacity ratio and a high practical value, and a method for manufacturing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る素子積層体を示す断面
図。
FIG. 1 is a cross-sectional view showing an element laminated body according to an embodiment of the present invention.

【図2】本発明の一実施例に係る陽極基体の製造過程を
示す説明図。
FIG. 2 is an explanatory view showing a manufacturing process of an anode substrate according to an embodiment of the present invention.

【図3】本発明の一実施例に係る陽極基体を示す斜視
図。
FIG. 3 is a perspective view showing an anode substrate according to an embodiment of the present invention.

【図4】本発明の一実施例に係る素子積層体に電極端子
を接続した状態を示す断面図。
FIG. 4 is a cross-sectional view showing a state in which electrode terminals are connected to the element laminate according to the embodiment of the present invention.

【図5】本発明の一実施例に係る積層形固体電解コンデ
ンサを示す正面図。
FIG. 5 is a front view showing a laminated solid electrolytic capacitor according to an embodiment of the present invention.

【図6】周波数−インピーダンス特性曲線図。FIG. 6 is a frequency-impedance characteristic curve diagram.

【符号の説明】[Explanation of symbols]

1 誘電体酸化皮膜 2 弁作用金属箔 3,4,5,6 切れ目 7,8,9 辺 10 溶接孔 11 つづら折り溶接一体化部 12,13,14,15,16,17 片部 18 陽極線 19 陽極基体 20 導電性高分子層 21 陰極層 22 素子積層体 23 陰極電極端子 24 陽極電極端子 25 樹脂外装 26 コンデンサ本体 1 Dielectric oxide film 2 Valve metal foil 3, 4, 5, 6 Cuts 7, 8, 9 Sides 10 Weld holes 11 Spiral-welding integrated part 12, 13, 14, 15, 16, 17 One part 18 Anode wire 19 Anode base 20 Conductive polymer layer 21 Cathode layer 22 Element laminate 23 Cathode electrode terminal 24 Anode electrode terminal 25 Resin exterior 26 Capacitor body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 任意な箇所に陽極線を固着した重ね面同
士が溶接された少なくとも三辺のつづら折り溶接一体化
部と、このつづら折り溶接一体化部各辺両端を構成する
各片部を前記つづら折り溶接一体化部に対してほぼ垂直
に、且つ、相互に間隔を有し同一方向に突出した弁作用
金属箔からなる陽極基体と、この陽極基体表面に形成し
た誘電体酸化皮膜と、この誘電体酸化皮膜の上に形成し
た化学重合膜と電解重合膜からなる導電性高分子層と、
この導電性高分子層上の外表面上に形成した陰極層から
なることを特徴とする積層形固体電解コンデンサ。
1. A zigzag fold-welding integrated portion of at least three sides in which lapped surfaces having anode wires fixed to each other are welded to each other, and each zigzag fold of the zigzag fold-welding integral part on each side. An anode base made of a valve action metal foil which is substantially perpendicular to the welded integrated portion and which is spaced apart from each other and protrudes in the same direction, a dielectric oxide film formed on the surface of the anode base, and this dielectric. A conductive polymer layer formed of a chemical polymerization film and an electrolytic polymerization film formed on the oxide film,
A laminated solid electrolytic capacitor comprising a cathode layer formed on the outer surface of the conductive polymer layer.
【請求項2】 一枚の弁作用金属箔の少なくとも二カ所
両端から中心に向け同じ長さに分割されることなく切れ
目を入れて、この切れ目を結ぶ線に沿ってつづら折り
し、且つ、つづら折り重ね面同士を溶接し三辺のつづら
折り溶接一体化部を形成し、このつづら折り溶接一体化
部各辺両端を構成する各片部をつづら折り溶接一体化部
に対してほぼ垂直に相互に間隔を有し同一方向に突出さ
せて前記つづら折り溶接一体化部の任意な箇所に陽極線
を固着して陽極基体を形成する工程と、前記片部上に誘
電体酸化皮膜を形成する工程と、この誘電体酸化皮膜上
に化学酸化重合手段を講じ化学重合膜を形成し、しかる
後、電解酸化重合手段を講じ電解重合膜を形成して化学
重合膜と電解重合膜からなる導電性高分子層を形成する
工程と、この導電性高分子層上の外表面上に陰極層を形
成する工程を順次経ることを特徴とする積層形固体電解
コンデンサの製造方法。
2. A valve-action metal foil is cut at least at two locations from both ends toward the center without being divided into the same length, and is folded along the line connecting the cuts, and is folded over. The surfaces are welded together to form a three-sided zigzag fold-weld integrated part, and the pieces forming the two ends of each zigzag fold-weld integrated part are spaced approximately perpendicular to the zigzag fold-weld integrated part. A step of projecting in the same direction and fixing an anode wire to an arbitrary portion of the above-mentioned zigzag-welding integrated portion to form an anode substrate; a step of forming a dielectric oxide film on the one portion; A step of forming a chemically polymerized film by taking a chemical oxidative polymerization means on the film, and then forming an electropolymerized film by taking an electrolytic oxidative polymerization means to form a conductive polymer layer consisting of the chemical polymerized film and the electrolytic polymerized film. And this high conductivity A method for manufacturing a laminated solid electrolytic capacitor, which comprises sequentially forming a cathode layer on an outer surface of a molecular layer.
JP5034787A 1993-01-29 1993-01-29 Laminated solid electrolytic capacitor and its manufacture Pending JPH06232012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5034787A JPH06232012A (en) 1993-01-29 1993-01-29 Laminated solid electrolytic capacitor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5034787A JPH06232012A (en) 1993-01-29 1993-01-29 Laminated solid electrolytic capacitor and its manufacture

Publications (1)

Publication Number Publication Date
JPH06232012A true JPH06232012A (en) 1994-08-19

Family

ID=12423995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5034787A Pending JPH06232012A (en) 1993-01-29 1993-01-29 Laminated solid electrolytic capacitor and its manufacture

Country Status (1)

Country Link
JP (1) JPH06232012A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182029A (en) * 2008-01-29 2009-08-13 Nichicon Corp Stacked solid electrolytic capacitor
WO2018084243A1 (en) * 2016-11-04 2018-05-11 株式会社村田製作所 Solid-state electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009182029A (en) * 2008-01-29 2009-08-13 Nichicon Corp Stacked solid electrolytic capacitor
WO2018084243A1 (en) * 2016-11-04 2018-05-11 株式会社村田製作所 Solid-state electrolytic capacitor
US10991516B2 (en) 2016-11-04 2021-04-27 Murata Manufacturing Co., Ltd. Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP3755336B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH05205984A (en) Laminated solid electrolytic capacitor
JP2007116064A (en) Laminated solid electrolytic capacitor
JP2004179621A (en) Aluminum electrolytic capacitor
JP4688675B2 (en) Multilayer solid electrolytic capacitor
WO2004077466A1 (en) Solid electrolytic capacitor
US6865070B2 (en) Solid electrolytic capacitor
JP2001057319A (en) Solid electolytic capacitor, anode element thereof, manufacturing method and manufacturing device therefor
JP3252800B2 (en) Multilayer capacitor and method of manufacturing the same
JPH06232012A (en) Laminated solid electrolytic capacitor and its manufacture
JP2969692B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JP2004087713A (en) Aluminum solid electrolytic capacitor
JPH08273983A (en) Aluminum solid capacitor
JP2004158577A (en) Process for producing laminated large area aluminum solid electrolytic capacitor and capacitor produced by that process
JP4026819B2 (en) Manufacturing method of multilayer aluminum solid electrolytic capacitor and capacitor by the method
JPH06204097A (en) Layered solid-state electrolytic capacitor and its manufacture
JP4671347B2 (en) Solid electrolytic capacitor
JPH06168855A (en) Multilayer solid electrolytic capacitor and fabrication thereof
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3079780B2 (en) Multilayer solid electrolytic capacitor and method of manufacturing the same
JPH05326343A (en) Monolithic solid electrolytic capacitor
JP4936458B2 (en) Multilayer solid electrolytic capacitor
JP4986773B2 (en) Multilayer solid electrolytic capacitor
JP3185405B2 (en) Solid electrolytic capacitors
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor