JP2009182029A - Stacked solid electrolytic capacitor - Google Patents

Stacked solid electrolytic capacitor Download PDF

Info

Publication number
JP2009182029A
JP2009182029A JP2008017731A JP2008017731A JP2009182029A JP 2009182029 A JP2009182029 A JP 2009182029A JP 2008017731 A JP2008017731 A JP 2008017731A JP 2008017731 A JP2008017731 A JP 2008017731A JP 2009182029 A JP2009182029 A JP 2009182029A
Authority
JP
Japan
Prior art keywords
cathode
layer
electrolytic capacitor
anode
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008017731A
Other languages
Japanese (ja)
Other versions
JP5025007B2 (en
Inventor
Yutaka Yoshida
豊 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2008017731A priority Critical patent/JP5025007B2/en
Publication of JP2009182029A publication Critical patent/JP2009182029A/en
Application granted granted Critical
Publication of JP5025007B2 publication Critical patent/JP5025007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stacked solid-state electrolytic capacitor which is much more improved in reduction effect of ESR. <P>SOLUTION: The stacked solid-state electrolytic capacitor with a multi-terminal structure is constituted by stacking a plurality of single-plate capacitor elements each having an anode portion on one side of valve-acting metal and a cathode portion on a surface of the other such that anode portions are stacked alternately to the right and left while cathode portions are placed in the center. In the respective single-plate capacitor elements stacked, an upper element and an under element have different lateral sizes to form steps on side end surfaces of the stack, and the side end surface portions are additionally coated with conductive paste. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、複数枚の単板コンデンサ素子を積層した多端子構造を有する積層型固体電解コンデンサに関する。   The present invention relates to a multilayer solid electrolytic capacitor having a multi-terminal structure in which a plurality of single plate capacitor elements are stacked.

固体電解コンデンサは、アルミニウム、タンタル、ニオブなどの弁作用金属箔またはその焼結体を陽極とし、その上に形成した酸化皮膜層を誘電体とし、さらにその上に固体電解質層を形成して陰極を構成している。この固体電解質層としては、二酸化マンガン、TCNQ錯体、導電性高分子などが知られている。   A solid electrolytic capacitor has a valve action metal foil such as aluminum, tantalum, or niobium or a sintered body thereof as an anode, an oxide film layer formed thereon as a dielectric, and a solid electrolyte layer formed thereon to form a cathode. Is configured. As this solid electrolyte layer, manganese dioxide, a TCNQ complex, a conductive polymer, and the like are known.

近年、コンピュータのCPUの低電圧化および高速化に伴い、コンデンサに流れる電流
が飛躍的に大きくなっているため、コンデンサのESR/ESLが高いとその発熱量が大
きく、コンデンサの故障の原因となる。従って、この種ニーズに対応するコンデンサは、低ESR/ESL化が要求される。
In recent years, the current flowing through the capacitor has increased dramatically with the lowering of the voltage and speed of the CPU of the computer. Therefore, if the ESR / ESL of the capacitor is high, the amount of heat generated is large, which causes a failure of the capacitor. . Therefore, a capacitor corresponding to this type of needs is required to have a low ESR / ESL.

この低ESR/ESL化に対応する一つの形態として、単板コンデンサ素子を複数枚上下に積層した積層型固体電解コンデンサが広く使われている。この積層型固体電解コンデンサは、一般に、弁作用金属箔の表面をエッチングするか、または弁作用金属粉末を成形、焼結した多孔質体の表面に酸化皮膜層を設けた陽極部と、この酸化皮膜層上に固体電解質層、カーボン層、銀層を順次形成してなる陰極部とで構成された単板コンデンサ素子を、導電性接着剤を介して複数枚積層して構成される。   As one form corresponding to this reduction in ESR / ESL, a multilayer solid electrolytic capacitor in which a plurality of single plate capacitor elements are stacked one above the other is widely used. This multilayer solid electrolytic capacitor generally includes an anode portion in which an oxide film layer is provided on the surface of a porous body obtained by etching the surface of a valve action metal foil or molding and sintering a valve action metal powder. A single plate capacitor element composed of a cathode portion formed by sequentially forming a solid electrolyte layer, a carbon layer, and a silver layer on a coating layer is laminated by a conductive adhesive.

図1はこの一般的な積層型固体電解コンデンサの構成を示すもので、Pは陽極部、Cは陰極部、Kはカーボン皮膜層、Mは陰極・陽極間を絶縁するマスキング層で、積層された各陽極部は互いに接合されて点線で示す陽極端子PLに接続され、各陰極部は導電性接着剤Rを介して相互に接合され、その最下面が同じ接着剤で陰極端子CLに導電接合され、これら積層体素子全体を外装樹脂でモールドして完成品となる。
尚、機能的には弁作用金属板(又は弁作用金属粉末からなる焼結板)全体が陽極であるが、本明細書では説明の便宜上、金属板の右側表面に形成された固体電解質層・カーボン層・銀層の部分を陰極部C、左側の陽極金属板露出部を陽極部Pと表示した。
FIG. 1 shows the structure of this general multilayer solid electrolytic capacitor. P is an anode part, C is a cathode part, K is a carbon film layer, and M is a masking layer that insulates between the cathode and anode. The anode parts are joined to each other and connected to an anode terminal PL indicated by a dotted line, the cathode parts are joined to each other via a conductive adhesive R, and the lowermost surface is electrically joined to the cathode terminal CL with the same adhesive. The entire laminated body element is molded with an exterior resin to obtain a finished product.
Functionally, the whole valve action metal plate (or a sintered plate made of valve action metal powder) is an anode, but in this specification, for convenience of explanation, a solid electrolyte layer formed on the right surface of the metal plate The carbon layer / silver layer portion is indicated as a cathode portion C, and the left anode metal plate exposed portion is indicated as an anode portion P.

この場合、図でも判るように陰極部Cには固体電解質層・カーボン層・銀層が形成されており、陽極部より若干厚みが大きくなるので、図のように陽極部Pを抵抗溶接などで圧接接合した場合、陰極部の層間が若干広がる傾向があり陰極相互間の導電性が劣化する。
これを解決するために、通常この種の積層コンデンサでは、積層体の陰極部の端面全体を銀などの導電性ペーストで追加的に被覆し、各陰極部間の接続抵抗を低減することが行なわれている。(特許文献1参照)
この導電性ペーストによる追加被覆は、図1のような積層体では、各単板コンデンサ素子を積層した後、その陽極部P・陰極部Cをそれぞれの端子PL、CLに接合する前に、積層体の陽極部を上から吊持して陰極部だけを銀などを溶解した導電性ペーストの浴槽内へ浸漬し、陰極周面全体にペーストを塗布する方法が採用されている。
In this case, as can be seen in the figure, the cathode portion C is formed with a solid electrolyte layer, a carbon layer, and a silver layer, and the thickness is slightly larger than the anode portion. In the case of pressure welding, there is a tendency that the interlayer of the cathode part slightly spreads, and the conductivity between the cathodes deteriorates.
In order to solve this problem, usually in this type of multilayer capacitor, the entire end face of the cathode portion of the laminate is additionally covered with a conductive paste such as silver to reduce the connection resistance between the cathode portions. It is. (See Patent Document 1)
The additional coating with the conductive paste is performed in the laminated body as shown in FIG. 1 after laminating each single plate capacitor element and before joining the anode part P and cathode part C to the terminals PL and CL. A method is adopted in which the anode part of the body is suspended from above and only the cathode part is immersed in a bath of conductive paste in which silver or the like is dissolved, and the paste is applied to the entire peripheral surface of the cathode.

これにより積層陰極部に導電性ペーストが追加形成されると同時に各陰極層間へもペーストが浸透するので、全体として陰極層相互間の導電性が大幅に改善されESRが低下する。
この場合陽極部は陰極と完全に絶縁する必要があるので、陽極部はペースト浴に浸漬させず、導電ペーストが付着しないようにするのは当然である。
As a result, a conductive paste is additionally formed in the laminated cathode portion, and at the same time, the paste penetrates between the cathode layers. As a whole, the conductivity between the cathode layers is greatly improved and the ESR is lowered.
In this case, since the anode part needs to be completely insulated from the cathode, it is natural that the anode part is not immersed in the paste bath so that the conductive paste does not adhere.

更に近年は、この種の積層コンデンサにおいて、より低ESR、ESL化を図るため各単板コンデンサ素子を積層する際、陽極部が陰極部を中心として左右互い違いになるように積層し、陽極電位を左右両側から取り出すようにした多端子構造の固体電解コンデンサが開発され実用化されている。(特許文献2参照)   Furthermore, in recent years, in this type of multilayer capacitor, when laminating each single plate capacitor element in order to achieve lower ESR and ESL, the anode part is laminated so that the left and right sides are centered around the cathode part, and the anode potential is increased. A solid electrolytic capacitor having a multi-terminal structure that can be taken out from both the left and right sides has been developed and put into practical use. (See Patent Document 2)

この多端子構造では、上記のように陽極電位を左右両側から取り出し、陰極電位を中央から取り出す3端子構造のものの他、単板コンデンサ素子の陽極部を陰極部を中心に90度ずつずらして積層(陽極が前後左右四方に分岐する)した5端子構造のものも知られている。
このように多端子構造にすることにより、大容量化に対応して積層段数が増加しても、磁界の打ち消し効果によりESR・ESL値の更なる改善が達成される。
In this multi-terminal structure, as described above, the anode potential is taken out from both the left and right sides, and the cathode potential is taken out from the center. In addition, the anode part of the single plate capacitor element is shifted by 90 degrees about the cathode part. A five-terminal structure in which the anode branches in the front, rear, left and right directions is also known.
By adopting the multi-terminal structure in this way, even if the number of stacked layers increases corresponding to the increase in capacity, the ESR / ESL value can be further improved by the magnetic field canceling effect.

しかしながら、この多端子構造の積層体では陽極が両側又は前後にあるので、積層体周面の追加被覆層を、前記のようにペースト槽内へ陰極部だけを沈漬して陰極周面だけに形成するのは困難である。従って通常はこのような場合の追加被覆は、各陰極の側面端部にエアーディスペンサを接続したシリンジで導電性ペーストを吹き付けて塗布するという方法が採用されている。   However, in this multi-terminal structure laminate, the anode is on both sides or front and back, so the additional coating layer on the circumference of the laminate is submerged only in the cathode circumference into the paste tank as described above. It is difficult to form. Therefore, the additional coating in such a case is usually applied by spraying a conductive paste with a syringe having an air dispenser connected to the side edge of each cathode.

図2、3は、従来のこの種多端子構造の積層コンデンサの概要を示したもので、図2は、3端子型固体電解コンデンサの積層素子の一例を示す斜視図、図3は図2の積層素子のY−Y’断面を各被覆層が判るように拡大して表示した図である。
図2においてP1、P2、P3、P4は陽極露出部を、C1、C2、C3、C4はそれぞれ陽極基板上に形成された陰極部を、Kはカーボン層、Mは陰・陽極間の絶縁用マスキング層を示す。
また図3において、1は弁作用金属の基板、2は酸化皮膜層、3は固体電解質層、4はカーボン層、5は陰極電位取り出し用銀層、6は各陰極層間を接合すると同時に電気的導通を確保するための導電性接着剤で、これらは各単板コンデンサ素子を製造する過程で各単板上に形成され、各単板ともに共通のものである。
7は、前記各単板を複数枚積層した後、この積層体素子の陰極部側端面に追加形成した導電性被覆層で、前述のようにシリンジを使用して矢印の方向から導電性ペーストを吹き付けて塗布して形成される。
2 and 3 show an outline of a conventional multilayer capacitor having such a multi-terminal structure. FIG. 2 is a perspective view showing an example of a multilayer element of a three-terminal solid electrolytic capacitor. FIG. It is the figure which expanded and displayed so that each coating layer could understand the YY 'cross section of a laminated element.
In FIG. 2, P1, P2, P3, and P4 are anode exposed portions, C1, C2, C3, and C4 are cathode portions formed on the anode substrate, K is a carbon layer, and M is an insulator between the negative and anode. A masking layer is shown.
In FIG. 3, 1 is a valve metal substrate, 2 is an oxide film layer, 3 is a solid electrolyte layer, 4 is a carbon layer, 5 is a silver layer for extracting a cathode potential, and 6 is electrically connected to each cathode layer simultaneously. These are conductive adhesives for ensuring conduction, and these are formed on each single plate in the process of manufacturing each single plate capacitor element, and are common to each single plate.
7 is a conductive coating layer additionally formed on the cathode portion side end face of the laminate element after laminating a plurality of each single plate, and using the syringe as described above, the conductive paste is applied from the direction of the arrow. It is formed by spraying and coating.

しかしながら本発明者の実験によれば、積層枚数が多いと陰極端面に導電性ペーストを吹き付けた際、各単板素子の層間に導電性ペーストが浸透する前にペーストが端面から流れてしまうため、各陰極層間へのペーストの入り込み量が不充分となり、陰極層相互間の導電性改善が充分達成できず、有効なESR低下が期待できないことが判明した。
即ち図3でも判るように、導電性ペースト7は各陰極層間の隙間gにできるだけ多く入り込む方が望ましいが、7’のようにごく一部しか入り込んでいないことが多い。
そのために工数をかけて導電性被覆層を追加形成しても、前記のように期待した効果が得られないわけである。
特開2004−281515号公報 特開2007−116064号公報
However, according to the inventor's experiment, when the conductive paste is sprayed on the cathode end face when the number of stacked layers is large, the paste flows from the end face before the conductive paste penetrates between the layers of each single plate element. It has been found that the amount of paste entering between the cathode layers becomes insufficient, the conductivity between the cathode layers cannot be sufficiently improved, and an effective ESR reduction cannot be expected.
That is, as can be seen from FIG. 3, it is desirable that the conductive paste 7 enters as much as possible into the gap g between the cathode layers, but in most cases, only a small portion such as 7 'enters.
For this reason, even if a conductive coating layer is additionally formed by taking man-hours, the expected effect as described above cannot be obtained.
JP 2004-281515 A JP 2007-1116064 A

本発明は、前記の問題点に鑑み、多端子型の積層型固体電解コンデンサにおいて、積層された陰極層相互間の導電性をより向上させるための新規な陰極素子構造を提供し、ESRの更なる低下を可能ならしめることを目的とする。   In view of the above problems, the present invention provides a novel cathode element structure for further improving the conductivity between stacked cathode layers in a multi-terminal multilayer solid electrolytic capacitor, and further improves ESR. The purpose is to make possible declines.

上記課題を解決するため、本発明は、弁作用金属の一方側を陽極部とし、この弁作用金属の他方側の表面に形成した酸化皮膜層を誘電体とし、この酸化皮膜層上に形成した固体電解質層を陰極部とする複数枚の単板コンデンサ素子を、その陽極部が陰極部を中心に左右に分岐するように積層した多端子構造の積層型固体電解コンデンサにおいて、
前記積層素子を構成する単板コンデンサ素子の陰極部の横幅を、上層と下層とで異ならしめて積層体の陰極側面部に段差を形成し、この段差が形成された陰極側面部に導電性ペーストを塗布することによって積層陰極間の接続抵抗の低減を図ったもので、これにより積層型固体電解コンデンサの低ESR化を達成し得たものである。
In order to solve the above-mentioned problems, the present invention is formed on the oxide film layer by using one side of the valve metal as an anode portion and using an oxide film layer formed on the other surface of the valve metal as a dielectric. In a multilayer solid electrolytic capacitor having a multi-terminal structure in which a plurality of single-plate capacitor elements each having a solid electrolyte layer as a cathode portion are laminated so that the anode portion branches right and left around the cathode portion,
The width of the cathode part of the single-plate capacitor element constituting the multilayer element is made different between the upper layer and the lower layer to form a step on the cathode side part of the laminate, and a conductive paste is applied to the cathode side part on which the step is formed. By applying it, the connection resistance between the laminated cathodes is reduced, and as a result, the ESR of the laminated solid electrolytic capacitor can be reduced.

第二の発明は、前記多端子構造の積層型固体電解コンデンサにおいて、各単板コンデンサ素子の陰極部の横幅を、上に積層される素子ほど狭く構成し、積層体の陰極側端面部を階段状に形成したことを特徴とする上記記載の積層型固体電解コンデンサである。   According to a second aspect of the present invention, in the multilayer solid electrolytic capacitor having the multi-terminal structure, the lateral width of the cathode portion of each single plate capacitor element is configured to be narrower as the element is stacked on top, and the cathode side end face portion of the multilayer body is stepped. The multilayer solid electrolytic capacitor as described above, wherein the multilayer solid electrolytic capacitor is formed in a shape.

本発明の積層型固体電解コンデンサは、積層素子の両側の側面部に段差を設けたので、導電性ペーストによる追加被覆がより確実となり、またこの導電性ペーストが積層素子間に入り込みやすくなるので、陰極層相互間の接続抵抗を極めて小さくできる。従って積層コンデンサ全体として低ESR化を実現することができる。   Since the multilayer solid electrolytic capacitor of the present invention has steps on the side portions on both sides of the multilayer element, additional coating with the conductive paste becomes more reliable, and this conductive paste easily enters between the multilayer elements. The connection resistance between the cathode layers can be extremely reduced. Therefore, low ESR can be realized for the entire multilayer capacitor.

〔実施例〕
図4、図5、図6は、本発明実施例の3端子構造の4枚積層型固体電解コンデンサの構造説明図で、図4は積層素子だけの部分を示す斜視図、図5は図4のY−Y’断面の図で陰極構造の詳細を説明するため拡大表示してある。図6はこの積層素子の各電極をそれぞれの端子板(リードフレーム)に接合し外装樹脂で外装した電解コンデンサの完成品を示す斜視図である。
〔Example〕
4, 5, and 6 are explanatory views of a structure of a four-layered solid electrolytic capacitor having a three-terminal structure according to an embodiment of the present invention. FIG. 4 is a perspective view showing only a laminated element, and FIG. The YY ′ cross-sectional view of FIG. 2 is enlarged to explain the details of the cathode structure. FIG. 6 is a perspective view showing a completed electrolytic capacitor in which each electrode of the multilayer element is bonded to a terminal plate (lead frame) and sheathed with an exterior resin.

図4、5、6において、各単板素子の皮膜層の性質は図2、3に示す従来例のものと変わりないので、各層は同一の符号で説明する。
即ち、エッチング処理を施した弁作用金属(本実施例ではアルミニウム箔)の一方側に陽極部Pを他方側に陰極部Cを設け、マスキング層Mで隔離絶縁した単板コンデンサ素子4枚を、陽極部が左右対称になるように積層する。本実施例では、この場合各弁作用金属箔の横幅サイズが少しずつ異なるように作成してその上に陰極層を形成する。これを図4でも判るように最下層に横幅サイズの一番広い素子板C1を、その上に少し狭いサイズのものC2を、次いで更に狭いものC3を、最後に最も狭い陰極部C4を重ねて積層する。
これを図5のY−Y’断面図に基いて更に詳しく説明すると、各単板コンデンサ素子は、アルミニウム箔1上に酸化皮膜層2が形成された陽極部と、その上に形成された固体電解質層3、カーボン層4、銀層5からなる陰極層とで構成され、各陰極層間は導電性接着剤6を介して接合積層される。この場合前記したようにその横幅wがそれぞれ異なったものとなっているので、各素子板を中心ラインNに対して対称に積層することにより、積層体側端面には図でも判るように段差Sが生じ、側端面の形状は階段状となる。
4, 5 and 6, the properties of the coating layer of each single plate element are the same as those of the conventional example shown in FIGS.
That is, four single-plate capacitor elements that are provided with an anode part P on one side and a cathode part C on the other side of the valve-acting metal subjected to the etching process (in this embodiment, aluminum foil) and separated and insulated by the masking layer M, Laminate so that the anode part is symmetrical. In this embodiment, in this case, the respective valve action metal foils are prepared so that the lateral width sizes thereof are slightly different, and the cathode layer is formed thereon. As can be seen from FIG. 4, the element plate C1 having the widest width is formed on the lowermost layer, the sheet C2 having a slightly narrower size is formed thereon, the narrower one C3 is finally stacked, and the narrowest cathode portion C4 is finally stacked. Laminate.
This will be described in more detail based on the YY ′ cross-sectional view of FIG. 5. Each single-plate capacitor element includes an anode portion in which an oxide film layer 2 is formed on an aluminum foil 1 and a solid formed thereon. The cathode layer is composed of an electrolyte layer 3, a carbon layer 4, and a silver layer 5, and each cathode layer is bonded and laminated via a conductive adhesive 6. In this case, since the widths w are different from each other as described above, by stacking the element plates symmetrically with respect to the center line N, a step S is formed on the end surface on the side of the stacked body as can be seen in the figure. As a result, the shape of the side end face is stepped.

本実施例では、各単板コンデンサ素子の横幅サイズwは、最下段のものをw1、最上段のものをw4としたとき、w1=4.5mm、w2=4.0mm、w3=3.5mm、w4=3.0mmとした。
また各素子板の陽極部を含めた縦長さlは何れも4.5mmとし、各単板素子の厚さdは0.2mmとした。
In this embodiment, the lateral width w of each single plate capacitor element is w1 = 4.5 mm, w2 = 4.0 mm, w3 = 3.5 mm, where w1 is the lowest one and w4 is the uppermost one. , W4 = 3.0 mm.
In addition, the vertical length l including the anode portion of each element plate was 4.5 mm, and the thickness d of each single plate element was 0.2 mm.

次いでこのように階段状に形成された積層素子の陰極部の側端面に、エアーディスペンサを接続したシリンジで二重矢印方向から銀の導電性ペーストを吐出・塗布し硬化させることにより、陰極積層部の両側端面に銀の追加被覆層8を形成した。
この場合、本実施例では積層体の側部に段差Sが設けられているので、吐出されたペーストはこの段差部で一時的に滞留し、その間に8’に示すように各層間の隙間部に深く入り込むことになる。従ってこの隙間部の導電性が大幅に改善される。また側端面自体へのペーストの付着性も、従来の面一の側端面の場合のように流れ落ちてしまう恐れがなくなるのでより向上する。
Next, by discharging and applying silver conductive paste from the double arrow direction to the side end face of the cathode portion of the laminated element formed in a stepped manner in this manner with a syringe connected with an air dispenser, the cathode laminated portion is cured. An additional coating layer 8 of silver was formed on both end faces of the film.
In this case, since the step S is provided at the side of the laminate in this embodiment, the discharged paste temporarily stays at this step, and the gap between the layers as indicated by 8 'in the meantime. It will go deeper into. Therefore, the conductivity of the gap is greatly improved. In addition, the adhesiveness of the paste to the side end surface itself is further improved because there is no risk of flowing down as in the case of a conventional side end surface.

またこの種の多端子構造の積層素子では、陰極の後端面(陽極部と反対側の端面)には上下の陽極部が突出しているので、この後端面に直接追加被覆層を形成するのは困難であるが、前記したように陰極層間の隙間に導電性ペーストが充分深く浸透するので、これが結果的に陰極板の後端面まで回り込むことになり、この部分にも従来の方式より多くの追加被覆層が形成される。
以上の相乗効果によって、本実施例の積層コンデンサではESRの大幅な低減が達成できたものである。
Further, in this type of multi-terminal laminated element, the upper and lower anode parts protrude from the rear end face of the cathode (the end face opposite to the anode part), so that an additional coating layer is formed directly on this rear end face. Although difficult, as described above, the conductive paste penetrates deeply into the gaps between the cathode layers, and as a result, this wraps around to the rear end face of the cathode plate, and this part also adds more than the conventional method. A coating layer is formed.
Due to the above synergistic effect, the multilayer capacitor of this example has achieved a significant reduction in ESR.

図6は、上記によって陰極部に追加被覆層を形成した積層素子の両側の陽極部P1、P3及びP2、P4に、それぞれ左右の陽極端子(陽極電位取り出し用端子板)PL、PL’を抵抗溶接等によって電気的に接続し、最下段の陰極部C1に導電性接着剤を介して陰極端子(陰極電位取り出し用端子板)CLを接続した後、積層体全体を外装樹脂(エポキシ樹脂)9で外装してなる実施例の積層型固体電解コンデンサの完成品の斜視図で、この完成品は、定格電圧2.5V、定格容量220μFの三端子構造の積層型固体電解コンデンサである。   FIG. 6 shows resistances of the left and right anode terminals (anode potential extraction terminal plates) PL and PL ′ to the anode parts P1, P3 and P2, P4 on both sides of the laminated element in which the additional covering layer is formed on the cathode part as described above. After electrically connecting by welding or the like, and connecting the cathode terminal (cathode potential extraction terminal plate) CL to the lowermost cathode portion C1 via a conductive adhesive, the entire laminate is packaged with an exterior resin (epoxy resin) 9 FIG. 2 is a perspective view of a finished product of the multilayer solid electrolytic capacitor of the embodiment of the present invention, which is a three-terminal laminated solid electrolytic capacitor having a rated voltage of 2.5 V and a rated capacity of 220 μF.

下記の表1は、上記実施例の固体電解コンデンサを100個作製し、これらについてそのESR性能を実測し、各データの平均値を従来例と比較して示したものである。
比較データの条件を揃えるため、従来例は図2、3に例示した3端子構造の4枚積層型固体電解コンデンサであって、各単板素子は、本実施例と同じ厚さ0.2mm、同じ長さ4.5mmとし、横幅wのみを全て4.5mmとしたものを用い、その積層体の側端面に実施例と同じく導電性の銀ペーストを吐出・塗布して追加被覆層を形成し、各陽極・陰極をそれぞれの端子に接続した後、全体を実施例と同一の外装樹脂で外装した完成品である。
表1に例示したデータは、上記従来品100個についてESR値を実測した結果の平均値である。
Table 1 below shows the production of 100 solid electrolytic capacitors of the above-mentioned example, the ESR performance was actually measured for these, and the average value of each data was shown in comparison with the conventional example.
In order to align the conditions of the comparison data, the conventional example is a four-layered solid electrolytic capacitor having a three-terminal structure illustrated in FIGS. Using the same length of 4.5 mm and only the width w of all 4.5 mm, an additional covering layer is formed by discharging and applying the conductive silver paste to the side end face of the laminate as in the example. After connecting each anode / cathode to the respective terminal, the entire product is packaged with the same exterior resin as in the examples.
The data illustrated in Table 1 is an average value of the results of actually measuring ESR values for the 100 conventional products.

Figure 2009182029
Figure 2009182029

表1から判るように、実施例の積層型固体電解コンデンサのESR値は、同一定格の従来の積層型固体電解コンデンサより大幅に改善されており、本発明によって非常に低いESRを備えた積層型固体電解コンデンサが得られることが実証できた。
このESRの低減は、積層体の両側部を階段状にしたことにより、追加被覆層形成に際して導電性ペーストの無駄な流れ落ちが阻止され、積層素子の側面端部への導電性追加被覆層が効果的に形成できるとともに、各素子間へ導電性ペーストが入り込みやすくなるため、積層陰極層相互間の接続抵抗が低減した効果によるものである。
As can be seen from Table 1, the ESR value of the multilayer solid electrolytic capacitor of the example is significantly improved over the conventional multilayer solid electrolytic capacitor of the same rating, and the multilayer type having a very low ESR according to the present invention. It was proved that a solid electrolytic capacitor was obtained.
This reduction in ESR is because the both sides of the laminate are stepped, preventing unnecessary flow of the conductive paste when forming the additional coating layer, and the conductive additional coating layer on the side edge of the multilayer element is effective. This is because the conductive paste can easily enter between the elements and the connection resistance between the laminated cathode layers is reduced.

尚、上記実施例では、弁作用金属にアルミニウム(Al)を用いたが、タンタル(Ta)、ニオブ(Nb)、チタン(Ti)等をシート状に形成した素子や、これらの金属粉をシート状に圧縮成形し焼結した素子を用いた場合も同様の効果が得られる。
導電性被覆層は、所望の電導度を有するように、銀(Ag)、金(Au)、銅(Cu)、カーボン等からなる導電性フィラーと、エポキシ系樹脂、アクリル系樹脂、ゴム系樹脂等からなるバインダ樹脂とを組み合わせたものなどが利用できる。
また、陰極層となる固体電解質には、ポリピロール、ポリアニリンなどの導電性高分子を用いてもよく、二酸化マンガン層でも同様の効果を得ることができる。
In the above embodiment, aluminum (Al) is used for the valve action metal, but an element in which tantalum (Ta), niobium (Nb), titanium (Ti), etc. are formed in a sheet shape, or these metal powders as a sheet. The same effect can be obtained when using an element that has been compression-molded and sintered.
The conductive coating layer has a conductive filler made of silver (Ag), gold (Au), copper (Cu), carbon, etc., epoxy resin, acrylic resin, rubber resin so as to have a desired conductivity. A combination of a binder resin composed of, etc. can be used.
In addition, a conductive polymer such as polypyrrole or polyaniline may be used for the solid electrolyte serving as the cathode layer, and the same effect can be obtained with the manganese dioxide layer.

尚、上記実施例は、単板コンデンサ素子の陽極部Pを、陰極部Nを中心として左右互い違いになるように積層した例、即ち各単板コンデンサ素子を180度ずつ位相をずらして積層した例であるが、積層枚数が多くなる場合、これを90度ずつ位相をずらして積層、即ち陽極部が陰極部を中心に交互に前後左右になるように積層してもよい。   The above embodiment is an example in which the anode parts P of the single plate capacitor elements are laminated so as to be alternately left and right with the cathode part N as the center, that is, each single plate capacitor element is laminated by shifting the phase by 180 degrees. However, when the number of stacked layers increases, the layers may be stacked by shifting the phase by 90 degrees, that is, the anode portions may be alternately stacked back and forth and right and left around the cathode portion.

上記実施例では、作製の都合上、陽極部を含む単板コンデンサ素子全体の横幅を均一とした状態で、下層から上層に狭くした例について説明したが、陽極部の側端面には追加被覆を形成しないのでその側面には段差を設ける必要がない。従って弁作用金属板を加工ないし鋳造する際、陰極部が形成される部分の横幅だけを順次変えたものを作製し、これに陽極部・陰極部を形成して積層してもよく、この場合でも当然実施例と同様の効果が期待できる。   In the above embodiment, for the sake of production, an example in which the width of the entire single plate capacitor element including the anode portion is made uniform from the lower layer to the upper layer in a uniform state has been described, but the side end face of the anode portion is additionally coated. Since it is not formed, there is no need to provide a step on the side surface. Therefore, when processing or casting the valve action metal plate, it is possible to produce one in which only the width of the part where the cathode part is formed is changed in order, and the anode part and the cathode part may be formed thereon and laminated. However, naturally the same effect as the embodiment can be expected.

(変形例)
図7は、各単板コンデンサ素子の横幅を大小2種類とし、これを交互に積層した多端子構造の積層体の断面図で、図5の場合と同様に側端面に導電性ペーストの追加被覆層8、8’を形成した例である。他の符号部分は図5と同じ部分を示す。この場合も積層体の側端面に段差Sが形成されるので、導電性ペーストを適宜側方から吐出・吹き付けることにより、実施例の場合と同様効果的に追加被覆層を形成することができる。
この場合、素子の横幅を大中小3種にして適宜の順序で積層しても同様の効果が得られることは当然である。
(Modification)
FIG. 7 is a cross-sectional view of a multi-terminal laminated body in which each single-plate capacitor element has two different widths, and these are alternately laminated. As in the case of FIG. In this example, layers 8 and 8 ′ are formed. The other code | symbol part shows the same part as FIG. Also in this case, since the step S is formed on the side end face of the laminated body, the additional covering layer can be formed effectively as in the case of the embodiment by appropriately discharging and spraying the conductive paste from the side.
In this case, it is a matter of course that the same effect can be obtained even if the lateral widths of the elements are made large, medium, and small and stacked in an appropriate order.

積層型固体電解コンデンサの一般例を示す斜視図。The perspective view which shows the general example of a multilayer type solid electrolytic capacitor. 従来の3端子構造の積層素子の構成を示す斜視図。The perspective view which shows the structure of the laminated element of the conventional 3 terminal structure. 上記従来例の積層体のY−Y’断面の拡大断面図。The expanded sectional view of the Y-Y 'cross section of the laminated body of the said prior art example. 本発明実施例の積層素子を示す斜視図。The perspective view which shows the laminated element of this invention Example. 図4のY−Y’断面図。FIG. 5 is a cross-sectional view taken along line Y-Y ′ of FIG. 4. 図4、図5の積層素子を備えた積層型固体電解コンデンサ実施例の斜視図。FIG. 6 is a perspective view of a multilayer solid electrolytic capacitor embodiment including the multilayer element of FIGS. 4 and 5. 本発明の変形実施例の積層素子の断面図。Sectional drawing of the laminated element of the modified example of this invention.

符号の説明Explanation of symbols

1 弁作用金属箔
2 酸化皮膜層
3 固体電解質層
4 カーボン層
5 銀層
6 導電性接着剤
7、8 導電性ペーストによる追加被覆層
9 外装樹脂
P、P1、P2、P3、P4 陽極部
C、C1、C2、C3、C4、陰極部
K カーボン層
M 絶縁用マスキング層
g 積層陰極間の隙間
DESCRIPTION OF SYMBOLS 1 Valve action metal foil 2 Oxide film layer 3 Solid electrolyte layer 4 Carbon layer 5 Silver layer 6 Conductive adhesives 7 and 8 Additional coating layer 9 by electrically conductive paste Exterior resin P, P1, P2, P3, P4 Anode part C, C1, C2, C3, C4, cathode part K carbon layer M masking layer for insulation g gap between stacked cathodes

Claims (3)

弁作用金属板の一方側に陽極部を、他方側に酸化皮膜層を形成した後、固体電解質層、陰極引出層からなる陰極部を形成した単板コンデンサ素子を複数枚、その陽極部が陰極部を中心として左右互い違いになるように積層してなる多端子型積層コンデンサにおいて、積層される上下単板コンデンサ素子の横幅(w)を互いに異ならしめることにより積層素子の陰極部側端面に段差を形成し、上記陰極側端面部に導電性ペーストを被覆したことを特徴とする積層型固体電解コンデンサ。   After forming an anode part on one side of the valve metal plate and an oxide film layer on the other side, a plurality of single plate capacitor elements having a cathode part comprising a solid electrolyte layer and a cathode lead layer, the anode part being a cathode In a multi-terminal multilayer capacitor that is laminated so that it is staggered left and right around the center, by making the horizontal width (w) of the stacked upper and lower single plate capacitor elements different from each other, a step is formed on the cathode side end face of the multilayer element A multilayer solid electrolytic capacitor formed and coated with a conductive paste on the cathode side end face portion. 積層される複数枚の単板コンデンサ素子の横幅(w)を下層から上層に向って順次狭くし、積層素子の陰極部側端面を階段状に形成したことを特徴とする請求項1に記載の積層型固体電解コンデンサ。   The width (w) of a plurality of single-plate capacitor elements to be stacked is sequentially narrowed from the lower layer to the upper layer, and the cathode portion side end surface of the stacked element is formed in a step shape. Multilayer solid electrolytic capacitor. 積層される複数枚の単板コンデンサ素子の陰極部だけの横幅を、上層と下層とで異ならしめたことを特徴とする請求項1または2に記載の積層型固体電解コンデンサ。   3. The multilayer solid electrolytic capacitor according to claim 1, wherein the width of only the cathode portions of the laminated single plate capacitor elements is made different between the upper layer and the lower layer. 4.
JP2008017731A 2008-01-29 2008-01-29 Multilayer solid electrolytic capacitor Active JP5025007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017731A JP5025007B2 (en) 2008-01-29 2008-01-29 Multilayer solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008017731A JP5025007B2 (en) 2008-01-29 2008-01-29 Multilayer solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2009182029A true JP2009182029A (en) 2009-08-13
JP5025007B2 JP5025007B2 (en) 2012-09-12

Family

ID=41035791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017731A Active JP5025007B2 (en) 2008-01-29 2008-01-29 Multilayer solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5025007B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187483A (en) * 2010-03-04 2011-09-22 Nec Tokin Corp Solid electrolytic capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232012A (en) * 1993-01-29 1994-08-19 Marcon Electron Co Ltd Laminated solid electrolytic capacitor and its manufacture
JP2004281515A (en) * 2003-03-13 2004-10-07 Matsushita Electric Ind Co Ltd Layered solid electrolytic capacitor
JP2006128247A (en) * 2004-10-27 2006-05-18 Nec Tokin Corp Surface-mounted capacitor and its manufacturing method
JP2007012797A (en) * 2005-06-29 2007-01-18 Nichicon Corp Laminated solid electrolytic capacitor
JP2007116064A (en) * 2005-10-24 2007-05-10 Nichicon Corp Laminated solid electrolytic capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06232012A (en) * 1993-01-29 1994-08-19 Marcon Electron Co Ltd Laminated solid electrolytic capacitor and its manufacture
JP2004281515A (en) * 2003-03-13 2004-10-07 Matsushita Electric Ind Co Ltd Layered solid electrolytic capacitor
JP2006128247A (en) * 2004-10-27 2006-05-18 Nec Tokin Corp Surface-mounted capacitor and its manufacturing method
JP2007012797A (en) * 2005-06-29 2007-01-18 Nichicon Corp Laminated solid electrolytic capacitor
JP2007116064A (en) * 2005-10-24 2007-05-10 Nichicon Corp Laminated solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187483A (en) * 2010-03-04 2011-09-22 Nec Tokin Corp Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP5025007B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
WO2018074407A1 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
JP2003133183A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2007116064A (en) Laminated solid electrolytic capacitor
JP2006324555A (en) Laminated capacitor and its manufacturing method
JP2011151353A (en) Solid electrolytic capacitor, and method for producing the same
JP4688675B2 (en) Multilayer solid electrolytic capacitor
JP2009158692A (en) Multilayer solid electrolytic capacitor
WO2021049056A1 (en) Electrolytic capacitor
US20120281338A1 (en) Aluminum electrolytic capacitor and method of manfacturing the same
JP4986230B2 (en) Multilayer solid electrolytic capacitor
JP4688676B2 (en) Multilayer solid electrolytic capacitor and capacitor module
JP5025007B2 (en) Multilayer solid electrolytic capacitor
JP4671339B2 (en) Multilayer solid electrolytic capacitor
JP2004088073A (en) Solid electrolytic capacitor
JP4671347B2 (en) Solid electrolytic capacitor
WO2021066091A1 (en) Electrolytic capacitor, and method for manufacturing electrolytic capacitor
JP5181154B2 (en) Multilayer solid electrolytic capacitor
JP4936458B2 (en) Multilayer solid electrolytic capacitor
WO2006129639A1 (en) Solid electrolytic capacitor and method for manufacturing same
WO2012066853A1 (en) Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor
JP5450001B2 (en) Electrolytic capacitor manufacturing method
JP5411047B2 (en) Multilayer solid electrolytic capacitor and manufacturing method thereof
JP3826153B1 (en) Multilayer solid electrolytic capacitor and method for forming cathode lead layer in multilayer solid electrolytic capacitor
JP2007227716A (en) Laminated solid electrolytic capacitor and manufacturing method therefor
JP2010182745A (en) Method of manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5025007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250