JP5181154B2 - Multilayer solid electrolytic capacitor - Google Patents

Multilayer solid electrolytic capacitor Download PDF

Info

Publication number
JP5181154B2
JP5181154B2 JP2009177861A JP2009177861A JP5181154B2 JP 5181154 B2 JP5181154 B2 JP 5181154B2 JP 2009177861 A JP2009177861 A JP 2009177861A JP 2009177861 A JP2009177861 A JP 2009177861A JP 5181154 B2 JP5181154 B2 JP 5181154B2
Authority
JP
Japan
Prior art keywords
cathode
solid electrolytic
plate capacitor
single plate
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009177861A
Other languages
Japanese (ja)
Other versions
JP2011035057A (en
Inventor
豊 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Original Assignee
Nichicon Capacitor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd filed Critical Nichicon Capacitor Ltd
Priority to JP2009177861A priority Critical patent/JP5181154B2/en
Publication of JP2011035057A publication Critical patent/JP2011035057A/en
Application granted granted Critical
Publication of JP5181154B2 publication Critical patent/JP5181154B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

本発明は、単板コンデンサ素子を複数枚積層した積層体を備えた積層型固体電解コンデンサに関する。   The present invention relates to a multilayer solid electrolytic capacitor including a multilayer body in which a plurality of single plate capacitor elements are stacked.

固体電解コンデンサは、アルミニウム、タンタル、ニオブなどの弁作用金属板またはその焼結体を陽極部とし、陽極部の表面に形成した酸化皮膜層を誘電体とし、さらに酸化皮膜層の表面に固体電解質層、カーボン層、銀層を順次形成してなる陰極部を構成している。この固体電解質層としては、一般的に二酸化マンガン、TCNQ錯体、導電性高分子などが知られている。   A solid electrolytic capacitor uses a valve action metal plate such as aluminum, tantalum, or niobium or a sintered body thereof as an anode portion, an oxide film layer formed on the surface of the anode portion as a dielectric, and a solid electrolyte on the surface of the oxide film layer. A cathode portion is formed by sequentially forming a layer, a carbon layer, and a silver layer. As this solid electrolyte layer, manganese dioxide, TCNQ complex, conductive polymer, etc. are generally known.

近年、コンピュータ等に使用されるCPUの低電圧化と高速化に伴い、固体電解コンデンサからCPUに電荷を供給する際、固体電解コンデンサは高速な充放電を求められるようになり、低ESR、ESLであることが必須条件となっている。   In recent years, with the reduction in voltage and speed of CPUs used in computers and the like, when electric charges are supplied from a solid electrolytic capacitor to the CPU, the solid electrolytic capacitors are required to be charged / discharged at high speed, and low ESR, ESL It is an essential condition.

この低ESR、ESL化を実現するための一つの方法として、図1に示すような単板コンデンサ素子Cを複数枚積層した積層型固体電解コンデンサが広く使われている。この積層型固体電解コンデンサは、陽極部Pと、陰極部Nと、カーボン層Kと、陰極部N・陽極部P間を絶縁するためのマスキング層Mとを有する単板コンデンサ素子Cが複数枚積層され、各陽極部Pは互いに接合されて点線で示す陽極端子PLに接続され、各陰極部Nは導電性ペーストRを介して相互に接合され、その最下面が陰極端子NLに接合され、これら積層体全体を外装樹脂でモールドして完成品となる。   As one method for realizing the low ESR and ESL, a multilayer solid electrolytic capacitor in which a plurality of single plate capacitor elements C as shown in FIG. 1 are stacked is widely used. This multilayer solid electrolytic capacitor has a plurality of single-plate capacitor elements C each having an anode part P, a cathode part N, a carbon layer K, and a masking layer M for insulating between the cathode part N and the anode part P. Each anode part P is joined to each other and connected to the anode terminal PL indicated by a dotted line, each cathode part N is joined to each other through the conductive paste R, and the lowermost surface thereof is joined to the cathode terminal NL, The entire laminate is molded with an exterior resin to obtain a finished product.

尚、機能的には弁作用金属板(または弁作用金属粉末からなる焼結板)全体が陽極であるが、本明細書では説明の便宜上、一方側の弁作用金属板の露出部を陽極部Pと表示し、他方側の弁作用金属板表面に形成された固体電解質層・カーボン層・銀層の部分を陰極部Nと表示した。   Functionally, the entire valve action metal plate (or a sintered plate made of valve action metal powder) is the anode, but for the sake of convenience of explanation in this specification, the exposed portion of the valve action metal plate is the anode part. The portion of the solid electrolyte layer, the carbon layer, and the silver layer formed on the surface of the other valve action metal plate was indicated as a cathode portion N.

この積層型固体電解コンデンサでは、図1に示すように陰極部Nには固体電解質層・カーボン層・銀層が形成されているため、陽極部Pより若干厚みが大きくなる。このため陽極部Pを抵抗溶接などで圧接接合した場合、陰極部Nの層間が若干広がり陰極部N相互間の導電性が劣化する。これを解決するために、通常この種の積層型固体電解コンデンサでは、積層体の陰極部Nの端面全体を銀などの導電性ペーストで追加的に導電性被覆層を形成し、各陰極部N間の接続抵抗を低減することが行なわれている(例えば、特許文献1参照)。この導電性ペーストによる追加の導電性被覆層を形成するために、図1のような積層体では、各単板コンデンサ素子Cを積層した後、その陽極部P・陰極部Nをそれぞれ陽極端子PL・陰極端子NLに接合する前に、積層体の陽極部Pを上に向けて吊持して陰極部Nだけを銀などを溶解した導電性ペーストの浴槽内へ浸漬し、陰極部Nの周面全体に導電性ペーストを塗布する方法が採用されている。   In this multilayer solid electrolytic capacitor, as shown in FIG. 1, since the solid electrolyte layer, the carbon layer, and the silver layer are formed in the cathode portion N, the thickness is slightly larger than that of the anode portion P. For this reason, when the anode part P is pressure-welded by resistance welding or the like, the interlayer of the cathode part N slightly expands and the conductivity between the cathode parts N deteriorates. In order to solve this, usually in this type of multilayer solid electrolytic capacitor, the entire end face of the cathode part N of the laminate is additionally formed with a conductive paste such as silver, and each cathode part N The connection resistance between them is reduced (see, for example, Patent Document 1). In order to form an additional conductive coating layer using this conductive paste, in the laminate as shown in FIG. 1, after laminating each single plate capacitor element C, the anode part P and the cathode part N are respectively connected to the anode terminal PL. -Before joining to the cathode terminal NL, the anode part P of the laminate is suspended upward and only the cathode part N is immersed in a bath of conductive paste in which silver or the like is dissolved. A method of applying a conductive paste over the entire surface is employed.

この方法により、陰極部Nには導電性ペーストによる追加の導電性被覆層が形成され、同時に各陰極部N間へも導電性ペーストが浸透するので、全体として陰極部N相互間の導電性が大幅に改善されESRが低下する。この場合、勿論陽極部Pは陰極部Nと完全に絶縁する必要があるので、陽極部Pは導電性ペースト浴に浸漬させないことで、導電性ペーストが付着しないようにする。   By this method, an additional conductive coating layer made of a conductive paste is formed on the cathode portion N, and the conductive paste penetrates between the cathode portions N at the same time. Greatly improved and lowers ESR. In this case, of course, since the anode part P needs to be completely insulated from the cathode part N, the anode part P is not immersed in the conductive paste bath so that the conductive paste does not adhere.

また、この種の積層型固体電解コンデンサにおいて、より低ESR、ESL化を図るため各単板コンデンサ素子を積層する際、陽極部の突出方向が陰極部を中心として交互に反対になるように積層し、陽極電位を左右両側から取り出すようにした多端子構造の積層型固体電解コンデンサが開発され実用化されている(例えば、特許文献2参照)。   Also, in this type of multilayer solid electrolytic capacitor, when laminating each single plate capacitor element in order to achieve lower ESR and ESL, lamination is made so that the protruding direction of the anode part is alternately opposite about the cathode part. However, a multi-terminal multilayer solid electrolytic capacitor in which the anode potential is taken out from both the left and right sides has been developed and put into practical use (for example, see Patent Document 2).

この多端子構造の積層型固体電解コンデンサでは、上記のように陽極電位を左右両側から取り出し、陰極電位を中央から取り出す3端子構造のものの他、単板コンデンサ素子の陽極部を、陰極部を中心に90度ずつずらして積層した(陽極が前後左右四方に分岐する)5端子構造のものも知られている。このように多端子構造にすることにより、大容量化に対応して積層枚数が増加しても、磁界の打ち消し効果によりESR・ESL値の更なる改善が達成される。   In this multi-terminal structure solid electrolytic capacitor, in addition to the three-terminal structure in which the anode potential is taken out from the left and right sides and the cathode potential is taken out from the center as described above, the anode portion of the single plate capacitor element is centered on the cathode portion. Also known is a five-terminal structure in which the layers are laminated 90 ° apart from each other (the anode branches in the front, rear, left and right directions). By adopting such a multi-terminal structure, even if the number of stacked layers increases corresponding to the increase in capacity, the ESR / ESL value can be further improved by the magnetic field canceling effect.

しかしながら、この多端子構造の積層型固体電解コンデンサは、陽極部が左右両側にあるので、積層体周面の導電性被覆層を、上記のように導電性ペースト槽内へ陰極部だけを浸漬して陰極部周面だけに形成するのは困難である。従って、通常はこのような場合の導電性被覆層は、各陰極部の側面にエアーディスペンサを接続したシリンジで導電性ペーストを吹き付けて塗布するという方法が採用されている。   However, this multi-terminal structure solid electrolytic capacitor has anode portions on the left and right sides, so that the conductive coating layer on the peripheral surface of the multilayer body is immersed in the conductive paste tank as described above. Therefore, it is difficult to form only on the peripheral surface of the cathode portion. Therefore, the conductive coating layer in such a case is usually applied by spraying a conductive paste with a syringe having an air dispenser connected to the side surface of each cathode portion.

図2および図3は、3端子構造の積層型固体電解コンデンサの積層体を示したもので、図2は斜視図、図3は図2のY−Y'線における拡大断面図である。図2の各単板コンデンサ素子C1〜C4において、P1〜P4は陽極部を、N1〜N4は陰極部を、Kはカーボン層を、Mは陰極部・陽極部間を絶縁するためのマスキング層を示す。また図3において、1は弁作用金属板を、2は酸化皮膜層を、3は固体電解質層を、4はカーボン層を、5は陰極電位取り出し用の銀層を示す。そして、6は各陰極部間を接合すると同時に電気的導通を確保するための導電性ペーストで、これらは各単板コンデンサ素子を製造する過程で各単板コンデンサ素子C1〜C4上に形成される。7は、各単板コンデンサ素子C1〜C4を積層した後、この積層体の側面に形成した導電性被覆層であって、導電性ペーストを吹き付けて形成される。   2 and 3 show a laminate of a multilayer solid electrolytic capacitor having a three-terminal structure. FIG. 2 is a perspective view, and FIG. 3 is an enlarged sectional view taken along line YY ′ of FIG. In each single plate capacitor element C1 to C4 of FIG. 2, P1 to P4 are anode portions, N1 to N4 are cathode portions, K is a carbon layer, and M is a masking layer for insulating between the cathode portion and the anode portion. Indicates. In FIG. 3, 1 is a valve action metal plate, 2 is an oxide film layer, 3 is a solid electrolyte layer, 4 is a carbon layer, and 5 is a silver layer for extracting a cathode potential. Reference numeral 6 denotes a conductive paste for joining the cathode portions and ensuring electrical conduction, and these are formed on the single plate capacitor elements C1 to C4 in the process of manufacturing the single plate capacitor elements. . Reference numeral 7 denotes a conductive coating layer formed on the side surface of the laminated body after the single plate capacitor elements C1 to C4 are laminated, and is formed by spraying a conductive paste.

しかしながら本発明者の実験によれば、導電性被覆層7を形成するために、積層体の各陰極部N1〜N4側の側面に導電性ペーストを吹き付けた際、各陰極部N1〜N4間に導電性ペーストが浸透する前に積層体の側面から流れて落ちてしまうため、各陰極部N1〜N4間に導電性ペーストが入り込む量が不充分となり、各陰極部N1〜N4間の導電性の改善が充分達成できず、有効なESRの低減が期待できないことが判明した。即ち図3でも判るように、導電性ペーストは各陰極部N1〜N4間の隙間gにできるだけ多く入り込む方が望ましいが、7’のようにごく一部しか入り込んでいないことが多い。そのために工数をかけて導電性被覆層7を追加形成しても、上記のように期待した効果が得られないわけである。   However, according to the experiments by the present inventors, when a conductive paste is sprayed on the side surfaces of the laminated body on the cathode portions N1 to N4 side in order to form the conductive coating layer 7, between the cathode portions N1 to N4. Before the conductive paste permeates, it flows from the side surface of the laminate and falls, so that the amount of the conductive paste entering between the cathode portions N1 to N4 becomes insufficient, and the conductive property between the cathode portions N1 to N4 is not sufficient. It has been found that the improvement cannot be sufficiently achieved and an effective ESR reduction cannot be expected. That is, as can be seen from FIG. 3, it is desirable that the conductive paste enters as much as possible into the gap g between the respective cathode portions N1 to N4, but in most cases, only a small portion enters 7 '. Therefore, even if the conductive coating layer 7 is additionally formed by spending time and effort, the expected effect as described above cannot be obtained.

本発明者はさらに実験を進めた結果、図4および図5に示すように、各単板コンデンサ素子C1〜C4の陰極部N1〜N4の横幅x1〜x4を、上に積層される素子ほど狭くなるように構成し、積層体の側面を階段状に形成し、導電性ペーストを、8’のように各陰極部N1〜N4間の隙間gに多く入り込ませることでESRの低減を実現することが出来た(例えば、特許文献3参照)。しかし、この方法では単板コンデンサ素子の陰極部の面積が減少してしまうためコンデンサの静電容量が減少してしまうという問題があった。   As a result of further experiments, the present inventor has found that the lateral widths x1 to x4 of the cathode portions N1 to N4 of the single-plate capacitor elements C1 to C4 are narrower as the elements stacked on top thereof, as shown in FIGS. The side surface of the laminated body is formed in a stepped shape, and the conductive paste is made to enter a large amount into the gap g between the cathode portions N1 to N4 as in 8 'to realize ESR reduction. (For example, refer to Patent Document 3). However, this method has a problem in that the capacitance of the capacitor is reduced because the area of the cathode portion of the single-plate capacitor element is reduced.

特開2004−281515号公報JP 2004-281515 A 特開2007−116064号公報JP 2007-1116064 A 特願2008−017731Japanese Patent Application No. 2008-017731

本発明は上記の事情をもとに考え出されたものであって、積層型固体電解コンデンサにおいて、積層された単板コンデンサ素子の陰極部間の導電性をより向上させるとともに、静電容量を大幅に下げることなく、ESRの更なる低減を可能とする新規な構造の積層型固体電解コンデンサを提供することをその主たる課題とする。   The present invention has been conceived based on the above circumstances, and in a multilayer solid electrolytic capacitor, the conductivity between the cathode portions of the laminated single plate capacitor elements is further improved, and the capacitance is reduced. The main problem is to provide a multilayer solid electrolytic capacitor having a novel structure that enables further reduction of ESR without significant reduction.

上記の課題を解決するために本発明では次の技術的手段を採用している。   In order to solve the above problems, the present invention employs the following technical means.

本発明に係る積層型固体電解コンデンサは、一方側に陽極部、他方側に陰極部が形成された単板コンデンサ素子を複数枚積層してなる積層体を備えた積層型固体電解コンデンサであって、前記単板コンデンサ素子の前記陰極部側の側面に形成された積層方向に貫通する凹部と、前記凹部の大きさを連続して積層される2枚以上の前記単板コンデンサ素子で互いに異ならしめることにより、前記積層体の側面の一部に形成された段差部と、前記段差部および前記陰極部間に形成された導電性被覆層と、を含むこと特徴とする。   A multilayer solid electrolytic capacitor according to the present invention is a multilayer solid electrolytic capacitor provided with a laminate formed by laminating a plurality of single plate capacitor elements each having an anode portion on one side and a cathode portion on the other side. The concave portion formed on the side surface on the cathode portion side of the single plate capacitor element and penetrating in the stacking direction is different from the two or more single plate capacitor elements stacked in succession. By this, it is characterized by including the level | step-difference part formed in a part of side surface of the said laminated body, and the electroconductive coating layer formed between the said level | step-difference part and the said cathode part.

この構成によれば、本発明に係る積層型固体電解コンデンサは、凹部の大きさを互いに異ならしめることにより積層体の側面の一部に段差部を形成しているため、陰極部の面積の減少を抑えるとともに、導電性被覆層を形成するための導電性ペーストの無駄な流れ落ちを阻止し、積層された単板コンデンサ素子の陰極部間へ導電性ペーストを入り込みやすくする。このため、陰極部間の接続抵抗が低減し、静電容量を下げることなく、低ESR化が可能になる。   According to this configuration, in the multilayer solid electrolytic capacitor according to the present invention, the step portion is formed on a part of the side surface of the multilayer body by making the sizes of the recesses different from each other, and thus the area of the cathode portion is reduced. In addition, the conductive paste for forming the conductive coating layer is prevented from flowing down and the conductive paste can easily enter between the cathode portions of the laminated single-plate capacitor elements. For this reason, the connection resistance between the cathode portions is reduced, and the ESR can be reduced without lowering the capacitance.

さらに本発明は、上記構成において、前記単板コンデンサ素子は、前記陽極部の突出方向が交互に反対になるように複数枚積層されており、前記凹部は、前記陰極部側の側面のうち前記陽極部の突出方向と平行な側面に形成されていることを特徴とする。   Furthermore, in the above-described configuration, the present invention provides the single plate capacitor element, wherein a plurality of the single plate capacitor elements are stacked so that the protruding directions of the anode portions are alternately opposite, and the recess is the side surface on the cathode portion side. It is formed on a side surface parallel to the protruding direction of the anode part.

この構成によれば、導電性被覆層を形成するのが困難な3端子構造の積層型固体電解コンデンサであっても、容易に追加の導電性被覆層を形成することができる。このため、陰極部間の接続抵抗が低減し、静電容量を下げることなく、低ESR化が可能になる。   According to this configuration, an additional conductive coating layer can be easily formed even in a multilayer solid electrolytic capacitor having a three-terminal structure in which it is difficult to form a conductive coating layer. For this reason, the connection resistance between the cathode portions is reduced, and the ESR can be reduced without lowering the capacitance.

また本発明に係る積層型固体電解コンデンサは、両端に陽極部、前記両端の陽極部の間に陰極部が形成された単板コンデンサ素子を複数枚積層してなる積層体を備えた積層型固体電解コンデンサであって、前記積層体の両端から突出した前記陽極部に電気的に各々接続された一方側陽極端子と他方側陽極端子と、前記一方側陽極端子と前記他方側陽極端子とを電気的に接続する連結部と、前記複数のコンデンサ素子の陰極部からなる陰極体に電気的に接続され、前記連結部と離間して配置された陰極端子と、前記連結部と前記陰極端子との隙間を覆うように、前記連結部および前記陰極端子の前記積層体側の面上に跨って配置された絶縁体とを含み、さらに前記単板コンデンサ素子の前記陰極部側の側面に形成された積層方向に貫通する凹部と、前記凹部の大きさを、連続して積層される2枚以上の前記単板コンデンサ素子で互いに異ならしめることにより、前記積層体の側面の一部に形成された段差部と、前記段差部および前記陰極部間に形成された導電性被覆層と、を含むことを特徴とする。   A multilayer solid electrolytic capacitor according to the present invention includes a multilayer solid body including a multilayer body in which a plurality of single plate capacitor elements each having an anode portion at both ends and a cathode portion formed between the anode portions at both ends are stacked. An electrolytic capacitor, wherein one side anode terminal and the other side anode terminal electrically connected to the anode part protruding from both ends of the laminated body, and the one side anode terminal and the other side anode terminal are electrically connected A connecting portion that is electrically connected, a cathode terminal that is electrically connected to a cathode body composed of the cathode portions of the plurality of capacitor elements, and is spaced apart from the connecting portion, and the connecting portion and the cathode terminal A laminate formed on a side surface of the single plate capacitor element on the cathode portion side, further including an insulator disposed over the layered body side surface of the connecting portion and the cathode terminal so as to cover the gap. Recessed through the direction A step portion formed on a part of a side surface of the multilayer body by making the sizes of the concave portions different from each other in two or more single-plate capacitor elements that are successively stacked; and And a conductive coating layer formed between the cathode portions.

さらに本発明は、上記構成において、前記凹部は、前記単板コンデンサ素子を積層した際に、積層方向に延びる同一直線上に位置するように形成されており、下層の前記単板コンデンサ素子から上層の前記単板コンデンサ素子に向かって段階的に大きくなっていることを特徴とする。   Furthermore, the present invention is such that, in the above configuration, the concave portion is formed so as to be positioned on the same straight line extending in the stacking direction when the single plate capacitor elements are stacked, and the upper layer is separated from the lower single plate capacitor element. The single plate capacitor element is gradually increased toward the single plate capacitor element.

この構成によれば、導電性ペーストの吹き付け方向等を大きく変える必要がなく、容易に導電性被覆層を形成することが可能になる。   According to this configuration, the conductive coating layer can be easily formed without greatly changing the spraying direction of the conductive paste and the like.

さらに本発明は、上記構成において、前記凹部は、前記単板コンデンサ素子の前記陰極部側の側面の互いに対向する位置に少なくとも一組形成されていることを特徴とする。   Furthermore, the present invention is characterized in that, in the above-mentioned configuration, at least one set of the concave portions is formed at positions facing each other on the side surface on the cathode portion side of the single plate capacitor element.

この構成によれば、単板コンデンサ素子の陰極部間へ導電性ペーストが入り込みやすくなり、単板コンデンサ素子の陰極部間の導電性をより向上させることが可能になる。   According to this configuration, the conductive paste can easily enter between the cathode portions of the single plate capacitor element, and the conductivity between the cathode portions of the single plate capacitor element can be further improved.

さらに本発明は、上記構成を平面視した場合において、前記凹部の面積の割合は、前記単板コンデンサ素子の面積に対し、0.6〜11.0%の範囲内となるように形成されていることを特徴とする。   Furthermore, in the present invention, when the above configuration is viewed in plan, the ratio of the area of the recess is formed to be in a range of 0.6 to 11.0% with respect to the area of the single plate capacitor element. It is characterized by being.

この構成によれば、単板コンデンサ素子の面積に対する凹部の面積の割合の下限が0.6%であるため、凹部内に導電性ペーストを吐出・塗布しやすくなり、陰極部間もしくは陰極部・陰極端子間に導電性ペーストが入り込みやすくなるため、低ESR化が可能になる。一方、この割合の上限が11.0%であるため陰極部の面積の減少にともなう静電容量の減少をより確実に抑えることが可能になる。   According to this configuration, since the lower limit of the ratio of the area of the recess to the area of the single-plate capacitor element is 0.6%, it becomes easy to discharge and apply the conductive paste in the recess. Since the conductive paste easily enters between the cathode terminals, the ESR can be reduced. On the other hand, since the upper limit of this ratio is 11.0%, it is possible to more surely suppress the decrease in capacitance due to the decrease in the area of the cathode portion.

本発明の積層型固体電解コンデンサによれば、積層された単板コンデンサ素子の陰極部間へ導電性ペーストが入り込みやすくなるため、陰極部間の接続抵抗が低減し、静電容量を下げることなく、低ESR化を実現することができる。   According to the multilayer solid electrolytic capacitor of the present invention, since the conductive paste easily enters between the cathode portions of the laminated single plate capacitor elements, the connection resistance between the cathode portions is reduced, and the capacitance is not lowered. , Low ESR can be realized.

従来の積層型固体電解コンデンサを示す斜視図である。It is a perspective view which shows the conventional multilayer solid electrolytic capacitor. 従来(比較例)の3端子構造の積層型固体電解コンデンサの積層体を示す斜視図である。It is a perspective view which shows the laminated body of the lamination type solid electrolytic capacitor of the conventional 3 terminal structure (comparative example). 図2のY−Y'線における拡大断面図である。It is an expanded sectional view in the YY 'line of FIG. 従来(従来例)の3端子構造の積層型固体電解コンデンサの積層体を示す斜視図である。It is a perspective view which shows the laminated body of the multilayer solid electrolytic capacitor of the conventional (terminal example) 3 terminal structure. 図4のY−Y'線における拡大断面図である。It is an expanded sectional view in the YY 'line of FIG. 本発明の実施例に係る単板コンデンサ素子を示す平面図である。It is a top view which shows the single plate capacitor | condenser element which concerns on the Example of this invention. 本発明の実施例に係る積層体を示す斜視図である。It is a perspective view which shows the laminated body which concerns on the Example of this invention. 図7のY−Y’線における拡大断面図である。It is an expanded sectional view in the Y-Y 'line of FIG. 本発明の実施例に係る積層型固体電解コンデンサを示す斜視図である。1 is a perspective view showing a multilayer solid electrolytic capacitor according to an embodiment of the present invention. 本発明の変形例1に係る積層型固体電解コンデンサを示す斜視図である。It is a perspective view which shows the multilayer solid electrolytic capacitor which concerns on the modification 1 of this invention. 本発明の変形例2に係る積層型固体電解コンデンサを示す斜視図である。It is a perspective view which shows the multilayer solid electrolytic capacitor which concerns on the modification 2 of this invention. 本発明の変形例3に係る積層型固体電解コンデンサを示す斜視図である。It is a perspective view which shows the multilayer solid electrolytic capacitor which concerns on the modification 3 of this invention. 本発明の変形例4に係る積層型固体電解コンデンサを示す拡大断面図である。It is an expanded sectional view which shows the multilayer solid electrolytic capacitor which concerns on the modification 4 of this invention. 本発明の変形例5に係る積層型固体電解コンデンサの端子形状を示す平面図である。It is a top view which shows the terminal shape of the multilayer solid electrolytic capacitor which concerns on the modification 5 of this invention.

以下、本発明の好ましい実施形態について、図面を参照して説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

[実施例]
図6〜図9は、本発明に係る3端子構造の4枚積層型固体電解コンデンサの構造説明図で、図6は単板コンデンサ素子を示す平面図、図7は積層体だけの部分を示す斜視図、図8は図7のY−Y’線における断面図で陰極部構造の詳細を説明するため拡大表示してある。図9はこの積層体の各電極をそれぞれの端子板(リードフレーム)に接合し外装樹脂で外装した積層型固体電解コンデンサを示す斜視図である。図6〜図9において、各単板コンデンサ素子の被膜層の性質は従来例の積層型固体電解コンデンサと変わらないので、各層は同一の符号で説明する。
[Example]
FIGS. 6 to 9 are explanatory views of a structure of a four-layered solid electrolytic capacitor having a three-terminal structure according to the present invention. FIG. 6 is a plan view showing a single plate capacitor element, and FIG. FIG. 8 is a perspective view, and FIG. 8 is a sectional view taken along line YY ′ of FIG. FIG. 9 is a perspective view showing a multilayer solid electrolytic capacitor in which each electrode of the multilayer body is bonded to a terminal plate (lead frame) and sheathed with an exterior resin. 6 to 9, the properties of the coating layer of each single-plate capacitor element are the same as those of the conventional multilayer solid electrolytic capacitor, so that each layer will be described with the same reference numeral.

図6に示すように、本発明に係る単板コンデンサ素子Cは、エッチング処理を施した弁作用金属(本実施例ではアルミニウム箔)の一方側に設けられた陽極部Pと、他方側に設けられた陰極部Nと、カーボン層Kと、陰極部N・陽極部P間を絶縁するためのマスキング層Mと、陰極部N側の側面のうち陽極部Pの突出方向と平行な側面に互いに対向するように設けられた凹部10とを有している。なお、凹部10は、積層方向に対して貫通して形成されており、各単板コンデンサ素子C1〜C4によって大きさが異なる。   As shown in FIG. 6, a single plate capacitor element C according to the present invention is provided with an anode portion P provided on one side of a valve metal (an aluminum foil in this embodiment) subjected to an etching process, and on the other side. The cathode part N, the carbon layer K, the masking layer M for insulating the cathode part N and the anode part P, and the side face parallel to the protruding direction of the anode part P among the side faces on the cathode part N side It has the recessed part 10 provided so that it might oppose. In addition, the recessed part 10 is penetrated with respect to the lamination direction, and a magnitude | size changes with each single plate capacitor | condenser elements C1-C4.

そして、図7に示すように、上記単板コンデンサ素子C1〜C4を、陽極部P1〜P4の突出方向が交互に反対になるように積層し、かつ各単板コンデンサ素子C1〜C4に形成された凹部10が積層方向に延びる同一直線上に位置するように積層して積層体を作製する。また本実施例では、凹部10の大きさが段階的に変化するように単板コンデンサ素子C1〜C4を積層している。具体的には、最下層に凹部10の大きさが一番小さい単板コンデンサ素子C1を、その上に少し大きいサイズの凹部10が形成された単板コンデンサ素子C2を、次いで更に大きいサイズの凹部10が形成された単板コンデンサ素子C3を、最後に最も大きいサイズの凹部10が形成された単板コンデンサ素子C4を重ねて積層している。   Then, as shown in FIG. 7, the single plate capacitor elements C1 to C4 are laminated so that the protruding directions of the anode portions P1 to P4 are alternately opposite to each other, and are formed on the single plate capacitor elements C1 to C4. The stacked body is manufactured by stacking so that the recessed portions 10 are positioned on the same straight line extending in the stacking direction. Further, in this embodiment, the single plate capacitor elements C1 to C4 are stacked so that the size of the recess 10 changes stepwise. Specifically, the single plate capacitor element C1 having the smallest concave portion 10 in the lowermost layer, the single plate capacitor element C2 having the concave portion 10 having a slightly larger size formed thereon, and then the larger size concave portion. The single-plate capacitor element C3 having 10 formed thereon is finally laminated with the single-plate capacitor element C4 having the concave portion 10 having the largest size.

これを図8に示す拡大断面図に基いて説明すると、各単板コンデンサ素子C1〜C4は、アルミニウム箔1と、アルミニウム箔1の表面に形成された酸化皮膜層2と、酸化皮膜層2の表面に形成された固体電解質層3、カーボン層4、銀層5からなる陰極部Nとで構成され、各陰極部N1〜N4間は導電性ペースト6を介して接合されている。また、各単板コンデンサ素子C1〜C4の各陰極部N1〜N4側の側面に形成された凹部10の大きさは、上記のように最下層の単板コンデンサ素子C1から最上層の単板コンデンサ素子C4に向かって段階的に大きくなっているため、凹部10が形成されている部分の各単板コンデンサ素子C1〜C4の幅w1〜w4は最下層の単板コンデンサ素子C1から最上層の単板コンデンサ素子C4に向かって段階的に狭くなっている。   Explaining this on the basis of the enlarged sectional view shown in FIG. 8, each single plate capacitor element C <b> 1 to C <b> 4 includes an aluminum foil 1, an oxide film layer 2 formed on the surface of the aluminum foil 1, and an oxide film layer 2. The cathode part N which consists of the solid electrolyte layer 3, the carbon layer 4, and the silver layer 5 formed in the surface is comprised, and each cathode part N1-N4 is joined via the electrically conductive paste 6. FIG. In addition, the size of the recess 10 formed on the side surface of each single plate capacitor element C1 to C4 on the cathode part N1 to N4 side is as described above from the lowermost single plate capacitor element C1 to the uppermost single plate capacitor. Since the width is gradually increased toward the element C4, the widths w1 to w4 of each of the single-plate capacitor elements C1 to C4 in the portion where the recess 10 is formed are changed from the single-layer capacitor element C1 of the lowermost layer to the single-layer capacitor element C1 of the uppermost layer. It narrows stepwise toward the plate capacitor element C4.

本実施例では、各単板コンデンサ素子C1〜C4は、長さl=4.5mm、幅x=4.5mm、厚さd=0.2mmとし、凹部10の形状をそれぞれ正方形とした。この凹部10の一辺の長さDは、最下層の単板コンデンサ素子C1から順にD1=0.25mm、D2=0.50mm、D3=0.75mm、D4=1.00mmとなっている。また、凹部10が形成されている部分の各単板コンデンサ素子C1〜C4の幅wは、w1=4.0mm、w2=3.5mm、w3=3.0mm、w4=2.5mmとなっている。   In this embodiment, each single-plate capacitor element C1 to C4 has a length l = 4.5 mm, a width x = 4.5 mm, a thickness d = 0.2 mm, and the recess 10 has a square shape. The length D of one side of the recess 10 is D1 = 0.25 mm, D2 = 0.50 mm, D3 = 0.75 mm, and D4 = 1.00 mm in order from the lowermost single-plate capacitor element C1. In addition, the width w of each single-plate capacitor element C1 to C4 in the portion where the recess 10 is formed is w1 = 4.0 mm, w2 = 3.5 mm, w3 = 3.0 mm, w4 = 2.5 mm. Yes.

このため、単板コンデンサ素子C1〜C4を中心ラインAに対して対称に積層することにより、各単板コンデンサ素子C1〜C4の陰極部N1〜N4側の側面に対応する積層体の側面の一部分には階段状の段差部Sが生じる。   For this reason, by laminating the single plate capacitor elements C1 to C4 symmetrically with respect to the center line A, a part of the side surface of the multilayer body corresponding to the side surface on the cathode portion N1 to N4 side of each single plate capacitor element C1 to C4. In this case, a stepped step S is formed.

各単板コンデンサ素子C1〜C4の凹部10内および段差部S上には追加の導電性被覆層9が形成されている。導電性被覆層9は、エアーディスペンサを接続したシリンジで矢印方向から銀の導電性ペーストを吐出・塗布し硬化させることによりに形成される。   An additional conductive coating layer 9 is formed in the recess 10 and on the stepped portion S of each single plate capacitor element C1 to C4. The conductive coating layer 9 is formed by discharging, applying and curing a silver conductive paste from the direction of the arrow with a syringe connected to an air dispenser.

この場合、積層体の側面に段差部Sが設けられていると、吐出された銀の導電性ペーストはこの段差部Sで一時的に滞留し、その間に9’に示すように各陰極部N1〜N4間の隙間部に深く入り込むことになる。従って、この隙間部の導電性が大幅に改善される。また、積層体側面自体へのペーストの付着性も、従来の面一の側面の場合のように流れ落ちてしまう恐れがなくなるのでより向上する。   In this case, if the stepped portion S is provided on the side surface of the laminate, the discharged silver conductive paste temporarily stays at the stepped portion S, and each cathode portion N1 as indicated by 9 'therebetween. It penetrates deeply into the gap between N4. Therefore, the conductivity of the gap is greatly improved. In addition, the adhesiveness of the paste to the side surface of the laminate itself is further improved because there is no risk of flowing down as in the case of the conventional flush side surface.

また、通常この種の多端子構造の積層体では、陰極部の後端面(陽極部と反対側の端面)には上下の陽極部が突出しているので、この後端面に直接導電性被覆層を形成するのは困難であるが、本発明に係る積層型固体電解コンデンサでは、陰極部N1〜N4間の隙間に導電性ペーストが充分深く浸透するので、これが結果的に陰極部N1〜N4の後端面まで回り込むことになり、この部分にも従来の方式より多くの導電性被覆層9が形成される。以上の相乗効果によって、本発明に係る積層型固体電解コンデンサではESRの大幅な低減が達成できるのである。   Also, in this type of multi-terminal laminate, the upper and lower anode parts protrude from the rear end face (the end face opposite to the anode part) of the cathode part, so that a conductive coating layer is directly applied to this rear end face. Although it is difficult to form, in the multilayer solid electrolytic capacitor according to the present invention, the conductive paste penetrates sufficiently deeply into the gaps between the cathode portions N1 to N4. As a result, this results after the cathode portions N1 to N4. As a result, the conductive coating layer 9 is formed more in this portion than in the conventional method. With the above synergistic effect, the multilayer solid electrolytic capacitor according to the present invention can achieve a significant reduction in ESR.

図9に示すように、本発明に係る積層型固体電解コンデンサは、積層体の両側の陽極部P1、P3およびP2、P4に、それぞれ左右の陽極端子(陽極電位取り出し用端子板)PL、PL’を抵抗溶接等によって電気的に接続し、最下層の陰極部N1に導電性ペーストを介して陰極端子(陰極電位取り出し用端子板)NLを接続した後、積層体全体を外装樹脂(エポキシ樹脂)11で外装してなる。また、本発明に係る積層型固体電解コンデンサは、定格電圧2.5V、定格容量220μFである。   As shown in FIG. 9, the multilayer solid electrolytic capacitor according to the present invention has left and right anode terminals (anode potential extraction terminal plates) PL, PL on anode portions P1, P3 and P2, P4 on both sides of the laminate. 'Is electrically connected by resistance welding or the like, and the cathode terminal (cathode potential extraction terminal plate) NL is connected to the lowermost cathode portion N1 via a conductive paste. ) 11 and exterior. The multilayer solid electrolytic capacitor according to the present invention has a rated voltage of 2.5 V and a rated capacity of 220 μF.

[従来例]
従来例は図4、図5に示した3端子構造の4枚積層型固体電解コンデンサであって、各単板コンデンサ素子C1〜C4は、本実施例と同様に厚さd=0.2mm、長さl=4.5mmとした。単板コンデンサ素子C1〜C4の幅xは、最下層の単板コンデンサ素子C1から順に、x1=4.5mm、x2=4.0mm、x3=3.5mm、x4=3.0mmとした。そして、各単板コンデンサ素子C1〜C4の積層体の側面に本実施例と同様に導電性の銀ペーストを吐出・塗布して導電性被覆層8を形成し、各陽極部P1〜P4、および各陰極部N1〜N4をそれぞれの端子に接続した後、全体を本実施例と同一の外装樹脂11で外装した完成品である。
[Conventional example]
The conventional example is a four-layered solid electrolytic capacitor having a three-terminal structure shown in FIGS. 4 and 5, and each single-plate capacitor element C1 to C4 has a thickness d = 0.2 mm as in this embodiment. The length l = 4.5 mm. The width x of the single plate capacitor elements C1 to C4 was set to x1 = 4.5 mm, x2 = 4.0 mm, x3 = 3.5 mm, and x4 = 3.0 mm in order from the single-plate capacitor element C1 in the lowermost layer. Then, conductive silver paste is discharged and applied to the side surfaces of the laminated body of the single plate capacitor elements C1 to C4 in the same manner as in the present embodiment to form the conductive coating layer 8, and each of the anode portions P1 to P4, and After connecting each cathode part N1-N4 to each terminal, it is the finished product which was entirely packaged with the same exterior resin 11 as in this embodiment.

[比較例]
比較例は図2、図3に示した3端子構造の4枚積層型固体電解コンデンサであって、各単板コンデンサ素子C1〜C4は、本実施例と同様に厚さd=0.2mm、長さl=4.5mmとし、幅xは全てx=4.5mmとした。積層体側面には追加の導電性被覆層を形成することなく、各陽極部P1〜P4、および各陰極部N1〜N4をそれぞれの端子に接続した後、全体を実施例と同一の外装樹脂11で外装した完成品である。
[Comparative example]
The comparative example is a four-layered solid electrolytic capacitor having a three-terminal structure shown in FIGS. 2 and 3, and each single-plate capacitor element C1 to C4 has a thickness d = 0.2 mm, as in this example. The length l was set to 4.5 mm, and the widths x were all set to x = 4.5 mm. After the anode parts P1 to P4 and the cathode parts N1 to N4 are connected to the respective terminals without forming an additional conductive coating layer on the side surface of the laminate, the entire exterior resin 11 is the same as that of the example. It is a finished product that is exteriorized with.

下記の表1は、上記実施例・従来例・比較例の積層型固体電解コンデンサをそれぞれ100個作製し、これらについてそのESR・静電容量の性能を実測し、各データの平均値を比較して示したものである。   Table 1 below shows 100 stacked solid electrolytic capacitors of the above-described examples, conventional examples, and comparative examples, and the ESR / capacitance performance of these capacitors was measured, and the average values of the respective data were compared. It is shown.

Figure 0005181154
Figure 0005181154

表1から判るように、従来例の積層型固体電解コンデンサは、同一定格の比較例の積層型固体電解コンデンサと比べるとESRを大幅に改善できるが静電容量が大きく減少してしまう。しかし、実施例の積層型固体電解コンデンサは、静電容量をほとんど減少させることなくESRを大幅に改善することができる。このESRの低減は、積層体の両側面の一部分に階段状の段差部Sを形成したことにより、導電性被覆層9を形成する際に、導電性ペーストの無駄な流れ落ちが阻止され、積層体の側面に導電性被覆層9が効果的に形成できるとともに、各陰極部N1〜N4間へ導電性ペーストが入り込みやすくなるため、陰極部N1〜N4相互間の接続抵抗が低減した効果によるものである。   As can be seen from Table 1, the multilayer solid electrolytic capacitor of the conventional example can greatly improve the ESR, but the capacitance is greatly reduced as compared with the multilayer solid electrolytic capacitor of the comparative example having the same rating. However, the multilayer solid electrolytic capacitor of the example can greatly improve the ESR without substantially reducing the capacitance. This reduction in ESR is achieved by forming the stepped step portion S on a part of both side surfaces of the laminate, thereby preventing the wasteful flow of the conductive paste when the conductive coating layer 9 is formed. This is because the conductive coating layer 9 can be effectively formed on the side surfaces and the conductive paste easily enters between the cathode portions N1 to N4, thereby reducing the connection resistance between the cathode portions N1 to N4. is there.

また、静電容量の減少を抑えられたのは積層体の側面全てを階段状にするのではなく、導電性被覆層9を形成する一部分のみに段差部Sを形成したことにより、単板コンデンサ素子C1〜C4の陰極部N1〜N4の面積の減少を抑制できたことによるものである。   In addition, the reduction in the electrostatic capacity is suppressed by forming the stepped portion S only in a part where the conductive coating layer 9 is formed, instead of making all the side surfaces of the laminated body stepped. This is because the reduction in the area of the cathode portions N1 to N4 of the elements C1 to C4 can be suppressed.

下記の表2は、上記実施例および従来例の単板コンデンサ素子C1〜C4の平面視における面積の比較と、上記実施例の単板コンデンサ素子C1〜C4の平面視における面積に対する凹部10の平面視における面積の割合を示したものである。   Table 2 below shows a comparison of the areas in the plan view of the single plate capacitor elements C1 to C4 of the above example and the conventional example, and the plane of the recess 10 with respect to the area in the plan view of the single plate capacitor elements C1 to C4 of the above example. It shows the ratio of area in view.

Figure 0005181154
Figure 0005181154

表2から判るように、従来例の積層型固体電解コンデンサは、実施例の積層型固体電解コンデンサと比べると、単板コンデンサ素子の面積が下層(C1)から上層(C4)に向かって大きく減少しているが、実施例の積層型固体電解コンデンサは、単板コンデンサ素子の面積がほとんど減少していない。これにより、実施例の積層型固体電解コンデンサは、静電容量の減少を抑えることが可能となる。また、実施例の積層型固体電解コンデンサを平面視した場合において、単板コンデンサ素子の面積に対する凹部の面積の割合は、最下層の単板コンデンサ素子C1で最も低く0.6%となり、最上層の単板コンデンサ素子C4で最も高く11.0%となる。この割合が低いと凹部10内に導電性ペーストを吐出・塗布して導電性被覆層8を形成するのが困難になり、陰極部N1〜N4間もしくは陰極部N1・陰極端子NL間に導電性ペーストが入り込みにくくなるため、ESRが高くなる。一方、この割合が高いと静電容量が減少してしまう。しかし、本実施例では0.6〜11.0%の間で凹部10を形成しているため、より確実に低ESR化と静電容量の確保との両立を図ることが可能となる。   As can be seen from Table 2, in the conventional multilayer solid electrolytic capacitor, the area of the single plate capacitor element is greatly reduced from the lower layer (C1) to the upper layer (C4) as compared with the multilayer solid electrolytic capacitor of the example. However, in the multilayer solid electrolytic capacitor of the example, the area of the single plate capacitor element is hardly reduced. Thereby, the multilayer solid electrolytic capacitor of the embodiment can suppress a decrease in capacitance. Further, when the multilayer solid electrolytic capacitor of the example is viewed in plan, the ratio of the area of the recess to the area of the single plate capacitor element is 0.6% which is the lowest in the single plate capacitor element C1 of the lowermost layer, and the uppermost layer In the single plate capacitor element C4, the highest is 11.0%. When this ratio is low, it becomes difficult to discharge and apply the conductive paste into the recess 10 to form the conductive coating layer 8, and the conductive portion between the cathode portions N1 to N4 or between the cathode portion N1 and the cathode terminal NL. Since the paste becomes difficult to enter, the ESR becomes high. On the other hand, if this ratio is high, the capacitance decreases. However, in this embodiment, since the concave portion 10 is formed between 0.6 and 11.0%, it is possible to more reliably achieve both low ESR and securing of capacitance.

以上、本発明の好ましい実施例について説明してきたが、本発明はこれらの構成に限定されるものではない。   Although the preferred embodiments of the present invention have been described above, the present invention is not limited to these configurations.

[変形例1]
例えば、上記実施例では凹部10の形状は正方形であるが、これに限るものではなく、半円・三角など他の形状でも良く、積層した際に段差部Sを形成することができる形状であれば、同様の効果が得られる。図10に、各単板コンデンサ素子C1〜C4に半円形状の凹部12が形成されている積層型固体電解コンデンサの斜視図を示す。半円形状の凹部12が形成されている点以外は、本実施例に係る積層型固体電解コンデンサと同じである。半円形状の凹部12の大きさは実施例と同様に、最下層の単板コンデンサ素子C1から最上層の単板コンデンサ素子C4に向かって段階的に大きくなっており、これにより段差部が形成されている。
[Modification 1]
For example, in the above embodiment, the shape of the concave portion 10 is a square. However, the shape is not limited to this, and other shapes such as a semicircle and a triangle may be used, and the step portion S may be formed when stacked. The same effect can be obtained. FIG. 10 is a perspective view of a multilayer solid electrolytic capacitor in which the semicircular concave portions 12 are formed in the single plate capacitor elements C1 to C4. Except that the semicircular recess 12 is formed, it is the same as the multilayer solid electrolytic capacitor according to the present embodiment. Similar to the embodiment, the size of the semicircular recess 12 is increased stepwise from the lowermost single-plate capacitor element C1 toward the uppermost single-plate capacitor element C4, thereby forming a stepped portion. Has been.

[変形例2]
上記実施例では凹部10が単板コンデンサ素子の両側面に存在するが片側でもよく、凹部の位置や個数なども実施例に限るものではなく、任意に設定することができる。図11に、各単板コンデンサ素子C1〜C4の両側面に互いに対向する凹部13が複数形成されている積層型固体電解コンデンサの斜視図を示す。この各単板コンデンサ素子C1〜C4にはそれぞれ計6個の凹部13が形成されおり、一つ一つの凹部13の大きさは、実施例の凹部10より小さくなっている。また、凹部13の大きさは、いずれも最下層の単板コンデンサ素子C1から最上層の単板コンデンサ素子C4に向かって段階的に大きくなっており、これにより段差部が形成されている。
[Modification 2]
In the above embodiment, the recesses 10 are present on both side surfaces of the single-plate capacitor element, but they may be provided on one side, and the position and number of the recesses are not limited to those in the embodiment and can be arbitrarily set. FIG. 11 is a perspective view of a multilayer solid electrolytic capacitor in which a plurality of concave portions 13 facing each other are formed on both side surfaces of each single plate capacitor element C1 to C4. Each of the single plate capacitor elements C1 to C4 is formed with a total of six recesses 13, and the size of each recess 13 is smaller than that of the recess 10 of the embodiment. In addition, the size of the concave portion 13 increases stepwise from the lowermost single-plate capacitor element C1 toward the uppermost single-plate capacitor element C4, thereby forming a stepped portion.

[変形例3]
上記実施例では3端子構造の積層型固体電解コンデンサを作製したが、2端子構造の積層型固体電解コンデンサでも同様の効果が得られる。図12に、各単板コンデンサ素子の両側面に互いに対向する凹部14が形成されている2端子構造の積層型固体電解コンデンサの斜視図を示す。凹部14の大きさは、いずれも最下層の単板コンデンサ素子から最上層の単板コンデンサ素子に向かって段階的に大きくなっており、これにより段差部が形成されている。また、2端子構造の積層型固体電解コンデンサ場合は、陽極部Pと対向する側の端面に凹部を形成してもよいし、単板コンデンサの陰極部N側の隅部に凹部を形成してもよい。
[Modification 3]
In the above-described embodiment, a three-terminal stacked solid electrolytic capacitor was produced, but the same effect can be obtained with a two-terminal stacked solid electrolytic capacitor. FIG. 12 is a perspective view of a multilayer solid electrolytic capacitor having a two-terminal structure in which concave portions 14 facing each other are formed on both side surfaces of each single-plate capacitor element. The size of each of the recesses 14 increases stepwise from the lowermost single-plate capacitor element toward the uppermost single-plate capacitor element, thereby forming a stepped portion. In the case of a multilayer solid electrolytic capacitor having a two-terminal structure, a concave portion may be formed on the end surface facing the anode portion P, or a concave portion may be formed in a corner portion on the cathode portion N side of the single plate capacitor. Also good.

[変形例4]
上記実施例では凹部10の大きさは、最下層の単板コンデンサ素子C1から最上層の単板コンデンサ素子C4に向かって段階的に大きくしたが、これに限るものではなく、例えば凹部の大きさを大小2種類として交互に積層してもよい。図13に、凹部の大きさが大小交互になるように積層されている積層型固体電解コンデンサの断面図を示す。各単板コンデンサ素子C1〜C4の各陰極部N1〜N4側の側面に形成された各凹部の大きさは、単板コンデンサ素子C1、C3では小さく、単板コンデンサ素子C2、C4では大きくなっている。このため、単板コンデンサ素子C1〜C4を積層することにより、積層体の側面の一部分には階段上の段差部Sが生じる。階段状に形成された段差部Sには、エアーディスペンサを接続したシリンジで銀の導電性ペーストを吐出・塗布し硬化させることにより追加の導電性被覆層9が形成されている。この場合も、実施例と同様に、吐出された銀の導電性ペーストはこの段差部Sで一時的に滞留し、その間に9’に示すように各陰極部N1〜N4間の隙間部に深く入り込むことになる。従って、この隙間部の導電性が大幅に改善され、積層体側面自体へのペーストの付着性も向上する。
[Modification 4]
In the above embodiment, the size of the concave portion 10 is increased stepwise from the lowermost single-plate capacitor element C1 toward the uppermost single-plate capacitor element C4. However, the present invention is not limited to this. May be alternately stacked in two types. FIG. 13 is a cross-sectional view of a stacked solid electrolytic capacitor that is stacked so that the size of the recesses is alternated in size. The size of each recess formed on the side surface of each single plate capacitor element C1 to C4 on the cathode part N1 to N4 side is small in the single plate capacitor elements C1 and C3, and large in the single plate capacitor elements C2 and C4. Yes. For this reason, by laminating the single plate capacitor elements C1 to C4, a stepped portion S on the staircase is generated in a part of the side surface of the multilayer body. In the stepped portion S formed in a step shape, an additional conductive coating layer 9 is formed by discharging, applying, and curing a silver conductive paste with a syringe connected to an air dispenser. In this case, similarly to the embodiment, the discharged silver conductive paste stays temporarily in the stepped portion S, and deeply in the gaps between the cathode portions N1 to N4 as indicated by 9 '. Will get in. Therefore, the conductivity of the gap is greatly improved, and the adhesion of the paste to the side surface of the laminate itself is improved.

[変形例5]
上記実施例では、一方側に陽極部P、他方側に陰極部Nを有する単板コンデンサ素子を用い、さらに積層体の両側に陽極端子PL、PL’を、中央部に陰極端子NLを各々設けたが、両端に陽極部、両端の陽極部の間に陰極部が形成された単板コンデンサ素子を用い、さらに、端子の形状は例えば図14に示すように、2枚の陰極端子NL、NL’を設け、その両側にそれぞれ陽極端子PL,PL’が配置され、該陽極端子PL、PL’同士を、この端子と同じ材質の導電性部材からなる連結部15で橋渡ししたものを用いてもよい。なお、導電性ペーストが連結部15の側面および底面へ付着するのを防ぐために、連結部15と陰極端子NL、NL’との隙間を覆うように、絶縁体16が連結部15および陰極端子NL、NL’の積層体側の面上に跨って配置されている。
[Modification 5]
In the above embodiment, a single plate capacitor element having an anode part P on one side and a cathode part N on the other side is used, and anode terminals PL and PL ′ are provided on both sides of the laminate, and a cathode terminal NL is provided in the center part. However, a single plate capacitor element in which an anode part is formed at both ends and a cathode part is formed between the anode parts at both ends is used. Further, the shape of the terminal is, for example, as shown in FIG. ', And anode terminals PL and PL' are arranged on both sides thereof, and the anode terminals PL and PL 'may be bridged by a connecting portion 15 made of a conductive material of the same material as the terminals. Good. In order to prevent the conductive paste from adhering to the side surface and the bottom surface of the connecting portion 15, the insulator 16 covers the connecting portion 15 and the cathode terminal NL so as to cover the gap between the connecting portion 15 and the cathode terminals NL and NL ′. , NL ′ are disposed across the surface of the laminate side.

また、上記実施例および上記変形例では、弁作用金属板1にアルミニウム(Al)を用いたが、タンタル(Ta)、ニオブ(Nb)、チタン(Ti)等をシート状に形成した素子や、これらの金属粉をシート状に圧縮成形し焼結した素子を用いた場合も同様の効果が得られる。また、導電性被覆層9は、銀(Ag)、金(Au)、銅(Cu)、カーボン等からなる導電性フィラーと、エポキシ系樹脂、アクリル系樹脂、ゴム系樹脂等からなるバインダ樹脂とを組み合わせたものなどが利用できる。また、陰極部Nとなる固体電解質層3には、ポリピロール、ポリアニリンなどの導電性高分子を用いてもよく、二酸化マンガン層でも同様の効果を得ることができる。   Moreover, in the said Example and the said modification, although aluminum (Al) was used for the valve action metal plate 1, the element which formed tantalum (Ta), niobium (Nb), titanium (Ti) etc. in the sheet form, The same effect can be obtained when an element obtained by compressing and sintering these metal powders into a sheet is used. The conductive coating layer 9 includes a conductive filler made of silver (Ag), gold (Au), copper (Cu), carbon, and the like, and a binder resin made of epoxy resin, acrylic resin, rubber resin, and the like. A combination of these can be used. Moreover, for the solid electrolyte layer 3 to be the cathode portion N, a conductive polymer such as polypyrrole or polyaniline may be used, and the same effect can be obtained with a manganese dioxide layer.

また、上記実施例では、一方側に陽極部P、他方側に陰極部Nを有する単板コンデンサ素子Cを用いたが、両端に陽極部、両端の陽極部の間に陰極部が形成された単板コンデンサ素子を用いても上記実施例と同等の効果を得ることができた。   Further, in the above example, the single plate capacitor element C having the anode part P on one side and the cathode part N on the other side was used, but the cathode part was formed between the anode part at both ends and the anode parts at both ends. Even when a single plate capacitor element was used, the same effect as in the above example could be obtained.

1 弁作用金属板
2 酸化皮膜層
3 固体電解質層
4 カーボン層
5 銀層
6 導電性ペースト
7、8、9 導電性被覆層
10、12、13、14 凹部
11 外装樹脂
15 連結部
16 絶縁体
C、C1〜C4 単板コンデンサ素子
P、P1〜P4 陽極部
N、N1〜N4 陰極部
K カーボン層
M マスキング層
g 陰極部間の隙間
S 段差部
DESCRIPTION OF SYMBOLS 1 Valve action metal plate 2 Oxide film layer 3 Solid electrolyte layer 4 Carbon layer 5 Silver layer 6 Conductive paste 7, 8, 9 Conductive coating layer 10, 12, 13, 14 Recess 11 Exterior resin 15 Connection part 16 Insulator C , C1 to C4 Single plate capacitor element P, P1 to P4 Anode portion N, N1 to N4 Cathode portion K Carbon layer M Masking layer g Clearance between cathode portions S Stepped portion

Claims (6)

一方側に陽極部、他方側に陰極部が形成された単板コンデンサ素子を複数枚積層してなる積層体を備えた積層型固体電解コンデンサであって、
前記単板コンデンサ素子の前記陰極部側の側面に形成された積層方向に貫通する凹部と、
前記凹部の大きさを、連続して積層される2枚以上の前記単板コンデンサ素子で互いに異ならしめることにより、前記積層体の側面の一部に形成された段差部と、
前記段差部および前記陰極部間に形成された導電性被覆層と、
を含むことを特徴とする積層型固体電解コンデンサ。
A multilayer solid electrolytic capacitor comprising a laminate formed by laminating a plurality of single plate capacitor elements each having an anode portion on one side and a cathode portion on the other side,
A concave portion penetrating in the stacking direction formed on the side surface of the single plate capacitor element on the cathode portion side;
A stepped portion formed on a part of the side surface of the multilayer body by making the size of the concave portion different from each other by two or more single-plate capacitor elements that are successively stacked, and
A conductive coating layer formed between the stepped portion and the cathode portion;
A multilayer solid electrolytic capacitor comprising:
前記単板コンデンサ素子は、前記陽極部の突出方向が交互に反対になるように複数枚積層されており、
前記凹部は、前記陰極部側の側面のうち前記陽極部の突出方向と平行な側面に形成されていることを特徴とする請求項1に記載の積層型固体電解コンデンサ。
The single plate capacitor element is laminated in a plurality so that the protruding direction of the anode portion is alternately opposite,
2. The multilayer solid electrolytic capacitor according to claim 1, wherein the recess is formed on a side surface parallel to a protruding direction of the anode portion among side surfaces on the cathode portion side.
両端に陽極部、前記両端の陽極部の間に陰極部が形成された単板コンデンサ素子を複数枚積層してなる積層体を備えた積層型固体電解コンデンサであって、
前記積層体の両側から突出した前記陽極部に電気的に各々接続された一方側陽極端子と、
他方側陽極端子と、
前記一方側陽極端子と前記他方側陽極端子とを電気的に接続する連結部と、
前記複数のコンデンサ素子の陰極部からなる陰極体に電気的に接続され、前記連結部と離間して配置された陰極端子と、
前記連結部と前記陰極端子との隙間を覆うように、前記連結部および前記陰極端子の前記積層体側の面上に跨って配置された絶縁体とを含み、さらに
前記単板コンデンサ素子の前記陰極部側の側面に形成された積層方向に貫通する凹部と、
前記凹部の大きさを、連続して積層される2枚以上の前記単板コンデンサ素子で互いに異ならしめることにより、前記積層体の側面の一部に形成された段差部と、
前記段差部および前記陰極部間に形成された導電性被覆層と、
を含むことを特徴とする積層型固体電解コンデンサ。
A multilayer solid electrolytic capacitor comprising a laminate formed by laminating a plurality of single plate capacitor elements each having an anode portion at both ends and a cathode portion formed between the anode portions at both ends,
One-side anode terminal electrically connected to the anode portion protruding from both sides of the laminate,
The other side anode terminal;
A connecting portion for electrically connecting the one side anode terminal and the other side anode terminal;
A cathode terminal that is electrically connected to a cathode body composed of cathode portions of the plurality of capacitor elements and is spaced apart from the connecting portion;
An insulator disposed across a surface of the connection portion and the cathode terminal on the laminate side so as to cover a gap between the connection portion and the cathode terminal, and further, the cathode of the single plate capacitor element A concave portion penetrating in the stacking direction formed on the side surface of the portion side
A stepped portion formed on a part of the side surface of the multilayer body by making the size of the concave portion different from each other by two or more single-plate capacitor elements that are successively stacked, and
A conductive coating layer formed between the stepped portion and the cathode portion;
A multilayer solid electrolytic capacitor comprising:
前記凹部は、前記単板コンデンサ素子を積層した際に、積層方向に延びる同一直線上に位置するように形成されており、下層の前記単板コンデンサ素子から上層の前記単板コンデンサ素子に向かって段階的に大きくなっていることを特徴とする請求項1ないし3のいずれかに記載の積層型固体電解コンデンサ。   The concave portions are formed so as to be positioned on the same straight line extending in the stacking direction when the single plate capacitor elements are stacked, from the lower single plate capacitor element toward the upper single plate capacitor element. The multilayer solid electrolytic capacitor according to claim 1, wherein the multilayer solid electrolytic capacitor increases in a stepwise manner. 前記凹部は、前記単板コンデンサ素子の前記陰極部側の側面の互いに対向する位置に少なくとも一組形成されていることを特徴とする請求項1ないし4のいずれかに記載の積層型固体電解コンデンサ。   5. The multilayer solid electrolytic capacitor according to claim 1, wherein at least one set of the concave portions is formed at positions facing each other on the side surface on the cathode portion side of the single plate capacitor element. . 前記凹部は、前記単板コンデンサ素子の平面視における面積に対する前記凹部の平面視における面積の割合が0.6〜11.0%の範囲内となるように形成されていることを特徴とする請求項1ないし5のいずれかに記載の積層型固体電解コンデンサ。   The concave portion is formed such that a ratio of an area of the concave portion in plan view to an area of the single plate capacitor element in plan view is in a range of 0.6 to 11.0%. Item 6. The multilayer solid electrolytic capacitor according to any one of Items 1 to 5.
JP2009177861A 2009-07-30 2009-07-30 Multilayer solid electrolytic capacitor Active JP5181154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009177861A JP5181154B2 (en) 2009-07-30 2009-07-30 Multilayer solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009177861A JP5181154B2 (en) 2009-07-30 2009-07-30 Multilayer solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2011035057A JP2011035057A (en) 2011-02-17
JP5181154B2 true JP5181154B2 (en) 2013-04-10

Family

ID=43763862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177861A Active JP5181154B2 (en) 2009-07-30 2009-07-30 Multilayer solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP5181154B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021172236A1 (en) * 2020-02-28 2021-09-02
WO2024157804A1 (en) * 2023-01-24 2024-08-02 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
WO2024157805A1 (en) * 2023-01-24 2024-08-02 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4450378B2 (en) * 2004-10-27 2010-04-14 Necトーキン株式会社 Surface mount capacitor and method of manufacturing the same
JP4671339B2 (en) * 2005-06-29 2011-04-13 ニチコン株式会社 Multilayer solid electrolytic capacitor
JP2007116064A (en) * 2005-10-24 2007-05-10 Nichicon Corp Laminated solid electrolytic capacitor
JP4688675B2 (en) * 2005-12-28 2011-05-25 ニチコン株式会社 Multilayer solid electrolytic capacitor
JP2008091452A (en) * 2006-09-29 2008-04-17 Tdk Corp Solid electrolytic capacitor
JP4924128B2 (en) * 2007-03-19 2012-04-25 パナソニック株式会社 Solid electrolytic capacitor

Also Published As

Publication number Publication date
JP2011035057A (en) 2011-02-17

Similar Documents

Publication Publication Date Title
TWI398890B (en) Chip type solid electrolytic capacitors
JP5958977B2 (en) Multilayer ceramic electronic component and its mounting board
US6185091B1 (en) Four-terminal capacitor
TWI292164B (en) Laminate type solid electrolytic capacitor
JP2007116064A (en) Laminated solid electrolytic capacitor
JP2012124458A (en) Multilayer ceramic capacitor and manufacturing method for the same
JP2005079463A (en) Laminated solid electrolytic capacitor and laminated transmission line element
JP2006324555A (en) Laminated capacitor and its manufacturing method
JP6865352B2 (en) Manufacturing method of solid electrolytic capacitor and solid electrolytic capacitor
JP4688675B2 (en) Multilayer solid electrolytic capacitor
JP2009158692A (en) Multilayer solid electrolytic capacitor
CN110168687B (en) Solid electrolytic capacitor
JP5181154B2 (en) Multilayer solid electrolytic capacitor
JP4986230B2 (en) Multilayer solid electrolytic capacitor
JP4688676B2 (en) Multilayer solid electrolytic capacitor and capacitor module
JP4671347B2 (en) Solid electrolytic capacitor
WO2022163644A1 (en) Electrolytic capacitor
JP5025007B2 (en) Multilayer solid electrolytic capacitor
JP5034887B2 (en) Chip type solid electrolytic capacitor
JP2004088073A (en) Solid electrolytic capacitor
JP2008135425A (en) Chip-type solid electrolytic capacitor
JP2009123938A5 (en)
CN111095452A (en) Solid electrolytic capacitor and method for manufacturing the same
WO2010137190A1 (en) Laminated solid electrolytic capacitor and method for manufacturing same
JP2008135424A (en) Chip-type solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5181154

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R314533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250