WO2012066853A1 - Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor - Google Patents

Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor Download PDF

Info

Publication number
WO2012066853A1
WO2012066853A1 PCT/JP2011/071846 JP2011071846W WO2012066853A1 WO 2012066853 A1 WO2012066853 A1 WO 2012066853A1 JP 2011071846 W JP2011071846 W JP 2011071846W WO 2012066853 A1 WO2012066853 A1 WO 2012066853A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
valve
coated
brazing material
electrolytic capacitor
Prior art date
Application number
PCT/JP2011/071846
Other languages
French (fr)
Japanese (ja)
Inventor
越戸 義弘
恵美 松下
仁 黒見
太郎 上野
耕治 藤本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2012066853A1 publication Critical patent/WO2012066853A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon

Definitions

  • the present invention relates to a method for producing a solid electrolytic capacitor and a solid electrolytic capacitor.
  • Solid electrolytic capacitors are required to be smaller and larger in capacity as electric and electronic devices become smaller and thinner.
  • a multilayer solid electrolytic capacitor is known as one that meets this demand.
  • Each of the solid electrolytic capacitor elements has a surface of a valve action metal substrate, a dielectric film, a solid electrolyte layer, and a cathode lead layer (also simply referred to as a cathode layer, generally consisting of a carbon-containing layer and a silver-containing layer). Are sequentially coated. (See, for example, Patent Document 1)
  • the conventional multilayer solid electrolytic capacitor as described above is not necessarily sufficient to meet the demand for a small size and large capacity.
  • An object of the present invention is to provide a method capable of efficiently producing a solid electrolytic capacitor having a larger capacitance per unit volume.
  • a method for producing a solid electrolytic capacitor comprising: (A) applying a brazing material to a partial region of the surface of the dielectric-coated valve-acting metal sheet including the valve-acting metal substrate and a dielectric film covering the surface of the valve-acting metal substrate; (B) A plurality of the dielectric-coated valve metal sheets are provided with gaps between the dielectric-coated valve metal sheets, and the positions of the regions where the brazing material of each dielectric-coated valve metal sheet is applied.
  • a production method including a step of forming an electrolyte layer as a continuous layer so as to fill the gaps between dielectric-coated valve metal sheets in a laminate and to cover the outer surface of the laminate.
  • the “brazing material” refers to a material containing a conductive substance having a melting point lower than that of the metal material constituting the valve action metal substrate, and optionally further containing an additive.
  • a conventional multilayer solid electrolytic capacitor is assembled by first producing a plurality of solid electrolytic capacitor elements and then laminating these solid electrolytic capacitor elements.
  • the plurality of solid electrolytic capacitor elements are formed with a solid electrolyte layer on each of a plurality of sheets in which the surface of the valve metal substrate is covered with a dielectric film, Further, it is produced by forming a cathode lead layer.
  • the plurality of solid electrolytic capacitor elements thus fabricated are stacked with an anode comb terminal and a cathode comb terminal that are spaced apart from each other between them, and then the valve action metal substrate and the dielectric film are formed as described above.
  • the anode lead portion of the sheet is resistance-welded through a through hole provided in the anode comb terminal.
  • a laminated body of dielectric-coated valve metal sheets more specifically, a laminated body in which valve metal substrates are joined together using a brazing material. It has gained. Furthermore, in the method for producing a solid electrolytic capacitor of the present invention, this laminate is filled and covered with a continuous layer of solid electrolyte layers, and a cathode lead layer is provided between the dielectric-coated valve metal sheets of the laminate. not exist.
  • valve metal and the solid electrolyte layer function as an anode and a cathode, respectively, with a dielectric film interposed therebetween, and a capacitance can be formed without a cathode lead layer.
  • a brazing material is applied to a partial region of the surface of the dielectric-coated valve metal sheet, and the adjacent valve action in the laminated dielectric-coated valve metal sheet. Since the metal bases are joined using the brazing material, it is possible to effectively reduce (preferably prevent) the presence of the dielectric film at the joint, and the valve action metal bases constituting the laminate can be electrically connected. Can be stably connected, and the equivalent series resistance (ESR) of the solid electrolytic capacitor can be reduced. Furthermore, according to the method for manufacturing a solid electrolytic capacitor of the present invention, the solid electrolyte layer can be filled and coated at once as a continuous layer on the laminate, which can be simplified as compared with the conventional manufacturing method.
  • the method for producing a solid electrolytic capacitor of the present invention it is possible to eliminate the cathode lead layer that does not contribute to the formation of the capacitance between the dielectric-coated valve metal sheets of the laminate, so that the corresponding space Can be used effectively, and a solid electrolytic capacitor having a larger capacitance per unit volume can be manufactured.
  • step (d) it is not necessary that the entire laminate is filled and covered with the solid electrolyte layer, and a part of the laminate is filled and covered with the solid electrolyte layer. It does not have to be done.
  • this invention is not limited, this part of a laminated body can be used as an anode lead part.
  • the dielectric film is an oxide film
  • the brazing material includes an additive having an action of removing the oxide
  • the dielectric film is generally an oxide film made of an oxide of a valve action metal substrate.
  • the brazing material containing the additive having the function of removing oxides is used to join the valve action metal bases to each other. Therefore, it is possible to more effectively reduce (preferably prevent) the presence of an oxide film at the joint, and to join the valve metal bases more electrically and stably.
  • Each of the dielectric-coated valve-acting metal sheets includes a continuous layer of a solid electrolyte layer that fills a gap between the dielectric-coated valve-acting metal sheets constituting the laminate and covers the outer surface of the laminate.
  • the working metal substrate and a dielectric film that covers the surface of the valve metal substrate are bonded to each other in the plurality of laminated dielectric coated valve metal sheets that are adjacent to each other using a brazing material.
  • a solid electrolytic capacitor is provided in which a brazing material or a conductive material derived from the brazing material is electrically insulated from the solid electrolyte layer.
  • a dielectric is interposed between the valve metal substrate and the brazing material or the conductive material derived from the brazing material at the joint portion of the adjacent valve metal substrates with the brazing material. Absent.
  • Such a solid electrolytic capacitor of the present invention can be manufactured by the above-described method for manufacturing a solid electrolytic capacitor of the present invention, and exhibits the same effect.
  • a solid electrolytic capacitor having a larger capacitance per unit volume can be efficiently produced.
  • FIG. 1 is a schematic cross-sectional view showing one example of a solid electrolytic capacitor that can be manufactured by the method for manufacturing a solid electrolytic capacitor in the present embodiment.
  • the solid electrolytic capacitor 10 includes a plurality of dielectric-coated valve metal sheets 1 (in the example shown, six dielectric-coated valve metal sheets 1 are shown. (Not limited), the gap between the laminated body 3 in which the dielectric-coated valve metal sheet 1 is joined at the joints X and Y and the dielectric-coated valve metal sheet 1 constituting the laminated body 3 is filled. And a solid electrolyte layer 5 covering the outer surface of the laminate 3.
  • the solid electrolyte layer 5 is formed as a continuous layer so as to fill a gap between the dielectric-coated valve metal sheets 1 and to cover the outer surface of the laminate 3.
  • a portion where the gap between the dielectric covered valve metal sheets 1 is not filled or a portion where the outer surface of the laminate 3 is not covered can be inevitably formed, As long as the capacitance of the electrolytic capacitor is at an acceptable level, there is no problem even if such a portion exists in the solid electrolyte layer 5.
  • the solid electrolytic capacitor 10 of this embodiment further includes a cathode lead layer 7 (carbon-containing layer 7a and silver-containing layer 7b) that covers the outer surface of the solid electrolyte layer 5, but this is not essential to the present invention. .
  • Each of the dielectric-coated valve metal sheets 1 includes a valve metal base and a dielectric film that covers the surface of the valve metal base.
  • the laminated body 3 is formed by joining adjacent valve action metal bases in a plurality of laminated dielectric-coated valve action metal sheets using a brazing material.
  • these dielectric-coated valve metal sheets 1 are joined by at least a conductive material derived from the brazing material when the brazing materials 17 a, 17 b, or the brazing material can be altered during the joining.
  • the valve metal bases are electrically joined to each other through the joint.
  • the brazing materials 17a and 17b (or the conductive material derived from the brazing material) are electrically insulated from the solid electrolyte layer 5 (in this embodiment, by an insulator described later).
  • a part of the laminate 3 is not filled and covered with the solid electrolyte layer 5.
  • the laminate 3 is divided into two parts by the insulating portion 9. More specifically, a part (hereinafter referred to as a first part) 1a of the dielectric-coated valve metal sheet 1 constituting the laminate 3 is not covered with the solid electrolyte layer 5 as an anode lead part.
  • the insulating part 9 is exposed in a state of being electrically insulated from the solid electrolyte layer 5 and the cathode lead layer 7.
  • a portion (hereinafter referred to as a second portion) 1b of the dielectric coated valve metal sheet 1 separated from the first portion 1a by the insulating portion 9 is covered with the solid electrolyte layer 5 as a solid electrolyte layer covering portion.
  • the position and number of joints are not particularly limited, and can be set as appropriate according to the requirements for the solid electrolytic capacitor to be manufactured.
  • one joint X exists in the first part (anode lead part) of the dielectric-coated valve metal sheet 1 and another single joint Y is the dielectric-coated valve metal sheet 1.
  • the present invention is not limited to this.
  • the solid electrolytic capacitor 10 ′ shown in FIG. 2 four dielectric-coated valve action metal sheets 1 are shown as an example.
  • the solid electrolytic capacitor 10 ′ may be considered to be essentially the same as the solid electrolytic capacitor 10 in FIG. .
  • a dielectric-coated valve metal sheet 1 including a valve metal base 11 and a dielectric film 13 that covers the surface of the valve metal base 11 is prepared.
  • the dielectric-coated valve metal sheet 1 can be produced as follows.
  • the valve action metal substrate 11 is substantially composed of a metal material exhibiting a so-called valve action.
  • a metal material is selected from the group consisting of, for example, aluminum, tantalum, niobium, titanium, zirconium, and alloys of two or more thereof, and is preferably aluminum or an alloy containing aluminum.
  • the valve metal base 11 may have a sheet shape (or a flat plate shape such as a foil).
  • the thickness of the valve action metal substrate 11 is not particularly limited, but is, for example, 50 to 200 ⁇ m, preferably 90 to 130 ⁇ m.
  • the width and length of the valve metal base 11 can be appropriately selected according to the size of the solid electrolytic capacitor to be manufactured. In FIG. 2, the direction perpendicular to the paper surface is the width direction.
  • the valve-acting metal substrate 11 preferably has irregularities on the surface, and for example, the surface layer portion is more preferably porous. This is because the valve metal base 11 functions as an anode in a solid electrolytic capacitor, so that the capacitance of the capacitor increases as the surface area of the valve metal base 11, that is, the effective area increases, even with the same occupied area. .
  • the valve metal substrate 11 having irregularities on the surface or having a porous surface layer portion can be obtained by subjecting it to a roughening treatment in advance. The roughening process is generally performed by an etching process.
  • an etching process may be implemented as follows, for example before a process (a).
  • an untreated valve metal base 11 ' is prepared.
  • a mask 15 protects a region corresponding to the bonding portion (in other words, a region where a bonding portion is to be formed in a later step).
  • the obtained valve action metal substrate 11 ′ with the mask 15 is immersed in an etching solution and subjected to an etching process.
  • the porous portion 11a is formed only in the surface layer portion.
  • valve action metal substrate 11 after processing for the purpose of helping understanding, the porous portion 11a and the non-etched portion 11b that has not been made porous are schematically shown separately. It is difficult to clearly distinguish these. Thereafter, the mask 15 is removed, and the valve metal substrate 11 subjected to the etching process is obtained. As shown in FIG. 3 (d), the valve metal base 11 has a non-etched portion 11 c in a region corresponding to the joint portion, and the non-etched portion 11 c is protected by the mask 15, so that it is relatively flat. The surface state can be maintained.
  • the non-etched portion 11c is preferably left on at least one of the two valve metal substrates to be bonded, and more preferably left on both of the bonding surfaces. However, it is not always necessary to protect the mask 15 with the etching process.
  • Etching conditions such as the etching solution, etching temperature and time, can be appropriately selected according to the metal material of the valve metal substrate to be used, desired electrical characteristics (including effective area), and the like.
  • hydrochloric acid or the like can be used as the etchant.
  • Other conditions can be confirmed in advance and set to appropriate values according to the capacitance, withstand voltage, etc. required for the solid electrolytic capacitor to be manufactured.
  • a dielectric coating 13 is formed on the surface of the valve metal base 11.
  • a dielectric film 13 can be formed as an oxide film by anodic oxidation of the valve action metal substrate 11.
  • valve action metal substrate 11 is immersed in an electrolytic solution as it is and subjected to an anodic oxidation treatment (also referred to as a chemical conversion treatment, the same applies hereinafter). Then, an oxide film 13 is formed on the surface of the valve action metal substrate 11 by anodic oxidation.
  • anodic oxidation treatment also referred to as a chemical conversion treatment, the same applies hereinafter.
  • Conditions for anodizing treatment such as electrolyte solution, anodizing temperature, time, current density and voltage, etc., depend on the metal material of the valve action metal substrate used and the desired electrical characteristics (including oxide film thickness). It can be selected as appropriate.
  • the electrolytic solution may be an aqueous solution containing at least one selected from the group consisting of boric acid, phosphoric acid, adipic acid, sodium salts and ammonium salts thereof. Other conditions can be confirmed in advance and set to appropriate values according to the capacitance, withstand voltage, etc. required for the solid electrolytic capacitor to be manufactured.
  • dielectric-coated valve metal sheet a metal sheet that has been roughened by etching treatment and an oxide film is formed by anodic oxidation is commercially available for solid electrolytic capacitors. You may use such a commercially available thing as a dielectric covering valve action metal sheet.
  • the dielectric coated valve metal sheet 1 including the valve metal base 11 and the dielectric film 13 covering the surface of the valve metal base 11 is produced.
  • the thickness, width and length of the dielectric coated valve metal sheet 1 are approximately equal to the thickness, width and length of the valve metal base 11 used (usually the thickness of the dielectric coating is on the order of submicron). It is typically several to several tens of nanometers and is negligible compared to the size of the valve metal substrate 11), and can be appropriately selected according to the size of the solid electrolytic capacitor to be manufactured.
  • the dielectric coated valve metal sheet 1 in this step may be in any appropriate coated state as long as the dielectric film 13 covers the surface of the valve metal base 11.
  • the dielectric coating 13 may or may not cover the side surface of the valve metal substrate 11 (a surface parallel to the cross section of the valve metal substrate 11 shown in FIG. 2).
  • the side surface of the second portion 1b of the valve action metal substrate 11 is not coated with the dielectric film 13, it is necessary to coat with a dielectric film at least before the step (d) described later.
  • the brazing materials 17a and 17b are applied to a predetermined region on the surface of the dielectric-coated valve metal sheet 1 as described above.
  • the region to which the brazing material is to be applied is a partial region on the surface of the dielectric-coated valve metal sheet 1, which is usually the same as the region corresponding to the joint, but corresponds to the joint. As long as it is located within the region, it may be smaller than the region corresponding to the joint.
  • the area of the region where the brazing material is applied depends on the composition of the brazing material used, the coating thickness of the brazing material, and the like, but is preferably 80 to 100% of the area of the region corresponding to the joint.
  • any appropriate material can be used as long as it contains a conductive material having a melting point lower than that of the metal material constituting the valve action metal substrate.
  • the conductive substance contained in the brazing material can be understood as a filler material for the valve action metal substrate.
  • the melting point of the metal material of the valve action metal substrate and the melting point of the conductive substance contained in the brazing material can be measured using, for example, a differential scanning calorimeter.
  • the conductive substance contained in the brazing material may be a metal material having a lower melting point than the metal material constituting the valve action metal substrate.
  • Examples of the conductive substance contained in the brazing material include aluminum, an alloy containing aluminum, a lead-free solder material, and the like, preferably aluminum and an alloy containing aluminum.
  • Such a conductive material may have a form such as a granular material or a flaky material.
  • the conductive material is preferably a granular material having an average particle diameter of 0.02 mm or less, for example, 0.002 to 0.05 mm (both volume average) because the melting point is lower than that of the lump.
  • the brazing material may contain an additive in addition to the conductive material as described above. Additives can be added for various purposes.
  • the brazing material preferably contains an additive having an action of removing oxides. Examples of the additive having an action of removing oxides include flux and borax. As the flux, a commercially available brazing flux can be used. Other additives that can be used include viscosity modifiers and wettability improvers.
  • brazing material depends on its composition, it is pasty or solid, and is preferably pasty for ease of application.
  • the brazing material can be applied by, for example, a dispenser, screen printing, potting, or the like.
  • the flux may be contained in the brazing material as described above, but it may be used separately from the brazing material and applied or sprayed on the region corresponding to the joint before applying the brazing material.
  • the brazing materials 17 a and 17 b are applied to the predetermined region on the surface of the dielectric-coated valve metal sheet 1.
  • the dielectric-coated valve metal sheet 1 coated with the brazing materials 17a and 17b in this way is formed into the first part 1a and the second part by the insulating part 9, as shown in FIG. Fractionate into 1b.
  • the insulating part 9 is formed so as to cover another predetermined region on the surface of the dielectric-coated valve metal sheet 1.
  • the insulating part 9 is formed of an insulating resin, for example, a general heat resistant resin, preferably a heat resistant resin that can be dissolved or swelled in a solvent or a precursor thereof, or a composition comprising an inorganic fine powder and a cellulose resin. Things can be used.
  • a general heat resistant resin preferably a heat resistant resin that can be dissolved or swelled in a solvent or a precursor thereof, or a composition comprising an inorganic fine powder and a cellulose resin. Things can be used.
  • polyphenylsulfone PPS
  • polyethersulfone PES
  • cyanate ester resin fluororesin (tetrafluoroethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, etc.)
  • fluororesin tetrafluoroethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, etc.
  • low molecular weight polyimide and examples include derivatives and precursors thereof, and particularly low molecular weight polyimides, polyethersulfones, fluororesins, and precursors thereof.
  • the insulating portion 9 is a solid electrolytic capacitor 10 in a state where the first portion 1a (anode lead portion) of the dielectric-coated valve metal sheet 1 is electrically insulated from the solid electrolyte layer 5 and the cathode lead layer 7. As long as it is exposed to the outside, it may be formed at any appropriate timing, and may be formed in several stages.
  • each dielectric-coated valve metal sheet 1 is applied to a plurality of regions at different positions as in the present embodiment, the lamination is performed between the regions where the brazing material 17a is applied and the brazing material.
  • the positions of the areas where the 17b is applied are aligned in the thickness direction in a stacked state.
  • a brazing material is sandwiched between adjacent dielectric-coated valve metal sheets 1, for example, only the lower surface side or upper surface of each dielectric-coated valve metal sheet 1 And you may apply
  • the raw material solution of the conductive polymer that forms the solid electrolyte layer can enter in the step (d) described later. Any size is acceptable.
  • the dielectric-coated valve metal sheet 1 is simply overlapped. Thus, a gap is naturally formed between the dielectric-coated valve metal sheets 1.
  • the insulating portion 9 when the insulating portion 9 is located between the plurality of dielectric-covered valve metal sheets 1, the insulating portion 9 causes a gap between the dielectric-coated valve metal sheets 1. Naturally formed. Further, in this case, a plurality of dielectric-coated valve metal sheets 1 can be fixed to each other using the insulating portion 9 (temporarily fixed before forming a joint portion in a later step). More specifically, an insulating resin is separately applied to each of the plurality of dielectric-coated valve metal sheets 1, and these are superposed, and the insulating resin is solidified or cured by heating or the like to form the insulating portion 9. The plurality of dielectric covered valve metal sheets 1 can be fixed to each other by the insulating portion 9.
  • the height of the insulating portion 9 can be adjusted by the amount applied to each of the dielectric-coated valve metal sheets 1, for example, the insulation positioned between the dielectric-coated valve metal sheets 1.
  • the thickness may be different between the portion and the insulating portion located on the uppermost surface and / or the lowermost surface.
  • the plurality of laminated dielectric-coated valve metal sheets 1 have substantially the same length, and the first portion 1a and the second portion 1b also have substantially the same length. .
  • a plurality of dielectric-coated valve-acting metal sheets 1 are laminated such that there is a gap between them and the positions of the areas where the brazing materials are applied are aligned. A laminate of working metal sheets is obtained.
  • Joining using a brazing material can be performed by heating a laminated body obtained by applying brazing materials 17a and 17b to the dielectric-coated valve metal sheet 1 and laminating them.
  • the heating may be for heating the entire laminate, but it is preferable to locally heat the portion including the region where the brazing material is applied.
  • the valve metal bases 11 are joined to each other by the brazing materials 17a and 17b once melted by the heating and then solidified.
  • the dielectric film 13 existing between the brazing materials 17a and 17b and the valve metal base 11 loses its form when the brazing materials 17a and 17b are once melted and solidified. There is a tendency to disperse (for example, exist as a plurality of fragmented fragments) inside the brazing materials 17a and 17b.
  • valve action metal substrates 11 constituting the laminate can be electrically and stably joined to each other.
  • oxidation is performed. Since the dielectric film, which is a film, can be positively removed, it is possible to more effectively reduce, preferably prevent, the presence of an oxide film at the joint, and the valve action metal substrates can be more electrically stabilized. Can be joined together.
  • the etching process is performed before the step (a)
  • the non-etched portion 11 c is left in the region corresponding to the joint portion of the valve action metal substrate 11
  • the region corresponding to the portion is not etched and can maintain a relatively flat original surface state. Therefore, the valve metal bases 11 can be easily joined to each other, and the region corresponding to the joint is roughened by etching. Compared with the case where it is surfaceized, the joining property of the valve action metal base
  • substrates 11 can be improved.
  • the region corresponding to the bonding portion may be etched. In this case, the molten brazing material enters the recesses or holes of the valve metal base 11 and high bondability can be obtained.
  • two joints X and Y are formed.
  • the formation locations can be appropriately arranged, but the valve metal base 11 is preferably arranged so as to be joined with substantially equal force at those locations.
  • the joint portion X is formed in the first portion 1a (anode lead portion) of the dielectric-coated valve action metal sheet 1.
  • the entire dielectric-coated valve metal sheet may be formed on or in the vicinity of a line that bisects the width of the first portion 1a. It is preferable because a solid electrolytic capacitor can be manufactured with a reduced stress on the surface and more electrically and physically stable.
  • the area of the joint X depends on the area ratio between the first part 1a and the second part 1b, but is preferably 0.1% or more, more preferably 1% of the area of the first part 1a.
  • the area of the joint X is 0.1% or more of the area of the first portion 1a, necessary and sufficient mechanical joint strength and electrical conductivity (conduction) can be obtained. On the other hand, if the area of the junction X is 10% or less of the area of the first portion 1a, the capacity reduction due to the formation of the junction can be suppressed to a level that does not cause a problem in practice.
  • the area of each of the joint portions is preferably 0.1% or more of the area of the first portion 1a. Preferably, it is 1% or more, and the total area of these joints is preferably 10% or less, more preferably 5% or less of the area of the first portion 1a.
  • the joint portion Y is formed in the second portion 1b (solid electrolyte layer covering portion, more specifically, the portion filled and covered with the solid electrolyte layer in a later step) of the dielectric coated valve metal sheet 1.
  • the joint portion is formed in the second portion 1b of the dielectric-covered valve metal sheet 1, it is formed on or near the line that bisects the width of the second portion 1b. It is preferable because a solid electrolytic capacitor can be manufactured with a reduced stress on the surface and more electrically and physically stable.
  • the joint X extends from the central portion in the length direction of the second portion 1b to the anode lead portion so that the valve metal base 11 is joined with a substantially equal force at the plurality of joints X and Y. In contrast, they are arranged to be shifted to the distal side.
  • the joint portion is formed in the second portion 1b of the dielectric-coated valve action metal sheet 1
  • the capacitance corresponding to the joint portion is lost as compared with the case where the joint portion is not formed in the portion.
  • the formation of the joint eliminates unevenness (the porous portion is crushed), so even if the joint area is the same More capacitance will be lost.
  • the area of the joint Y is preferably 1% or more, more preferably 5% or more, and preferably 30% or less, more preferably 20% or less of the area of the second portion 1b.
  • the adjacent valve action metal bases 11 can be joined electrically and physically stably, and thus the electrical connection It is possible to prevent the joint portion from being separated when forming the solid electrolyte layer in the subsequent process while securing the above.
  • the area of the joint portion Y is 30% or less of the area of the second portion 1b, the capacitance of the solid electrolytic capacitor is not excessively lost, and therefore the loss of capacitance is compensated. In addition, it is not necessary to increase the number of laminated dielectric coated valve metal sheets 1.
  • the area of each of the joint portions is preferably 1% or more of the area of the second portion 1b, more preferably It is 5% or more, and the total area of these joints is preferably 30% or less, more preferably 20% or less of the area of the second portion 1b.
  • the above description regarding the position, number, and size of the joint portion is similarly applicable to the description regarding the region where the brazing material is applied.
  • the shape of the region to which the brazing material is applied is determined according to the shape of the joint, and may have any appropriate shape such as a circle, an ellipse, a rectangle, and a square.
  • the laminated body 3 is obtained in which the adjacent valve action metal substrates 11 in the plurality of laminated dielectric-coated valve action metal sheets 1 are bonded together using the brazing material.
  • brazing materials 17 a and 17 b electrically connected to the valve action metal substrate 11 (more specifically, conductive materials derived from the brazing material). However, it may be exposed in the gap between the valve action metal sheets 1. Therefore, when the joint portion Y is formed in the second portion 1b of the dielectric covered valve metal sheet 1, and the brazing material 17b exposed to the second portion 1b can exist, the brazing material 17b is insulated. It is covered with a body (the insulator 19 is shown in FIG. 2 (d)). Such an insulator may be the same as or different from the material of the dielectric film 13 that covers the surface of the valve metal substrate 11 in the dielectric-coated valve metal sheet 1.
  • the insulator is the same as the material of the dielectric film 13, the insulator is an oxide film or the like.
  • the valve action metal substrate and the brazing material more specifically, at least a conductive substance derived from the brazing material
  • the side surface of the second portion 1b of the valve metal base 11 is exposed, the side surface can be covered with a dielectric film at the same time in this anodizing process.
  • the conditions for the additional anodizing treatment may be the same as the conditions for the anodizing treatment described above in the step (a).
  • the insulator may be any appropriate material that does not have conductivity, such as a polymer compound that does not have conductivity.
  • the polymer compound having no conductivity can be applied to the exposed portion of the brazing material 17b by any appropriate method. For example, a raw material solution of a polymer compound having no conductivity is applied to the exposed portion of the brazing material 17b. It can be formed by generating a polymer compound having no electrical conductivity.
  • the solid electrolyte layer 5 is formed as a continuous layer on the laminate 3 obtained as described above.
  • the solid electrolyte layer 5 fills the gaps between the dielectric covered valve metal sheets 1 in the laminate 3 (more specifically, the gaps between the dielectric coatings 13), and covers the outer surface of the laminate 3.
  • the brazing material (or conductive material derived from the brazing material) 17 b in the second portion 1 b of the dielectric-coated valve metal sheet 1 is electrically insulated from the solid electrolyte layer 5 by the insulator 19. As long as the brazing material (or the conductive material derived from the brazing material) is electrically insulated from the solid electrolyte layer 5, it is not essential to separately provide an insulator in the present invention.
  • the second portion 1 b of all the dielectric-coated valve metal sheets 1 constituting the laminate 3 is filled and covered with the solid electrolyte layer 5, and the dielectric-coated valve metal sheets constituting the laminate 3.
  • the first portion 1a is left unfilled and not covered with the solid electrolyte layer 5 (hereinafter, also referred to as the first portion 1a and the second portion 1b of the laminate 3 for the sake of simplicity). ).
  • the solid electrolyte layer 5 forms a continuous layer.
  • the solid electrolyte layer 5 is in a state where the first portion 1a side of the multilayer body 3 is held and suspended, and the second portion 1b of the multilayer body 3 is used as a conductive polymer raw material solution, for example, before the insulating portion 9.
  • Examples of the conductive polymer forming the solid electrolyte layer 5 include a compound having a thiophene skeleton, a compound having a polycyclic sulfide skeleton, a compound having a pyrrole skeleton, a compound having a furan skeleton, and a compound having an aniline skeleton. Although what contains a structure as a repeating unit is mentioned, it is not limited to these.
  • any appropriate solution can be used as the raw material solution of the conductive polymer.
  • the present invention is not limited to this. For example, even if the second portion 1b of the laminate 3 is immersed in this using a monomer, a polymerization oxidizing agent, and a single solution containing a dopant when used. Good.
  • a cathode lead layer 7 covering the outer surface of the solid electrolyte layer 5 is formed.
  • the cathode lead layer 7 is generally formed by applying and drying a carbon paste so as to cover the outer surface of the solid electrolyte layer 5 to form the carbon-containing layer 7a, and then covering the outer surface of the carbon-containing layer 7a.
  • it can be formed by applying and drying a silver paste to form the silver-containing layer 7b.
  • the solid electrolyte layer 5 and the cathode lead layer 7 are electrically insulated from the solid electrolyte layer 5 and the cathode lead layer 7 by the insulating portion 9.
  • the first portion 1a can be used as an anode lead portion and connected to an anode terminal (not shown).
  • the cathode lead layer 7 can be connected to a cathode terminal (not shown).
  • a lead frame can be used as the anode terminal and the cathode terminal.
  • the solid electrolytic capacitor 10 ' is obtained.
  • the entire solid electrolytic capacitor 10 ′ is enclosed in an insulating resin (not shown) such as an epoxy resin with at least a part of an anode terminal and a cathode terminal (both not shown) exposed. Good.
  • the laminate can be filled and covered at once with the solid electrolyte layer as a continuous layer. Furthermore, since there is no cathode lead layer between the dielectric covered valve action metal sheets of the laminate (more specifically, between the dielectric films), the space can be used effectively, and the capacitance per unit volume can be reduced. Larger solid electrolytic capacitors can be manufactured.
  • the method for manufacturing a solid electrolytic capacitor of the present embodiment since the valve action metal bases are joined together using the brazing material, a strong joint (sufficient mechanical joint strength) can be obtained.
  • the part and size can be freely controlled.
  • the action of the brazing material can reduce (preferably prevent) an oxide film from intervening in the joint portion between the valve action metal substrates, and the valve action metal substrates can be electrically connected. Can be stably joined, and the equivalent series resistance (ESR) of the fixed electrolytic capacitor can be reduced.
  • the present embodiment is a modification of the first embodiment, and shows two kinds of modifications. 4 (a) and 4 (b), members similar to those described in the first embodiment are denoted by the same reference numerals, and hereinafter, differences from the first embodiment will be mainly described, and there is no particular notice. As long as the description is the same as in the first embodiment, the same applies.
  • the multilayer body 3 ′ includes a plurality of dielectric-coated valve metal sheets 1 ′ (in the illustrated example, seven dielectric-coated valve metal sheets 1). ', But not limited thereto), these dielectric-coated valve metal sheets 1' are joined at the joint Y '. These dielectric-coated valve action metal sheets 1 ′ are joined by a brazing material 17b ′ (or a conductive substance derived from the brazing material), whereby the valve action metal bases are electrically connected to each other through a joint portion. It is joined.
  • a brazing material 17b ′ or a conductive substance derived from the brazing material
  • the brazing material 17b ' (or a conductive material derived from the brazing material) is electrically insulated from the solid electrolyte layer 5 (for example, by an insulator).
  • the plurality of dielectric-coated valve metal sheets 1 ' only one dielectric-coated valve metal sheet is relatively long and has a first portion 1a.
  • the first portion 1a is not covered with the solid electrolyte layer 5 as an anode lead portion, and is exposed in a state of being electrically insulated from the solid electrolyte layer 5 and the cathode lead layer 7 by the insulating portion 9.
  • the remaining dielectric coated valve metal sheet has a substantially substantially equal length, and is entirely filled and coated with a solid electrolyte layer coating, more specifically, a solid electrolyte layer in a later step. Except for the point that it is a part and away from the insulating part 9, the same description as the second part 1b in the first embodiment applies.
  • a long dielectric coated valve metal sheet having a first portion 1a is sandwiched between the remaining short valve metal sheets (more specifically, the middle of these).
  • the present embodiment is not limited to this.
  • the junction Y ′ may be the same as the junction Y in the first embodiment. However, in this embodiment, since there is only one joining portion Y ′, the joining portion Y ′ is on or near a line that bisects the width of the second portion 1b (solid electrolyte layer covering portion), And it is preferable to form in the center part of the length direction of the 2nd part 1b since joining property is electrically and physically stabilized.
  • Such a solid electrolytic capacitor 20 is produced by producing one long dielectric-covered valve metal sheet and the remaining short dielectric-coated valve metal sheet, and appropriately laminating them and then joining them at the joint Y ′.
  • the first portion 1a (anode lead portion) of one long dielectric-coated valve metal sheet is left in contact with the solid electrolyte layer 5.
  • the insulating portion 9 is formed, and then the cathode lead layer 7 that covers the outer surface of the solid electrolyte layer 5 is formed.
  • the first portion 1a of the dielectric-coated valve metal sheet is formed by the insulating portion 9 so that the solid electrolyte layer 5 In addition, it is formed so as to be exposed to the outside of the solid electrolytic capacitor 20 while being electrically insulated from the cathode lead layer 7, and even if the valve action metal substrate is covered with a dielectric film in the first portion 1a. , Except that may not be overturned, it can be produced in the same manner as in Embodiment 1.
  • the remaining dielectric-coated valve metal sheet is also embedded in the insulating portion 9.
  • Other points are the same as those of the solid electrolytic capacitor 20 shown in FIG.
  • Such a solid electrolytic capacitor 20 ′ can be manufactured in the same manner as the solid electrolytic capacitor 20. However, as in the first embodiment, before forming the junction Y ′, a plurality of dielectrics can be obtained using the insulating portion 9. It is preferable to fix the body-covered valve action metal sheet 1 ′ to each other (temporarily fix before forming the joint in the subsequent step). More specifically, after appropriately laminating one long dielectric coated valve metal sheet and the remaining short dielectric coated valve metal sheet, an insulating resin is applied across the dielectric coated valve metal sheet. Then, the insulating resins can be solidified or cured by heating or the like and fixed to each other.
  • the first portion 1a (anode lead portion) is used only for one dielectric-coated valve metal sheet among the plurality of dielectric-coated valve metal sheets 1 ′. Provided.
  • the first portion 1a (anode lead portion) does not contribute to capacitance formation. That is, according to the present embodiment, the area occupied by the first portion 1a (anode lead portion) that does not contribute to capacitance formation can be made smaller than that of the solid electrolytic capacitor of the first embodiment.
  • a solid electrolytic capacitor having a larger capacitance can be manufactured.
  • the multilayer body 3 ′′ includes a plurality of dielectric-coated valve metal sheets 1 ′′ (in the illustrated example, six dielectric-coated valve metal sheets ′′.
  • the dielectric-coated valve metal sheet 1 ′′ is joined only at the joint X.
  • These dielectric-coated valve action metal sheets 1 '' are joined by a brazing material 17a (or a conductive material derived from the brazing material), whereby the valve action metal bases are electrically connected to each other via a joint portion. It is joined.
  • the same description as that of the plurality of dielectric-coated valve metal sheets 1 in the first embodiment applies.
  • Such a solid electrolytic capacitor 30 can be manufactured in the same manner as in Embodiment 1 except that the joining at the joining portion Y is not performed.
  • the solid electrolytic capacitor 30 of the present embodiment no joint is provided in the second portion 1b (solid electrolyte layer covering portion).
  • the second portion 1b (solid electrolyte layer covering portion) contributes to the formation of capacitance. That is, according to the present embodiment, the entire second portion 1b (solid electrolyte layer covering portion) that contributes to capacitance formation can be used for capacitance formation. Large solid electrolytic capacitors can be manufactured.
  • the number, position, arrangement, and the like of the region (and thus the joint) to which the brazing material is applied may be appropriately set according to the requirements required for the solid electrolytic capacitor to be manufactured.
  • steps (c) and (d) can vary depending on the location of the joint.
  • a process (d) is implemented after implementing a process (c).
  • the process (d) is performed after the process (c) is performed.
  • Step (c) may be performed after (d) is performed.
  • the present invention can be widely used to manufacture a solid electrolytic capacitor that is required to have a small size and a large capacity.
  • the solid electrolytic capacitor produced according to the present invention is not particularly limited in its use.

Abstract

Provided is a method of manufacturing a solid-state electrolytic capacitor with a large static capacity per unit of area. Coat a region of a portion of the obverse face of a dielectric coated valve-action metallic sheet (1), comprising a valve-action metallic substrate (11) and a dielectric film (13) which is coated on the obverse face thereof, with a wax material (17a, 17b). Stack a plurality of the dielectric coated valve-action metallic sheets (1) such that gaps are therebetween and the positions of the regions which are coated with the respective wax material (17a, 17b) are aligned, obtaining a layered body of the dielectric coated valve-action metallic sheets (1). In the stacked plurality of dielectric coated valve-action metallic sheets (1), adjacent valve-action metallic substrates (11) are bonded using the wax material (17a, 17b), thus obtaining a bonded layered body (3). Form a solid-state electrolytic layer (5) as a contiguous layer so as to fill the gaps between the dielectric coated valve-action metallic sheets (1) in the layered body and cover the exterior obverse faces of the layered body.

Description

固体電解コンデンサの製造方法および固体電解コンデンサSolid electrolytic capacitor manufacturing method and solid electrolytic capacitor
 本発明は、固体電解コンデンサの製造方法および固体電解コンデンサに関する。 The present invention relates to a method for producing a solid electrolytic capacitor and a solid electrolytic capacitor.
 固体電解コンデンサは、電気電子機器の小型薄型化に伴って、小型大容量化が求められている。かかる要請に応える1つのものとして、積層型固体電解コンデンサが知られている。 ¡Solid electrolytic capacitors are required to be smaller and larger in capacity as electric and electronic devices become smaller and thinner. A multilayer solid electrolytic capacitor is known as one that meets this demand.
 従来の積層型固体電解コンデンサは、複数の固体電解コンデンサ素子を積層して、組み立てられている。固体電解コンデンサ素子の各々は、弁作用金属基体の表面を、誘電体皮膜、固体電解質層、および陰極引出層(単に陰極層とも呼ばれ、一般的に、カーボン含有層および銀含有層から成る)で順次被覆して形成されている。(例えば特許文献1を参照のこと。) Conventional multilayer solid electrolytic capacitors are assembled by laminating a plurality of solid electrolytic capacitor elements. Each of the solid electrolytic capacitor elements has a surface of a valve action metal substrate, a dielectric film, a solid electrolyte layer, and a cathode lead layer (also simply referred to as a cathode layer, generally consisting of a carbon-containing layer and a silver-containing layer). Are sequentially coated. (See, for example, Patent Document 1)
特開2004-87893号公報Japanese Patent Laid-Open No. 2004-87893
 しかし、上記のような従来の積層型固体電解コンデンサは、小型大容量化の要請に応えるのに必ずしも十分とは言えない。 However, the conventional multilayer solid electrolytic capacitor as described above is not necessarily sufficient to meet the demand for a small size and large capacity.
 本発明の目的は、単位体積当りの静電容量がより大きな固体電解コンデンサを効率的に製造することのできる方法を提供することにある。 An object of the present invention is to provide a method capable of efficiently producing a solid electrolytic capacitor having a larger capacitance per unit volume.
 本発明によれば、固体電解コンデンサの製造方法であって、
 (a)弁作用金属基体と、該弁作用金属基体の表面を被覆する誘電体皮膜とを含む誘電体被覆弁作用金属シートの表面の一部の領域にロウ材を塗布する工程、
 (b)複数の該誘電体被覆弁作用金属シートを、これら誘電体被覆弁作用金属シート間に隙間を有し、かつ各誘電体被覆弁作用金属シートの該ロウ材を塗布した領域の位置が合わさるように積層して、誘電体被覆弁作用金属シートの積層体を得る工程、
 (c)積層された複数の該誘電体被覆弁作用金属シートにおいて隣接する弁作用金属基体同士を、ロウ材を用いて接合し、これによって接合された積層体を得る工程、および
 (d)固体電解質層を、積層体における誘電体被覆弁作用金属シート間の該隙間を充填し、かつ該積層体の外表面を被覆するように連続層として形成する工程
を含む製造方法が提供される。
According to the present invention, a method for producing a solid electrolytic capacitor comprising:
(A) applying a brazing material to a partial region of the surface of the dielectric-coated valve-acting metal sheet including the valve-acting metal substrate and a dielectric film covering the surface of the valve-acting metal substrate;
(B) A plurality of the dielectric-coated valve metal sheets are provided with gaps between the dielectric-coated valve metal sheets, and the positions of the regions where the brazing material of each dielectric-coated valve metal sheet is applied. Laminating to fit together to obtain a laminate of dielectric coated valve metal sheet,
(C) joining adjacent valve action metal substrates in the plurality of laminated dielectric-coated valve action metal sheets using a brazing material, thereby obtaining a laminated body, and (d) a solid There is provided a production method including a step of forming an electrolyte layer as a continuous layer so as to fill the gaps between dielectric-coated valve metal sheets in a laminate and to cover the outer surface of the laminate.
 本発明において「ロウ材」とは、弁作用金属基体を構成している金属材料よりも低い融点を有する導電性物質を含み、場合により、添加剤を更に含む材料を言う。 In the present invention, the “brazing material” refers to a material containing a conductive substance having a melting point lower than that of the metal material constituting the valve action metal substrate, and optionally further containing an additive.
 従来の積層型固体電解コンデンサは、まず、複数の固体電解コンデンサ素子を作製し、そして、これら固体電解コンデンサ素子を積層して、組み立てられている。かかる従来の積層型固体電解コンデンサの製造方法において、複数の固体電解コンデンサ素子は、弁作用金属基体の表面を誘電体皮膜で被覆した複数のシートのそれぞれに対して、固体電解質層を形成し、更に、陰極引出層を形成することによって作製されている。そして、このようにして作製された複数の固体電解コンデンサ素子を、それらの間に、互いに離間した陽極コム端子および陰極コム端子を挟んで積層した後、弁作用金属基体および誘電体皮膜から成る上記シートの陽極リード部を、陽極コム端子に設けられた貫通孔を通じて抵抗溶接している。(特許文献1を参照のこと。) A conventional multilayer solid electrolytic capacitor is assembled by first producing a plurality of solid electrolytic capacitor elements and then laminating these solid electrolytic capacitor elements. In such a conventional multilayer solid electrolytic capacitor manufacturing method, the plurality of solid electrolytic capacitor elements are formed with a solid electrolyte layer on each of a plurality of sheets in which the surface of the valve metal substrate is covered with a dielectric film, Further, it is produced by forming a cathode lead layer. The plurality of solid electrolytic capacitor elements thus fabricated are stacked with an anode comb terminal and a cathode comb terminal that are spaced apart from each other between them, and then the valve action metal substrate and the dielectric film are formed as described above. The anode lead portion of the sheet is resistance-welded through a through hole provided in the anode comb terminal. (See Patent Document 1)
 これに対して、本発明の固体電解コンデンサの製造方法においては、誘電体被覆弁作用金属シートの積層体、より詳細には、弁作用金属基体同士がロウ材を用いて接合された積層体を得ている。更に、本発明の固体電解コンデンサの製造方法においては、この積層体を固体電解質層の連続層によって充填および被覆しており、積層体の誘電体被覆弁作用金属シート間には、陰極引出層が存在しない。固体電解コンデンサにおいて、弁作用金属および固体電解質層が、それらの間に誘電体皮膜を挟む陽極および陰極としてそれぞれ機能し、陰極引出層がなくても静電容量を形成できる。 On the other hand, in the method for producing a solid electrolytic capacitor of the present invention, a laminated body of dielectric-coated valve metal sheets, more specifically, a laminated body in which valve metal substrates are joined together using a brazing material. It has gained. Furthermore, in the method for producing a solid electrolytic capacitor of the present invention, this laminate is filled and covered with a continuous layer of solid electrolyte layers, and a cathode lead layer is provided between the dielectric-coated valve metal sheets of the laminate. not exist. In the solid electrolytic capacitor, the valve metal and the solid electrolyte layer function as an anode and a cathode, respectively, with a dielectric film interposed therebetween, and a capacitance can be formed without a cathode lead layer.
 かかる本発明の固体電解コンデンサの製造方法によれば、誘電体被覆弁作用金属シートの表面の一部の領域にロウ材が塗布され、積層された誘電体被覆弁作用金属シートにおいて隣接する弁作用金属基体同士を、ロウ材を用いて接合しているので、接合部に誘電体皮膜が介在することを効果的に低減(好ましくは防止)でき、積層体を構成する弁作用金属基体同士を電気的に安定して接合でき、固体電解コンデンサの等価直列抵抗(ESR)を低減できる。更に、本発明の固体電解コンデンサの製造方法によれば、積層体に対して固体電解質層を連続層として一度に充填および被覆することができ、従来の製造方法よりも簡素化することができる。また更に、本発明の固体電解コンデンサの製造方法によれば、積層体の誘電体被覆弁作用金属シート間に、静電容量形成に寄与しない陰極引出層をなくすことができるので、その分の空間を有効利用でき、単位体積当りの静電容量がより大きな固体電解コンデンサを製造することができる。 According to the method for producing a solid electrolytic capacitor of the present invention, a brazing material is applied to a partial region of the surface of the dielectric-coated valve metal sheet, and the adjacent valve action in the laminated dielectric-coated valve metal sheet. Since the metal bases are joined using the brazing material, it is possible to effectively reduce (preferably prevent) the presence of the dielectric film at the joint, and the valve action metal bases constituting the laminate can be electrically connected. Can be stably connected, and the equivalent series resistance (ESR) of the solid electrolytic capacitor can be reduced. Furthermore, according to the method for manufacturing a solid electrolytic capacitor of the present invention, the solid electrolyte layer can be filled and coated at once as a continuous layer on the laminate, which can be simplified as compared with the conventional manufacturing method. Furthermore, according to the method for producing a solid electrolytic capacitor of the present invention, it is possible to eliminate the cathode lead layer that does not contribute to the formation of the capacitance between the dielectric-coated valve metal sheets of the laminate, so that the corresponding space Can be used effectively, and a solid electrolytic capacitor having a larger capacitance per unit volume can be manufactured.
 なお、本発明の固体電解コンデンサの製造方法において、工程(d)において、積層体の全部が固体電解質層により充填および被覆される必要はなく、積層体の一部が固体電解質層により充填および被覆されなくてもよい。本発明を限定するものではないが、積層体の該一部は、陽極リード部として使用され得る。 In the method for producing a solid electrolytic capacitor of the present invention, in the step (d), it is not necessary that the entire laminate is filled and covered with the solid electrolyte layer, and a part of the laminate is filled and covered with the solid electrolyte layer. It does not have to be done. Although this invention is not limited, this part of a laminated body can be used as an anode lead part.
 本発明の1つの態様にて、誘電体皮膜が酸化皮膜であり、ロウ材が、酸化物を除去する作用を有する添加剤を含む。 In one embodiment of the present invention, the dielectric film is an oxide film, and the brazing material includes an additive having an action of removing the oxide.
 誘電体皮膜は、一般的に、弁作用金属基体の酸化物から成る酸化皮膜である。本発明の上記態様によれば、酸化物を除去する作用を有する添加剤を含むロウ材を使用して、弁作用金属基体同士を接合しているので、かかる添加剤の作用により酸化皮膜を積極的に除去できて、接合部に酸化皮膜が介在することをより一層効果的に低減(好ましくは防止)でき、弁作用金属基体同士をより電気的に安定して接合することができる。 The dielectric film is generally an oxide film made of an oxide of a valve action metal substrate. According to the above aspect of the present invention, the brazing material containing the additive having the function of removing oxides is used to join the valve action metal bases to each other. Therefore, it is possible to more effectively reduce (preferably prevent) the presence of an oxide film at the joint, and to join the valve metal bases more electrically and stably.
 また、本発明によれば、
 誘電体被覆弁作用金属シートを複数積層し、これら誘電体被覆弁作用金属シートを接合して成る積層体と、
 積層体を構成する誘電体被覆弁作用金属シート間の隙間を充填し、かつ積層体の外表面を被覆する固体電解質層の連続層と
を備え、誘電体被覆弁作用金属シートの各々は、弁作用金属基体と、弁作用金属基体の表面を被覆する誘電体皮膜とを含み、積層された複数の前記誘電体被覆弁作用金属シートにおいて隣接する弁作用金属基体同士がロウ材を用いて接合され、ロウ材またはロウ材に由来する導電性物質が固体電解質層から電気的に絶縁されている、固体電解コンデンサが提供される。
Moreover, according to the present invention,
A plurality of dielectric-coated valve metal sheets, and a laminate formed by bonding these dielectric-coated valve metal sheets;
Each of the dielectric-coated valve-acting metal sheets includes a continuous layer of a solid electrolyte layer that fills a gap between the dielectric-coated valve-acting metal sheets constituting the laminate and covers the outer surface of the laminate. The working metal substrate and a dielectric film that covers the surface of the valve metal substrate are bonded to each other in the plurality of laminated dielectric coated valve metal sheets that are adjacent to each other using a brazing material. A solid electrolytic capacitor is provided in which a brazing material or a conductive material derived from the brazing material is electrically insulated from the solid electrolyte layer.
 本発明の好ましい態様にて、前記隣接する弁作用金属基体同士のロウ材による接合部において、弁作用金属基体とロウ材またはロウ材に由来する導電性物質との間に誘電体が介在していない。 In a preferred aspect of the present invention, a dielectric is interposed between the valve metal substrate and the brazing material or the conductive material derived from the brazing material at the joint portion of the adjacent valve metal substrates with the brazing material. Absent.
 かかる本発明の固体電解コンデンサは、上記本発明の固体電解コンデンサの製造方法によって製造可能であり、これと同様の効果を奏する。 Such a solid electrolytic capacitor of the present invention can be manufactured by the above-described method for manufacturing a solid electrolytic capacitor of the present invention, and exhibits the same effect.
 本発明によれば、単位体積当りの静電容量がより大きな固体電解コンデンサを効率的に製造することができる。 According to the present invention, a solid electrolytic capacitor having a larger capacitance per unit volume can be efficiently produced.
本発明の固体電解コンデンサの製造方法により製造可能な固体電解コンデンサの1つの例を示す概略断面図である。It is a schematic sectional drawing which shows one example of the solid electrolytic capacitor which can be manufactured with the manufacturing method of the solid electrolytic capacitor of this invention. 本発明の1つの実施形態における固体電解コンデンサの製造方法を説明する概略断面図である。It is a schematic sectional drawing explaining the manufacturing method of the solid electrolytic capacitor in one embodiment of this invention. 弁作用金属基体をエッチングする工程を説明する概略断面図である。It is a schematic sectional drawing explaining the process of etching a valve action metal base | substrate. 本発明の固体電解コンデンサの製造方法により製造可能な固体電解コンデンサの別の2つの例を示す概略断面図である。It is a schematic sectional drawing which shows two other examples of the solid electrolytic capacitor which can be manufactured with the manufacturing method of the solid electrolytic capacitor of this invention. 本発明の固体電解コンデンサの製造方法により製造可能な固体電解コンデンサの更に別の例を示す概略断面図である。It is a schematic sectional drawing which shows another example of the solid electrolytic capacitor which can be manufactured with the manufacturing method of the solid electrolytic capacitor of this invention.
(実施形態1)
 本発明の1つの実施形態について、図面を参照しながら以下に詳述する。
(Embodiment 1)
One embodiment of the present invention will be described in detail below with reference to the drawings.
 図1は、本実施形態における固体電解コンデンサの製造方法により製造可能な固体電解コンデンサの1つの例を示す概略断面図である。図1に示すように、この固体電解コンデンサ10は、誘電体被覆弁作用金属シート1が複数積層され(図示する例においては、6枚の誘電体被覆弁作用金属シート1を示すが、これに限定されない)、これら誘電体被覆弁作用金属シート1が接合部X、Yにて接合されて成る積層体3と、積層体3を構成する誘電体被覆弁作用金属シート1間の隙間を充填し、かつ積層体3の外表面を被覆する固体電解質層5とを備える。固体電解質層5は、誘電体被覆弁作用金属シート1間の隙間を充填し、かつ積層体3の外表面を被覆するように連続層として形成されるものである。しかし、微視的に見た場合、誘電体被覆弁作用金属シート1間の隙間が充填されていない部分や、積層体3の外表面が被覆されていない部分が不可避的に形成され得、固体電解コンデンサの静電容量が許容可能なレベルにある限り、固体電解質層5にこのような部分が存在していても問題ない。加えて、本実施形態の固体電解コンデンサ10は、固体電解質層5の外表面を被覆する陰極引出層7(カーボン含有層7aおよび銀含有層7b)を更に備えるが、これは本発明に必須でない。 FIG. 1 is a schematic cross-sectional view showing one example of a solid electrolytic capacitor that can be manufactured by the method for manufacturing a solid electrolytic capacitor in the present embodiment. As shown in FIG. 1, the solid electrolytic capacitor 10 includes a plurality of dielectric-coated valve metal sheets 1 (in the example shown, six dielectric-coated valve metal sheets 1 are shown. (Not limited), the gap between the laminated body 3 in which the dielectric-coated valve metal sheet 1 is joined at the joints X and Y and the dielectric-coated valve metal sheet 1 constituting the laminated body 3 is filled. And a solid electrolyte layer 5 covering the outer surface of the laminate 3. The solid electrolyte layer 5 is formed as a continuous layer so as to fill a gap between the dielectric-coated valve metal sheets 1 and to cover the outer surface of the laminate 3. However, when viewed microscopically, a portion where the gap between the dielectric covered valve metal sheets 1 is not filled or a portion where the outer surface of the laminate 3 is not covered can be inevitably formed, As long as the capacitance of the electrolytic capacitor is at an acceptable level, there is no problem even if such a portion exists in the solid electrolyte layer 5. In addition, the solid electrolytic capacitor 10 of this embodiment further includes a cathode lead layer 7 (carbon-containing layer 7a and silver-containing layer 7b) that covers the outer surface of the solid electrolyte layer 5, but this is not essential to the present invention. .
 誘電体被覆弁作用金属シート1の各々は、弁作用金属基体と、弁作用金属基体の表面を被覆する誘電体皮膜とを含んで成る。そして、積層された複数の誘電体被覆弁作用金属シートにおいて隣接する弁作用金属基体同士がロウ材を用いて接合されて、積層体3が形成されている。この積層体3においては、これら誘電体被覆弁作用金属シート1は、ロウ材17a、17b、またはロウ材が接合時に変質し得る場合には、少なくともロウ材に由来する導電性物質により接合されており、これにより、弁作用金属基体同士を接合部を介して電気的に接合している。ロウ材17a、17b(またはロウ材に由来する導電性物質)は、固体電解質層5から(本実施形態においては、後述する絶縁体により)電気的に絶縁されている。 Each of the dielectric-coated valve metal sheets 1 includes a valve metal base and a dielectric film that covers the surface of the valve metal base. And the laminated body 3 is formed by joining adjacent valve action metal bases in a plurality of laminated dielectric-coated valve action metal sheets using a brazing material. In this laminated body 3, these dielectric-coated valve metal sheets 1 are joined by at least a conductive material derived from the brazing material when the brazing materials 17 a, 17 b, or the brazing material can be altered during the joining. Thus, the valve metal bases are electrically joined to each other through the joint. The brazing materials 17a and 17b (or the conductive material derived from the brazing material) are electrically insulated from the solid electrolyte layer 5 (in this embodiment, by an insulator described later).
 本実施形態において、積層体3は、その一部が固体電解質層5により充填および被覆されていない。具体的には、積層体3は絶縁部9によって2つの部分に分画されている。より詳細には、積層体3を構成している誘電体被覆弁作用金属シート1の一部(以下、第1部分と言う)1aは、陽極リード部として、固体電解質層5で被覆されずに、絶縁部9によって固体電解質層5および陰極引出層7から電気的に絶縁された状態で露出している。他方、第1部分1aから絶縁部9によって分画された誘電体被覆弁作用金属シート1の部分(以下、第2部分と言う)1bは、固体電解質層被覆部として、固体電解質層5で被覆されている。 In the present embodiment, a part of the laminate 3 is not filled and covered with the solid electrolyte layer 5. Specifically, the laminate 3 is divided into two parts by the insulating portion 9. More specifically, a part (hereinafter referred to as a first part) 1a of the dielectric-coated valve metal sheet 1 constituting the laminate 3 is not covered with the solid electrolyte layer 5 as an anode lead part. The insulating part 9 is exposed in a state of being electrically insulated from the solid electrolyte layer 5 and the cathode lead layer 7. On the other hand, a portion (hereinafter referred to as a second portion) 1b of the dielectric coated valve metal sheet 1 separated from the first portion 1a by the insulating portion 9 is covered with the solid electrolyte layer 5 as a solid electrolyte layer covering portion. Has been.
 接合部の位置および数は特に限定されず、製造する固体電解コンデンサに求められる要件に応じて適宜設定できる。本実施形態において、1つの接合部Xが、誘電体被覆弁作用金属シート1の第1部分(陽極リード部)に存在し、別の1つの接合部Yが、誘電体被覆弁作用金属シート1の第2部分(固体電解質層被覆部)に存在するが、本発明はこれに限定されない。 The position and number of joints are not particularly limited, and can be set as appropriate according to the requirements for the solid electrolytic capacitor to be manufactured. In the present embodiment, one joint X exists in the first part (anode lead part) of the dielectric-coated valve metal sheet 1 and another single joint Y is the dielectric-coated valve metal sheet 1. However, the present invention is not limited to this.
 次に、本実施形態における固体電解コンデンサの製造方法について説明する。なお、図2に示す固体電解コンデンサ10’においては、例示的に4枚の誘電体被覆弁作用金属シート1を示すが、図1の固体電解コンデンサ10と本質的に同じものと考えて差し支えない。 Next, a method for manufacturing the solid electrolytic capacitor in this embodiment will be described. In the solid electrolytic capacitor 10 ′ shown in FIG. 2, four dielectric-coated valve action metal sheets 1 are shown as an example. However, the solid electrolytic capacitor 10 ′ may be considered to be essentially the same as the solid electrolytic capacitor 10 in FIG. .
・工程(a)
 まず、図2(a)に示すように、弁作用金属基体11と、弁作用金属基体11の表面を被覆する誘電体皮膜13とを含む誘電体被覆弁作用金属シート1を用意する。具体的には、誘電体被覆弁作用金属シート1は以下のようにして作製され得る。
・ Process (a)
First, as shown in FIG. 2A, a dielectric-coated valve metal sheet 1 including a valve metal base 11 and a dielectric film 13 that covers the surface of the valve metal base 11 is prepared. Specifically, the dielectric-coated valve metal sheet 1 can be produced as follows.
 弁作用金属基体11を準備する。弁作用金属基体11は、いわゆる弁作用を示す金属材料から実質的に構成される。かかる金属材料は、例えば、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、およびこれらの2種以上の合金からなる群より選択され、好ましくは、アルミニウムまたはアルミニウムを含む合金である。 弁 Prepare the valve action metal substrate 11. The valve action metal substrate 11 is substantially composed of a metal material exhibiting a so-called valve action. Such a metal material is selected from the group consisting of, for example, aluminum, tantalum, niobium, titanium, zirconium, and alloys of two or more thereof, and is preferably aluminum or an alloy containing aluminum.
 弁作用金属基体11は、シート状(または平板状、例えば箔など)の形態を有し得る。弁作用金属基体11の厚さは、特に限定されないが、例えば50~200μm、好ましくは90~130μmである。弁作用金属基体11の幅および長さは、製造する固体電解コンデンサのサイズに応じて適宜選択され得る。なお、図2において、紙面に対して垂直な方向を幅方向とする。 The valve metal base 11 may have a sheet shape (or a flat plate shape such as a foil). The thickness of the valve action metal substrate 11 is not particularly limited, but is, for example, 50 to 200 μm, preferably 90 to 130 μm. The width and length of the valve metal base 11 can be appropriately selected according to the size of the solid electrolytic capacitor to be manufactured. In FIG. 2, the direction perpendicular to the paper surface is the width direction.
 特に、弁作用金属基体11は、その表面に凹凸を有するものが好ましく、例えばその表層部が多孔質であるものがより好ましい。弁作用金属基体11は、固体電解コンデンサにおいて陽極として機能するため、同じ占有面積であっても、弁作用金属基体11の表面積、すなわち実効面積が大きいほどコンデンサの静電容量が大きくなるからである。表面に凹凸を有する、または表層部が多孔質である弁作用金属基体11は、予め粗面化処理に付すことにより得ることができる。粗面化処理は、一般的に、エッチング処理により実施される。 In particular, the valve-acting metal substrate 11 preferably has irregularities on the surface, and for example, the surface layer portion is more preferably porous. This is because the valve metal base 11 functions as an anode in a solid electrolytic capacitor, so that the capacitance of the capacitor increases as the surface area of the valve metal base 11, that is, the effective area increases, even with the same occupied area. . The valve metal substrate 11 having irregularities on the surface or having a porous surface layer portion can be obtained by subjecting it to a roughening treatment in advance. The roughening process is generally performed by an etching process.
 ・工程(a)の前工程
 本実施形態に必須ではないが、エッチング処理は、工程(a)の前に、例えば以下のようにして実施され得る。
-Pre-process of a process (a) Although it is not essential to this embodiment, an etching process may be implemented as follows, for example before a process (a).
 図3(a)に示すように、未処理の弁作用金属基体11’を準備する。次に、図3(b)に示すように、接合部に対応する領域(換言すれば、後の工程において接合部が形成されるべき領域)をマスク15で保護する。得られたマスク15付きの弁作用金属基体11’をエッチング液に浸漬してエッチング処理に付す。これにより、図3(c)に示すように、弁作用金属基体11’のマスク15で保護されていない領域では、その表層部のみに多孔質部分11aが形成される。なお、処理後の弁作用金属基体11に関して、理解を助ける目的で模式的に、多孔質部分11aと、多孔質化していない非エッチング部分11bとを区分して図示しているが、実際にはこれらを明確に区分することは困難である。その後、マスク15を除去して、エッチング処理された弁作用金属基体11が得られる。図3(d)に示すように、弁作用金属基体11は、接合部に対応する領域に非エッチング部分11cを有し、非エッチング部分11cは、マスク15で保護されていたため、比較的平坦な表面状態を維持することができる。 As shown in FIG. 3A, an untreated valve metal base 11 'is prepared. Next, as shown in FIG. 3B, a mask 15 protects a region corresponding to the bonding portion (in other words, a region where a bonding portion is to be formed in a later step). The obtained valve action metal substrate 11 ′ with the mask 15 is immersed in an etching solution and subjected to an etching process. Thereby, as shown in FIG. 3C, in the region not protected by the mask 15 of the valve metal base 11 ', the porous portion 11a is formed only in the surface layer portion. In addition, regarding the valve action metal substrate 11 after processing, for the purpose of helping understanding, the porous portion 11a and the non-etched portion 11b that has not been made porous are schematically shown separately. It is difficult to clearly distinguish these. Thereafter, the mask 15 is removed, and the valve metal substrate 11 subjected to the etching process is obtained. As shown in FIG. 3 (d), the valve metal base 11 has a non-etched portion 11 c in a region corresponding to the joint portion, and the non-etched portion 11 c is protected by the mask 15, so that it is relatively flat. The surface state can be maintained.
 このように、接合部に対応する領域をマスク15で保護して非エッチング部分11cを残すことが、後の工程において弁作用金属基体同士の接合性を向上させ得るので好ましい。非エッチング部分11cは、接合される2つの弁作用金属基体のうち、少なくとも一方の接合面に残されていることが好ましく、両方の接合面に残されていることがより好ましい。しかし、エッチング処理に際してマスク15で保護することは必ずしも要しない。 Thus, it is preferable to protect the region corresponding to the joint portion with the mask 15 and leave the non-etched portion 11c because the joint property between the valve action metal substrates can be improved in a later step. The non-etched portion 11c is preferably left on at least one of the two valve metal substrates to be bonded, and more preferably left on both of the bonding surfaces. However, it is not always necessary to protect the mask 15 with the etching process.
 エッチング処理の条件、例えばエッチング液、エッチングの温度および時間などは、使用する弁作用金属基体の金属材料や、所望される電気特性(実効面積を含む)などに応じて適宜選択され得る。例えば、エッチング液には、塩酸などが用いられ得る。その他の条件は、製造する固体電解コンデンサに求められる静電容量、耐電圧等に応じて、予め実験により確認し適当な値に設定することができる。 Etching conditions, such as the etching solution, etching temperature and time, can be appropriately selected according to the metal material of the valve metal substrate to be used, desired electrical characteristics (including effective area), and the like. For example, hydrochloric acid or the like can be used as the etchant. Other conditions can be confirmed in advance and set to appropriate values according to the capacitance, withstand voltage, etc. required for the solid electrolytic capacitor to be manufactured.
 図2(a)を再び参照して、かかる弁作用金属基体11の表面に誘電体皮膜13を形成する。このような誘電体皮膜13は、弁作用金属基体11の陽極酸化により酸化皮膜として形成することができる。 Referring again to FIG. 2A, a dielectric coating 13 is formed on the surface of the valve metal base 11. Such a dielectric film 13 can be formed as an oxide film by anodic oxidation of the valve action metal substrate 11.
 より詳細には、弁作用金属基体11を、そのまま電解液に浸漬して陽極酸化処理(化成処理とも言われ、以下も同様である)に付す。すると、弁作用金属基体11の陽極酸化により、その表面に酸化皮膜13が形成される。 More specifically, the valve action metal substrate 11 is immersed in an electrolytic solution as it is and subjected to an anodic oxidation treatment (also referred to as a chemical conversion treatment, the same applies hereinafter). Then, an oxide film 13 is formed on the surface of the valve action metal substrate 11 by anodic oxidation.
 陽極酸化処理の条件、例えば電解液、陽極酸化の温度、時間、電流密度および電圧などは、使用する弁作用金属基体の金属材料や、所望される電気特性(酸化皮膜厚さを含む)などに応じて適宜選択され得る。例えば、電解液には、ホウ酸、リン酸、アジピン酸、それらのナトリウム塩およびアンモニウム塩からなる群より選択される少なくとも1種を含む水溶液などが用いられ得る。その他の条件は、製造する固体電解コンデンサに求められる静電容量、耐電圧等に応じて、予め実験により確認し適当な値に設定することができる。 Conditions for anodizing treatment, such as electrolyte solution, anodizing temperature, time, current density and voltage, etc., depend on the metal material of the valve action metal substrate used and the desired electrical characteristics (including oxide film thickness). It can be selected as appropriate. For example, the electrolytic solution may be an aqueous solution containing at least one selected from the group consisting of boric acid, phosphoric acid, adipic acid, sodium salts and ammonium salts thereof. Other conditions can be confirmed in advance and set to appropriate values according to the capacitance, withstand voltage, etc. required for the solid electrolytic capacitor to be manufactured.
 なお、誘電体被覆弁作用金属シートに関し、弁作用金属基体をエッチング処理により粗面化した後、陽極酸化により酸化皮膜を形成したものが、固体電解コンデンサ向けに市販されている。誘電体被覆弁作用金属シートとして、このような市販のものを使用してもよい。 In addition, regarding the dielectric-coated valve metal sheet, a metal sheet that has been roughened by etching treatment and an oxide film is formed by anodic oxidation is commercially available for solid electrolytic capacitors. You may use such a commercially available thing as a dielectric covering valve action metal sheet.
 以上のようにして、弁作用金属基体11と、弁作用金属基体11の表面を被覆する誘電体皮膜13とを含む誘電体被覆弁作用金属シート1が作製される。誘電体被覆弁作用金属シート1の厚さ、幅および長さは、使用する弁作用金属基体11の厚さ、幅および長さにほぼ等しく(通常、誘電体皮膜の厚さはサブミクロンのオーダー、典型的には数~数十ナノメートルであり、弁作用金属基体11のサイズに比較して無視し得る程度である)、製造する固体電解コンデンサのサイズに応じて適宜選択され得る。 As described above, the dielectric coated valve metal sheet 1 including the valve metal base 11 and the dielectric film 13 covering the surface of the valve metal base 11 is produced. The thickness, width and length of the dielectric coated valve metal sheet 1 are approximately equal to the thickness, width and length of the valve metal base 11 used (usually the thickness of the dielectric coating is on the order of submicron). It is typically several to several tens of nanometers and is negligible compared to the size of the valve metal substrate 11), and can be appropriately selected according to the size of the solid electrolytic capacitor to be manufactured.
 本工程における誘電体被覆弁作用金属シート1は、誘電体皮膜13が、弁作用金属基体11の表面を被覆する限り、任意の適切な被覆状態であってよい。例えば、誘電体皮膜13は、弁作用金属基体11の側面(図2に示す弁作用金属基体11の断面に平行な面)を被覆していても、被覆していなくてもよい。但し、弁作用金属基体11の第2部分1bの側面が誘電体皮膜13で被覆されていない場合、少なくとも後述の工程(d)の前に、誘電体皮膜で被覆する必要がある。 The dielectric coated valve metal sheet 1 in this step may be in any appropriate coated state as long as the dielectric film 13 covers the surface of the valve metal base 11. For example, the dielectric coating 13 may or may not cover the side surface of the valve metal substrate 11 (a surface parallel to the cross section of the valve metal substrate 11 shown in FIG. 2). However, when the side surface of the second portion 1b of the valve action metal substrate 11 is not coated with the dielectric film 13, it is necessary to coat with a dielectric film at least before the step (d) described later.
 このような誘電体被覆弁作用金属シート1の表面の所定の領域にロウ材17a、17bを塗布する。ロウ材を塗布すべき領域は、誘電体被覆弁作用金属シート1の表面の一部の領域であり、これは、通常は、接合部に対応する領域と同じであるが、接合部に対応する領域の範囲内に位置する限り、接合部に対応する領域より小さくてもよい。ロウ材を塗布する領域の面積は、使用するロウ材の組成やロウ材の塗布厚さなどにもよるが、接合部に対応する領域の面積に対して80~100%が望ましい。 The brazing materials 17a and 17b are applied to a predetermined region on the surface of the dielectric-coated valve metal sheet 1 as described above. The region to which the brazing material is to be applied is a partial region on the surface of the dielectric-coated valve metal sheet 1, which is usually the same as the region corresponding to the joint, but corresponds to the joint. As long as it is located within the region, it may be smaller than the region corresponding to the joint. The area of the region where the brazing material is applied depends on the composition of the brazing material used, the coating thickness of the brazing material, and the like, but is preferably 80 to 100% of the area of the region corresponding to the joint.
 ロウ材は、弁作用金属基体を構成している金属材料よりも低い融点を有する導電性物質を含む限り、任意の適切な材料を使用できる。ロウ材に含まれる導電性物質は、弁作用金属基体に対する溶加材として理解され得る。弁作用金属基体の金属材料の融点およびロウ材に含まれる導電性物質の融点は、例えば示差走査熱量計を用いて測定可能である。 As the brazing material, any appropriate material can be used as long as it contains a conductive material having a melting point lower than that of the metal material constituting the valve action metal substrate. The conductive substance contained in the brazing material can be understood as a filler material for the valve action metal substrate. The melting point of the metal material of the valve action metal substrate and the melting point of the conductive substance contained in the brazing material can be measured using, for example, a differential scanning calorimeter.
 ロウ材に含まれる導電性物質は、弁作用金属基体を構成している金属材料よりも低い融点を有する金属材料であってよい。ロウ材に含まれる導電性物質の例としては、アルミニウム、アルミニウムを含む合金、および鉛フリーはんだ材料などが挙げられ、好ましくはアルミニウム、およびアルミニウムを含む合金である。 The conductive substance contained in the brazing material may be a metal material having a lower melting point than the metal material constituting the valve action metal substrate. Examples of the conductive substance contained in the brazing material include aluminum, an alloy containing aluminum, a lead-free solder material, and the like, preferably aluminum and an alloy containing aluminum.
 かかる導電性物質は、粒状物、フレーク状物などの形態を有し得る。導電性物質は、平均粒径0.02mm以下、例えば0.002~0.05mm(いずれも体積平均)の粒状物であることが、塊状物よりも融点が低いので好ましい。 Such a conductive material may have a form such as a granular material or a flaky material. The conductive material is preferably a granular material having an average particle diameter of 0.02 mm or less, for example, 0.002 to 0.05 mm (both volume average) because the melting point is lower than that of the lump.
 ロウ材は、上記のような導電性物質に加えて、添加剤を含んでいてもよい。添加剤は、種々の目的で添加され得る。ロウ材は、酸化物を除去する作用を有する添加剤を含むことが好ましい。酸化物を除去する作用を有する添加剤としては、例えばフラックス、ホウ砂などが挙げられる。フラックスは、市販されているロウ付け用フラックスを用いることができる。その他、使用され得る添加剤としては、粘度調整剤、濡れ性改善剤などが挙げられる。 The brazing material may contain an additive in addition to the conductive material as described above. Additives can be added for various purposes. The brazing material preferably contains an additive having an action of removing oxides. Examples of the additive having an action of removing oxides include flux and borax. As the flux, a commercially available brazing flux can be used. Other additives that can be used include viscosity modifiers and wettability improvers.
 ロウ材の形態は、その組成にもよるが、ペースト状、固体状などであり、塗布の容易さからペースト状であることが好ましい。 Although the form of the brazing material depends on its composition, it is pasty or solid, and is preferably pasty for ease of application.
 ロウ材の塗布は、例えばディスペンサ、スクリーン印刷、ポッティングなどにより実施できる。フラックスは、上記のようにロウ材に含まれていてもよいが、ロウ材と別に用いて、ロウ材を塗布する前に、接合部に対応する領域に塗布またはスプレーしてもよい。 ロ ウ The brazing material can be applied by, for example, a dispenser, screen printing, potting, or the like. The flux may be contained in the brazing material as described above, but it may be used separately from the brazing material and applied or sprayed on the region corresponding to the joint before applying the brazing material.
 以上のようにして、誘電体被覆弁作用金属シート1の表面の上記所定の領域に、ロウ材17a、17bが塗布される。 As described above, the brazing materials 17 a and 17 b are applied to the predetermined region on the surface of the dielectric-coated valve metal sheet 1.
 本実施形態においては、このようにロウ材17a、17bが塗布された誘電体被覆弁作用金属シート1を、図2(a)に示すように、絶縁部9によって第1部分1aと第2部分1bとに分画する。絶縁部9は、誘電体被覆弁作用金属シート1の表面の別の所定の領域を被覆するように形成される。 In the present embodiment, the dielectric-coated valve metal sheet 1 coated with the brazing materials 17a and 17b in this way is formed into the first part 1a and the second part by the insulating part 9, as shown in FIG. Fractionate into 1b. The insulating part 9 is formed so as to cover another predetermined region on the surface of the dielectric-coated valve metal sheet 1.
 絶縁部9は、絶縁性樹脂から形成されており、例えば一般的な耐熱性樹脂、好ましくは溶剤に可溶あるいは膨潤し得る耐熱性樹脂またはその前駆体や、無機質微粉とセルロース系樹脂から成る組成物などが使用できる。具体例としては、ポリフェニルスルホン(PPS)、ポリエーテルスルホン(PES)、シアン酸エステル樹脂、フッ素樹脂(テトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体等)、低分子量ポリイミド、ならびにそれらの誘導体および前駆体などが挙げられ、特に低分子量ポリイミド、ポリエーテルスルホン、フッ素樹脂およびそれらの前駆体が挙げられる。 The insulating part 9 is formed of an insulating resin, for example, a general heat resistant resin, preferably a heat resistant resin that can be dissolved or swelled in a solvent or a precursor thereof, or a composition comprising an inorganic fine powder and a cellulose resin. Things can be used. Specific examples include polyphenylsulfone (PPS), polyethersulfone (PES), cyanate ester resin, fluororesin (tetrafluoroethylene, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, etc.), low molecular weight polyimide, and Examples thereof include derivatives and precursors thereof, and particularly low molecular weight polyimides, polyethersulfones, fluororesins, and precursors thereof.
 なお、絶縁部9は、誘電体被覆弁作用金属シート1の第1部分1a(陽極リード部)が、固体電解質層5および陰極引出層7から電気的に絶縁された状態で、固体電解コンデンサ10’の外部に露出する限り、任意の適切なタイミングで形成すればよく、いくつかの段階に分けて形成してもよい。 The insulating portion 9 is a solid electrolytic capacitor 10 in a state where the first portion 1a (anode lead portion) of the dielectric-coated valve metal sheet 1 is electrically insulated from the solid electrolyte layer 5 and the cathode lead layer 7. As long as it is exposed to the outside, it may be formed at any appropriate timing, and may be formed in several stages.
・工程(b)
 上記のようにして作製した複数の誘電体被覆弁作用金属シート1を、図2(b)に示すように積層する。積層は、これら誘電体被覆弁作用金属シート1間に隙間を有し、かつ各誘電体被覆弁作用金属シート1のロウ材17a、17bを塗布した領域の位置が合わさるように(換言すれば、積層した状態で厚さ方向に整列するように)行う。
・ Process (b)
A plurality of dielectric-coated valve metal sheets 1 produced as described above are laminated as shown in FIG. The lamination has a gap between the dielectric-coated valve metal sheets 1 and the positions of the regions coated with the brazing materials 17a and 17b of the respective dielectric-coated valve metal sheets 1 are aligned (in other words, So that they are stacked and aligned in the thickness direction).
 本実施形態のように各誘電体被覆弁作用金属シート1が、ロウ材17a、17bを異なる位置において複数の領域に塗布した場合、積層は、ロウ材17aを塗布した領域同士の位置およびロウ材17bを塗布した領域同士の位置が、積層した状態で厚さ方向においてそれぞれ整列するように行う。 When each dielectric-coated valve metal sheet 1 is applied to a plurality of regions at different positions as in the present embodiment, the lamination is performed between the regions where the brazing material 17a is applied and the brazing material. The positions of the areas where the 17b is applied are aligned in the thickness direction in a stacked state.
 なお、本実施形態においては、各誘電体被覆弁作用金属シート1の上面側のみにロウ材を塗布した例を図2(a)に示しているが、本発明はこれに限定されない。図2(b)に示すように、隣接する誘電体被覆弁作用金属シート1間にロウ材が挟まれていればよく、例えば、各誘電体被覆弁作用金属シート1の下面側のみ、または上面および下面の両面にロウ材を塗布してもよい。 In addition, in this embodiment, although the example which apply | coated the brazing material only to the upper surface side of each dielectric covering valve action metal sheet 1 is shown in Fig.2 (a), this invention is not limited to this. As shown in FIG. 2 (b), it is sufficient that a brazing material is sandwiched between adjacent dielectric-coated valve metal sheets 1, for example, only the lower surface side or upper surface of each dielectric-coated valve metal sheet 1 And you may apply | coat a brazing material to both surfaces of a lower surface.
 積層された誘電体被覆弁作用金属シート1間(より詳細には誘電体皮膜13間)の隙間は、後述の工程(d)において固体電解質層を成す導電性高分子の原料溶液が浸入し得る大きさであればよい。 In the gap between the laminated dielectric covered valve metal sheets 1 (more specifically, between the dielectric films 13), the raw material solution of the conductive polymer that forms the solid electrolyte layer can enter in the step (d) described later. Any size is acceptable.
 上述のエッチング処理などにより弁作用金属基体11の表面が粗面化(凹凸形成)されている(好ましくは表層部が多孔質である)場合、単に誘電体被覆弁作用金属シート1を重ね合わせるだけで、これら誘電体被覆弁作用金属シート1間に隙間が自然に形成される。 When the surface of the valve metal base 11 is roughened (formed with irregularities) by the etching process described above (preferably the surface layer is porous), the dielectric-coated valve metal sheet 1 is simply overlapped. Thus, a gap is naturally formed between the dielectric-coated valve metal sheets 1.
 また、図2(b)に示すように、絶縁部9が、複数の誘電体被覆弁作用金属シート1間に位置する場合、絶縁部9によって、誘電体被覆弁作用金属シート1間に隙間が自然に形成される。更にこの場合、絶縁部9を利用して複数の誘電体被覆弁作用金属シート1を相互に固定(後の工程において接合部を形成する前に仮固定)することができる。より詳細には、複数の誘電体被覆弁作用金属シート1のそれぞれに絶縁性樹脂を別個に塗布し、これらを重ね合わせ、絶縁性樹脂を加熱などによって固化または硬化させて絶縁部9を形成し、この絶縁部9により複数の誘電体被覆弁作用金属シート1を相互に固定することができる。なお、絶縁部9の高さは、誘電体被覆弁作用金属シート1の各々への塗布量などによって厚さを調節することができ、例えば、誘電体被覆弁作用金属シート1間に位置する絶縁部と、最上面および/または最下面に位置する絶縁部とで厚さを異ならせてよい。 In addition, as shown in FIG. 2B, when the insulating portion 9 is located between the plurality of dielectric-covered valve metal sheets 1, the insulating portion 9 causes a gap between the dielectric-coated valve metal sheets 1. Naturally formed. Further, in this case, a plurality of dielectric-coated valve metal sheets 1 can be fixed to each other using the insulating portion 9 (temporarily fixed before forming a joint portion in a later step). More specifically, an insulating resin is separately applied to each of the plurality of dielectric-coated valve metal sheets 1, and these are superposed, and the insulating resin is solidified or cured by heating or the like to form the insulating portion 9. The plurality of dielectric covered valve metal sheets 1 can be fixed to each other by the insulating portion 9. Note that the height of the insulating portion 9 can be adjusted by the amount applied to each of the dielectric-coated valve metal sheets 1, for example, the insulation positioned between the dielectric-coated valve metal sheets 1. The thickness may be different between the portion and the insulating portion located on the uppermost surface and / or the lowermost surface.
 本実施形態において、積層された複数の誘電体被覆弁作用金属シート1は、実質的にほぼ等しい長さを有し、これらの第1部分1aおよび第2部分1bもそれぞれほぼ等しい長さを有する。 In the present embodiment, the plurality of laminated dielectric-coated valve metal sheets 1 have substantially the same length, and the first portion 1a and the second portion 1b also have substantially the same length. .
 以上のようにして、複数の誘電体被覆弁作用金属シート1を、これらの間に隙間を有し、かつ各々のロウ材を塗布した領域の位置が合わさるように積層して成る誘電体被覆弁作用金属シートの積層体が得られる。 As described above, a plurality of dielectric-coated valve-acting metal sheets 1 are laminated such that there is a gap between them and the positions of the areas where the brazing materials are applied are aligned. A laminate of working metal sheets is obtained.
・工程(c)
 上記のようにして積層した複数の誘電体被覆弁作用金属シート1において隣接する弁作用金属基体11同士をロウ材17a、17bを用いて接合して、図2(c)に示すように、接合部X、Yをそれぞれ形成し、これによって接合された積層体3を得る。なお、ロウ材17a、17bの縮尺スケールは図2(b)と図2(c)とで異なるが、図2は本実施形態を模式的に説明するものであり、かかる縮尺スケールの相違は問題でない。
・ Process (c)
In the plurality of dielectric-coated valve metal sheets 1 laminated as described above, adjacent valve metal bases 11 are bonded together using brazing materials 17a and 17b, as shown in FIG. 2 (c). Portions X and Y are formed, respectively, to obtain a laminated body 3 bonded thereto. Although the scales of the brazing materials 17a and 17b are different between FIGS. 2B and 2C, FIG. 2 schematically illustrates the present embodiment, and the difference between the scales is a problem. Not.
 ロウ材を用いた接合は、誘電体被覆弁作用金属シート1にロウ材17a、17bを塗布して積層した積層体を加熱することにより実施できる。加熱は、積層体全体を加熱するものであってもよいが、ロウ材を塗布した領域を含む箇所を局部的に加熱することが好ましい。かかる加熱により一旦溶融し、その後、固化したロウ材17a、17bによって、弁作用金属基体11同士が接合される。ロウ材17a、17bと弁作用金属基体11との間に存在していた誘電体皮膜13は、ロウ材17a、17bが一旦溶融して固化する際に皮膜の形態を失い、例えば、誘電体がロウ材17a、17bの内部で分散(例えば、複数の分断されたフラグメントとして存在)する傾向にある。これにより、接合部X、Yに誘電体皮膜13が介在する(換言すれば、隣接する弁作用金属11の間に誘電体が皮膜の形態で存在する)ことを効果的に低減でき、好ましくは防止できて、積層体を構成する弁作用金属基体11同士を電気的に安定して接合することができる。 Joining using a brazing material can be performed by heating a laminated body obtained by applying brazing materials 17a and 17b to the dielectric-coated valve metal sheet 1 and laminating them. The heating may be for heating the entire laminate, but it is preferable to locally heat the portion including the region where the brazing material is applied. The valve metal bases 11 are joined to each other by the brazing materials 17a and 17b once melted by the heating and then solidified. The dielectric film 13 existing between the brazing materials 17a and 17b and the valve metal base 11 loses its form when the brazing materials 17a and 17b are once melted and solidified. There is a tendency to disperse (for example, exist as a plurality of fragmented fragments) inside the brazing materials 17a and 17b. As a result, it is possible to effectively reduce the presence of the dielectric film 13 in the joints X and Y (in other words, the dielectric exists in the form of a film between the adjacent valve action metals 11). Therefore, the valve action metal substrates 11 constituting the laminate can be electrically and stably joined to each other.
 特に、酸化物を除去する作用を有する添加剤を含むロウ材を使用した場合や、ロウ材を塗布する前に、接合部に対応する領域にフラックスを塗布またはスプレーしていた場合には、酸化皮膜である誘電体皮膜を積極的に除去できるので、接合部に酸化皮膜が介在することをより一層効果的に低減でき、好ましくは防止できて、弁作用金属基体同士をより電気的に安定して接合することができる。 In particular, when a brazing material containing an additive having an action of removing oxides is used, or when flux is applied or sprayed to the region corresponding to the joint before the brazing material is applied, oxidation is performed. Since the dielectric film, which is a film, can be positively removed, it is possible to more effectively reduce, preferably prevent, the presence of an oxide film at the joint, and the valve action metal substrates can be more electrically stabilized. Can be joined together.
 図3を参照して上述したように、工程(a)の前にエッチング処理を行う際に、弁作用金属基体11の接合部に対応する領域に非エッチング部分11cを残しておいた場合、接合部に対応する領域は、エッチングされておらず、比較的平坦な元の表面状態を維持することができるので、弁作用金属基体11同士を接合させ易く、接合部に対応する領域がエッチングにより粗面化されている場合に比べて、弁作用金属基体11同士の接合性を向上させることができる。しかし、接合の際に溶融したロウ材の弁作用金属基体11に対する濡れ性が高い場合には、接合部に対応する領域がエッチングされていてもよい。この場合、溶融したロウ材が、弁作用金属基体11の凹部または孔に入り込み、高い接合性を得ることができる。 As described above with reference to FIG. 3, when the etching process is performed before the step (a), when the non-etched portion 11 c is left in the region corresponding to the joint portion of the valve action metal substrate 11, The region corresponding to the portion is not etched and can maintain a relatively flat original surface state. Therefore, the valve metal bases 11 can be easily joined to each other, and the region corresponding to the joint is roughened by etching. Compared with the case where it is surfaceized, the joining property of the valve action metal base | substrates 11 can be improved. However, when the wettability of the brazing material melted at the time of bonding to the valve metal base 11 is high, the region corresponding to the bonding portion may be etched. In this case, the molten brazing material enters the recesses or holes of the valve metal base 11 and high bondability can be obtained.
 本実施形態においては、2つの接合部X、Yが形成される。2つ以上の接合部を形成する場合、その形成箇所は適宜配置され得るが、弁作用金属基体11が、それらの箇所においてほぼ均等な力で接合されるように配置されることが好ましい。 In the present embodiment, two joints X and Y are formed. In the case of forming two or more joint portions, the formation locations can be appropriately arranged, but the valve metal base 11 is preferably arranged so as to be joined with substantially equal force at those locations.
 接合部Xは、誘電体被覆弁作用金属シート1の第1部分1a(陽極リード部)に形成される。誘電体被覆弁作用金属シート1の第1部分1aに接合部を形成する場合、第1部分1aの幅を二等分する線上またはその近傍に形成することが、誘電体被覆弁作用金属シート全体への応力を小さくし、より電気的かつ物理的に安定した固体電解コンデンサを作製できるので好ましい。具体的には、この接合部Xの面積は、第1部分1aと第2部分1bとの面積比にもよるが、第1部分1aの面積の好ましくは0.1%以上、より好ましくは1%以上であり、および好ましくは10%以下、より好ましくは5%以下である。接合部Xの面積が、第1部分1aの面積の0.1%以上であれば、必要かつ十分な機械的接合強度と電気伝導性(導通)を得ることができる。他方、接合部Xの面積が、第1部分1aの面積の10%以下であれば、接合部形成による容量低下を実用上問題にならない程度に抑えることができる。誘電体被覆弁作用金属シート1の第1部分1aに2つ以上の接合部を形成する場合、これら接合部の各々の面積が、第1部分1aの面積の好ましくは0.1%以上、より好ましくは1%以上であり、および、これら接合部の合計の面積が、第1部分1aの面積の好ましくは10%以下、より好ましくは5%以下である。 The joint portion X is formed in the first portion 1a (anode lead portion) of the dielectric-coated valve action metal sheet 1. In the case where the joint portion is formed in the first portion 1a of the dielectric-coated valve metal sheet 1, the entire dielectric-coated valve metal sheet may be formed on or in the vicinity of a line that bisects the width of the first portion 1a. It is preferable because a solid electrolytic capacitor can be manufactured with a reduced stress on the surface and more electrically and physically stable. Specifically, the area of the joint X depends on the area ratio between the first part 1a and the second part 1b, but is preferably 0.1% or more, more preferably 1% of the area of the first part 1a. % Or more, and preferably 10% or less, more preferably 5% or less. If the area of the joint X is 0.1% or more of the area of the first portion 1a, necessary and sufficient mechanical joint strength and electrical conductivity (conduction) can be obtained. On the other hand, if the area of the junction X is 10% or less of the area of the first portion 1a, the capacity reduction due to the formation of the junction can be suppressed to a level that does not cause a problem in practice. When two or more joint portions are formed in the first portion 1a of the dielectric-coated valve action metal sheet 1, the area of each of the joint portions is preferably 0.1% or more of the area of the first portion 1a. Preferably, it is 1% or more, and the total area of these joints is preferably 10% or less, more preferably 5% or less of the area of the first portion 1a.
 他方、接合部Yは、誘電体被覆弁作用金属シート1の第2部分1b(固体電解質層被覆部、より詳細には、後の工程において固体電解質層により充填および被覆される部分)に形成される。誘電体被覆弁作用金属シート1の第2部分1bに接合部を形成する場合、第2部分1bの幅を二等分する線上またはその近傍に形成することが、誘電体被覆弁作用金属シート全体への応力を小さくし、より電気的かつ物理的に安定した固体電解コンデンサを作製できるので好ましい。本実施形態では、弁作用金属基体11が、複数の接合部X、Yにおいてほぼ均等な力で接合されるように、接合部Xは第2部分1bの長さ方向中央部から陽極リード部に対して遠位側にずれて配置されている。誘電体被覆弁作用金属シート1の第2部分1bに接合部を形成する場合、かかる部分に接合部を形成しない場合に比べて、接合部に相当する分の静電容量が失われる。特に、接合部もエッチングにより粗面化されて実効面積が増大している場合と比較すると、接合部を形成することによって凹凸がなくなる(多孔質部分が潰れる)ので、同じ接合面積であってもより多くの静電容量が失われることになる。よって、接合部の面積は、電気的な接続を確保しつつも、極力小さくすることがより好ましい。具体的には、この接合部Yの面積は、第2部分1bの面積の好ましくは1%以上、より好ましくは5%以上であり、および好ましくは30%以下、より好ましくは20%以下である。接合部Yの面積が、第2部分1bの面積の1%以上であれば、隣接する弁作用金属基体11同士を電気的かつ物理的に安定して接合することができ、よって、電気的接続を確保しつつ、後の工程において固体電解質層を形成する際に接合部が離れることを回避できる。他方、接合部Yの面積が、第2部分1bの面積の30%以下であれば、固体電解コンデンサの静電容量を過度に失うことがなく、よって、静電容量の損失分を補償するために誘電体被覆弁作用金属シート1の積層枚数を増やさなくてよい。誘電体被覆弁作用金属シート1の第2部分1bに2つ以上の接合部を形成する場合、これら接合部の各々の面積が、第2部分1bの面積の好ましくは1%以上、より好ましくは5%以上であり、および、これら接合部の合計の面積が、第2部分1bの面積の好ましくは30%以下、より好ましくは20%以下である。 On the other hand, the joint portion Y is formed in the second portion 1b (solid electrolyte layer covering portion, more specifically, the portion filled and covered with the solid electrolyte layer in a later step) of the dielectric coated valve metal sheet 1. The In the case where the joint portion is formed in the second portion 1b of the dielectric-covered valve metal sheet 1, it is formed on or near the line that bisects the width of the second portion 1b. It is preferable because a solid electrolytic capacitor can be manufactured with a reduced stress on the surface and more electrically and physically stable. In the present embodiment, the joint X extends from the central portion in the length direction of the second portion 1b to the anode lead portion so that the valve metal base 11 is joined with a substantially equal force at the plurality of joints X and Y. In contrast, they are arranged to be shifted to the distal side. In the case where the joint portion is formed in the second portion 1b of the dielectric-coated valve action metal sheet 1, the capacitance corresponding to the joint portion is lost as compared with the case where the joint portion is not formed in the portion. In particular, compared to the case where the joint is roughened by etching and the effective area is increased, the formation of the joint eliminates unevenness (the porous portion is crushed), so even if the joint area is the same More capacitance will be lost. Therefore, it is more preferable to reduce the area of the joint portion as much as possible while ensuring electrical connection. Specifically, the area of the joint Y is preferably 1% or more, more preferably 5% or more, and preferably 30% or less, more preferably 20% or less of the area of the second portion 1b. . When the area of the joint portion Y is 1% or more of the area of the second portion 1b, the adjacent valve action metal bases 11 can be joined electrically and physically stably, and thus the electrical connection It is possible to prevent the joint portion from being separated when forming the solid electrolyte layer in the subsequent process while securing the above. On the other hand, if the area of the joint portion Y is 30% or less of the area of the second portion 1b, the capacitance of the solid electrolytic capacitor is not excessively lost, and therefore the loss of capacitance is compensated. In addition, it is not necessary to increase the number of laminated dielectric coated valve metal sheets 1. When two or more joint portions are formed in the second portion 1b of the dielectric-coated valve action metal sheet 1, the area of each of the joint portions is preferably 1% or more of the area of the second portion 1b, more preferably It is 5% or more, and the total area of these joints is preferably 30% or less, more preferably 20% or less of the area of the second portion 1b.
 接合部の位置、数および大きさに関する上記説明は、ロウ材を塗布する領域に関する説明にも同様に当て嵌まるものである。ロウ材を塗布する領域の形状は、接合部の形状に応じて決定され、円形、楕円形、矩形、正方形など、任意の適切な形状を有し得る。 The above description regarding the position, number, and size of the joint portion is similarly applicable to the description regarding the region where the brazing material is applied. The shape of the region to which the brazing material is applied is determined according to the shape of the joint, and may have any appropriate shape such as a circle, an ellipse, a rectangle, and a square.
 以上のようにして、積層された複数の該誘電体被覆弁作用金属シート1において隣接する弁作用金属基体11同士がロウ材を用いて接合された積層体3が得られる。 As described above, the laminated body 3 is obtained in which the adjacent valve action metal substrates 11 in the plurality of laminated dielectric-coated valve action metal sheets 1 are bonded together using the brazing material.
 かかる積層体3において、接合方法や用いるロウ材にもよるが、弁作用金属基体11と電気的に接続しているロウ材17a、17b(より詳細には、ロウ材に由来する導電性物質)が、弁作用金属シート1間の隙間において露出することがある。よって、誘電体被覆弁作用金属シート1の第2部分1bに接合部Yを形成した場合であって、第2部分1bに露出したロウ材17bが存在し得る場合には、ロウ材17bを絶縁体(図2(d)に絶縁体19を示す)で被覆する。かかる絶縁体は、誘電体被覆弁作用金属シート1において弁作用金属基体11の表面を被覆する誘電体皮膜13の材料と同じであっても、異なっていてもよい。 In such a laminated body 3, depending on the joining method and the brazing material used, brazing materials 17 a and 17 b electrically connected to the valve action metal substrate 11 (more specifically, conductive materials derived from the brazing material). However, it may be exposed in the gap between the valve action metal sheets 1. Therefore, when the joint portion Y is formed in the second portion 1b of the dielectric covered valve metal sheet 1, and the brazing material 17b exposed to the second portion 1b can exist, the brazing material 17b is insulated. It is covered with a body (the insulator 19 is shown in FIG. 2 (d)). Such an insulator may be the same as or different from the material of the dielectric film 13 that covers the surface of the valve metal substrate 11 in the dielectric-coated valve metal sheet 1.
 絶縁体が誘電体皮膜13の材料と同じである場合、絶縁体は酸化皮膜などである。本実施形態においては、誘電体被覆弁作用金属シート1の第2部分1bの全表面が誘電体皮膜で被覆されるように、少なくとも第2部分1bを陽極酸化処理に付すことが好ましい。これにより、弁作用金属基体およびロウ材(より詳細には、少なくともロウ材に由来する導電性物質)を一緒に誘電体皮膜で確実に被覆できる。なお、弁作用金属基体11の第2部分1bの側面が露出している場合、この陽極酸化処理において、同時に側面も誘電体皮膜で被覆することができる。かかる追加の陽極酸化処理の条件は、工程(a)にて上述した陽極酸化処理の条件と同様とし得る。 When the insulator is the same as the material of the dielectric film 13, the insulator is an oxide film or the like. In the present embodiment, it is preferable that at least the second portion 1b is subjected to an anodic oxidation treatment so that the entire surface of the second portion 1b of the dielectric-coated valve metal sheet 1 is covered with the dielectric film. Thereby, the valve action metal substrate and the brazing material (more specifically, at least a conductive substance derived from the brazing material) can be reliably coated together with the dielectric film. When the side surface of the second portion 1b of the valve metal base 11 is exposed, the side surface can be covered with a dielectric film at the same time in this anodizing process. The conditions for the additional anodizing treatment may be the same as the conditions for the anodizing treatment described above in the step (a).
 絶縁体が誘電体皮膜13の材料と異なる場合、絶縁体は、導電性を有しない任意の適切な材料、例えば導電性を有しない高分子化合物などであってよい。導電性を有しない高分子化合物は、ロウ材17bの露出部に任意の適切な方法で適用でき、例えば、導電性を有しない高分子化合物の原料溶液をロウ材17bの露出部に塗布して、導電性を有しない高分子化合物を生じさせることによって形成できる。 When the insulator is different from the material of the dielectric film 13, the insulator may be any appropriate material that does not have conductivity, such as a polymer compound that does not have conductivity. The polymer compound having no conductivity can be applied to the exposed portion of the brazing material 17b by any appropriate method. For example, a raw material solution of a polymer compound having no conductivity is applied to the exposed portion of the brazing material 17b. It can be formed by generating a polymer compound having no electrical conductivity.
・工程(d)
 以上のようにして得られた積層体3に対して、固体電解質層5を連続層として形成する。固体電解質層5は、積層体3における誘電体被覆弁作用金属シート1間の隙間(より詳細には、誘電体皮膜13間の隙間)を充填し、かつ積層体3の外表面を被覆するように形成する。誘電体被覆弁作用金属シート1の第2部分1bにおけるロウ材(またはロウ材に由来する導電性物質)17bは、絶縁体19により固体電解質層5から電気的に絶縁される。なお、ロウ材(またはロウ材に由来する導電性物質)が、固体電解質層5から電気的に絶縁される限り、本発明において絶縁体を別途設けることは必須でない。
・ Process (d)
The solid electrolyte layer 5 is formed as a continuous layer on the laminate 3 obtained as described above. The solid electrolyte layer 5 fills the gaps between the dielectric covered valve metal sheets 1 in the laminate 3 (more specifically, the gaps between the dielectric coatings 13), and covers the outer surface of the laminate 3. To form. The brazing material (or conductive material derived from the brazing material) 17 b in the second portion 1 b of the dielectric-coated valve metal sheet 1 is electrically insulated from the solid electrolyte layer 5 by the insulator 19. As long as the brazing material (or the conductive material derived from the brazing material) is electrically insulated from the solid electrolyte layer 5, it is not essential to separately provide an insulator in the present invention.
 本実施形態において、積層体3を構成する全ての誘電体被覆弁作用金属シート1の第2部分1bが固体電解質層5により充填および被覆され、積層体3を構成する誘電体被覆弁作用金属シート1の第1部分1aは固体電解質層5により充填および被覆されずに露出したまま残される(以下、説明を簡素化するために、それぞれ積層体3の第1部分1aおよび第2部分1bとも言う)。固体電解質層5は連続層を成す。かかる固体電解質層5は、積層体3の第1部分1a側を保持して吊り下げた状態で、積層体3の第2部分1bを導電性高分子の原料溶液に、例えば絶縁部9の手前まで浸漬し、誘電体被覆弁作用金属シート1の隙間および外表面に導電性高分子の連続層を生じさせることによって形成できる。 In the present embodiment, the second portion 1 b of all the dielectric-coated valve metal sheets 1 constituting the laminate 3 is filled and covered with the solid electrolyte layer 5, and the dielectric-coated valve metal sheets constituting the laminate 3. The first portion 1a is left unfilled and not covered with the solid electrolyte layer 5 (hereinafter, also referred to as the first portion 1a and the second portion 1b of the laminate 3 for the sake of simplicity). ). The solid electrolyte layer 5 forms a continuous layer. The solid electrolyte layer 5 is in a state where the first portion 1a side of the multilayer body 3 is held and suspended, and the second portion 1b of the multilayer body 3 is used as a conductive polymer raw material solution, for example, before the insulating portion 9. To form a continuous layer of a conductive polymer in the gap and outer surface of the dielectric-coated valve metal sheet 1.
 固体電解質層5を成す導電性高分子としては、例えば、チオフェン骨格を有する化合物、多環状スルフィド骨格を有する化合物、ピロール骨格を有する化合物、フラン骨格を有する化合物、アニリン骨格を有する化合物等で示される構造を繰り返し単位として含むものなどが挙げられるが、これらに限定されない。 Examples of the conductive polymer forming the solid electrolyte layer 5 include a compound having a thiophene skeleton, a compound having a polycyclic sulfide skeleton, a compound having a pyrrole skeleton, a compound having a furan skeleton, and a compound having an aniline skeleton. Although what contains a structure as a repeating unit is mentioned, it is not limited to these.
 導電性高分子の原料溶液には、任意の適切な溶液が用いられ得る。例えば、モノマーを含む溶液と、重合酸化剤および必要に応じて別途用いられるドーパントを含む溶液との2種を用いてよく、積層体3の第2部分1bを、これら溶液に順次、必要に応じて繰り返して、浸漬してよい。しかし、本発明はこれに限定されず、例えば、モノマー、重合酸化剤および使用する場合にはドーパントを含む1種の溶液を用いて、積層体3の第2部分1bをこれに浸漬してもよい。 Any appropriate solution can be used as the raw material solution of the conductive polymer. For example, you may use 2 types, the solution containing a monomer, and the solution containing a polymerization oxidizing agent and the dopant used separately as needed, and the 2nd part 1b of the laminated body 3 is sequentially added to these solutions as needed. And soaking may be repeated. However, the present invention is not limited to this. For example, even if the second portion 1b of the laminate 3 is immersed in this using a monomer, a polymerization oxidizing agent, and a single solution containing a dopant when used. Good.
 その後、図2(d)に示すように、固体電解質層5の外表面を被覆する陰極引出層7を形成する。陰極引出層7は、一般的に、固体電解質層5の外表面を被覆するようにカーボンペーストを塗布および乾燥させてカーボン含有層7aを形成し、そして、カーボン含有層7aの外表面を被覆するように銀ペーストを塗布および乾燥させて銀含有層7bを形成することによって形成され得る。 Thereafter, as shown in FIG. 2D, a cathode lead layer 7 covering the outer surface of the solid electrolyte layer 5 is formed. The cathode lead layer 7 is generally formed by applying and drying a carbon paste so as to cover the outer surface of the solid electrolyte layer 5 to form the carbon-containing layer 7a, and then covering the outer surface of the carbon-containing layer 7a. Thus, it can be formed by applying and drying a silver paste to form the silver-containing layer 7b.
 この結果、誘電体被覆弁作用金属シート1の第1部分1aが、絶縁部9によって固体電解質層5および陰極引出層7から電気的に絶縁された状態で、固体電解質層5および陰極引出層7の外部に露出する。第1部分1aは、陽極リード部として用いられて、陽極端子(図示せず)に接続され得る。他方、陰極引出層7は、陰極端子(図示せず)に接続され得る。陽極端子および陰極端子は、例えば、リードフレームなどを用いることができる。 As a result, the solid electrolyte layer 5 and the cathode lead layer 7 are electrically insulated from the solid electrolyte layer 5 and the cathode lead layer 7 by the insulating portion 9. Exposed outside. The first portion 1a can be used as an anode lead portion and connected to an anode terminal (not shown). On the other hand, the cathode lead layer 7 can be connected to a cathode terminal (not shown). As the anode terminal and the cathode terminal, for example, a lead frame can be used.
 以上により、固体電解コンデンサ10’が得られる。固体電解コンデンサ10’は、その全体が、陽極端子および陰極端子(いずれも図示せず)の少なくとも一部を露出した状態で、エポキシ樹脂等の絶縁性樹脂(図示せず)に封入されていてよい。 Thus, the solid electrolytic capacitor 10 'is obtained. The entire solid electrolytic capacitor 10 ′ is enclosed in an insulating resin (not shown) such as an epoxy resin with at least a part of an anode terminal and a cathode terminal (both not shown) exposed. Good.
 本実施形態の固体電解コンデンサの製造方法によれば、積層体に対して固体電解質層を連続層として一度に充填および被覆することができる。更に、積層体の誘電体被覆弁作用金属シート間(より詳細には誘電体皮膜間)に、陰極引出層が存在しないので、その分の空間を有効利用でき、単位体積当りの静電容量がより大きな固体電解コンデンサを製造することができる。 According to the method for manufacturing a solid electrolytic capacitor of the present embodiment, the laminate can be filled and covered at once with the solid electrolyte layer as a continuous layer. Furthermore, since there is no cathode lead layer between the dielectric covered valve action metal sheets of the laminate (more specifically, between the dielectric films), the space can be used effectively, and the capacitance per unit volume can be reduced. Larger solid electrolytic capacitors can be manufactured.
 また、本実施形態の固体電解コンデンサの製造方法によれば、弁作用金属基体同士をロウ材を用いて接合しているので、強固な接合(十分な機械的接合強度)が得られ、接合の部位や大きさを自由に制御できる。更に、本実施形態の固体電解コンデンサによれば、ロウ材の作用により、弁作用金属基体同士の接合部に酸化皮膜が介在することを低減(好ましくは防止)でき、弁作用金属基体同士を電気的に安定して接合でき、固定電解コンデンサの等価直列抵抗(ESR)を低減できる。 Further, according to the method for manufacturing a solid electrolytic capacitor of the present embodiment, since the valve action metal bases are joined together using the brazing material, a strong joint (sufficient mechanical joint strength) can be obtained. The part and size can be freely controlled. Furthermore, according to the solid electrolytic capacitor of the present embodiment, the action of the brazing material can reduce (preferably prevent) an oxide film from intervening in the joint portion between the valve action metal substrates, and the valve action metal substrates can be electrically connected. Can be stably joined, and the equivalent series resistance (ESR) of the fixed electrolytic capacitor can be reduced.
(実施形態2)
 本実施形態は、実施形態1の改変例であって、2種の改変例を示すものである。図4(a)および(b)において、実施形態1にて説明したものと同様の部材には同様の符号を付し、以下、実施形態1と異なる点を中心に説明し、特に断りのない限り、実施形態1と同様の説明が当て嵌まる。
(Embodiment 2)
The present embodiment is a modification of the first embodiment, and shows two kinds of modifications. 4 (a) and 4 (b), members similar to those described in the first embodiment are denoted by the same reference numerals, and hereinafter, differences from the first embodiment will be mainly described, and there is no particular notice. As long as the description is the same as in the first embodiment, the same applies.
 図4(a)に示す固体電解コンデンサ20において、積層体3’は、誘電体被覆弁作用金属シート1’が複数積層され(図示する例においては、7枚の誘電体被覆弁作用金属シート1’を示すが、これに限定されない)、これら誘電体被覆弁作用金属シート1’が接合部Y’にて接合されて成る。これら誘電体被覆弁作用金属シート1’は、ロウ材17b’(またはロウ材に由来する導電性物質)により接合されており、これにより、弁作用金属基体同士を接合部を介して電気的に接合している。ロウ材17b’(またはロウ材に由来する導電性物質)は、固体電解質層5から(例えば絶縁体により)電気的に絶縁されている。複数の誘電体被覆弁作用金属シート1’のうち、1つの誘電体被覆弁作用金属シートのみが比較的長くなっており、第1部分1aを有している。この第1部分1aは、陽極リード部として、固体電解質層5で被覆されずに、絶縁部9によって固体電解質層5および陰極引出層7から電気的に絶縁された状態で露出している。残りの誘電体被覆弁作用金属シートは、実質的にほぼ等しい長さを有し、その全体が、固体電解質層被覆部、より詳細には、後の工程において固体電解質層により充填および被覆される部分となり、絶縁部9から離れている点を除いて、実施形態1における第2部分1bと同様の説明が当て嵌まる。 In the solid electrolytic capacitor 20 shown in FIG. 4 (a), the multilayer body 3 ′ includes a plurality of dielectric-coated valve metal sheets 1 ′ (in the illustrated example, seven dielectric-coated valve metal sheets 1). ', But not limited thereto), these dielectric-coated valve metal sheets 1' are joined at the joint Y '. These dielectric-coated valve action metal sheets 1 ′ are joined by a brazing material 17b ′ (or a conductive substance derived from the brazing material), whereby the valve action metal bases are electrically connected to each other through a joint portion. It is joined. The brazing material 17b '(or a conductive material derived from the brazing material) is electrically insulated from the solid electrolyte layer 5 (for example, by an insulator). Of the plurality of dielectric-coated valve metal sheets 1 ', only one dielectric-coated valve metal sheet is relatively long and has a first portion 1a. The first portion 1a is not covered with the solid electrolyte layer 5 as an anode lead portion, and is exposed in a state of being electrically insulated from the solid electrolyte layer 5 and the cathode lead layer 7 by the insulating portion 9. The remaining dielectric coated valve metal sheet has a substantially substantially equal length, and is entirely filled and coated with a solid electrolyte layer coating, more specifically, a solid electrolyte layer in a later step. Except for the point that it is a part and away from the insulating part 9, the same description as the second part 1b in the first embodiment applies.
 図示する態様においては、第1部分1a(陽極リード部)を有する長い誘電体被覆弁作用金属シートが、残りの短い弁作用金属シートの間(より詳細には、これらの真ん中)に挟まれているが、本実施形態はこれに限定されない。 In the illustrated embodiment, a long dielectric coated valve metal sheet having a first portion 1a (anode lead) is sandwiched between the remaining short valve metal sheets (more specifically, the middle of these). However, the present embodiment is not limited to this.
 接合部Y’は、実施形態1における接合部Yと同様であり得る。但し、本実施形態において接合部は接合部Y’の1つのみであるため、接合部Y’は、第2部分1b(固体電解質層被覆部)の幅を二等分する線上またはその近傍、かつ、第2部分1bの長さ方向中央部に形成することが、接合性が電気的かつ物理的に安定するので好ましい。 The junction Y ′ may be the same as the junction Y in the first embodiment. However, in this embodiment, since there is only one joining portion Y ′, the joining portion Y ′ is on or near a line that bisects the width of the second portion 1b (solid electrolyte layer covering portion), And it is preferable to form in the center part of the length direction of the 2nd part 1b since joining property is electrically and physically stabilized.
 かかる固体電解コンデンサ20は、1つの長い誘電体被覆弁作用金属シートと、残りの短い誘電体被覆弁作用金属シートを作製し、これらを適切に積層した後に接合部Y’にて接合している点、接合された積層体を固体電解質層5により充填および被覆した後に、1つの長い誘電体被覆弁作用金属シートの第1部分1a(陽極リード部)を残して固体電解質層5に接触させて絶縁部9を形成し、その後、固体電解質層5の外表面を被覆する陰極引出層7を形成して、誘電体被覆弁作用金属シートの第1部分1aが、絶縁部9によって固体電解質層5および陰極引出層7から電気的に絶縁された状態で、固体電解コンデンサ20の外部に露出するように形成される点、第1部分1aにおいて弁作用金属基体は誘電体皮膜で被覆されていても、被覆されていなくてもよい点を除いて、実施形態1と同様にして製造することができる。 Such a solid electrolytic capacitor 20 is produced by producing one long dielectric-covered valve metal sheet and the remaining short dielectric-coated valve metal sheet, and appropriately laminating them and then joining them at the joint Y ′. On the other hand, after the joined laminate is filled and coated with the solid electrolyte layer 5, the first portion 1a (anode lead portion) of one long dielectric-coated valve metal sheet is left in contact with the solid electrolyte layer 5. The insulating portion 9 is formed, and then the cathode lead layer 7 that covers the outer surface of the solid electrolyte layer 5 is formed. The first portion 1a of the dielectric-coated valve metal sheet is formed by the insulating portion 9 so that the solid electrolyte layer 5 In addition, it is formed so as to be exposed to the outside of the solid electrolytic capacitor 20 while being electrically insulated from the cathode lead layer 7, and even if the valve action metal substrate is covered with a dielectric film in the first portion 1a. , Except that may not be overturned, it can be produced in the same manner as in Embodiment 1.
 図4(b)に示す固体電解コンデンサ20’においては、1つの長い誘電体被覆弁作用金属シートに加えて、残りの誘電体被覆弁作用金属シートも、絶縁部9に埋設されている。その他の点は、図4(a)に示す固体電解コンデンサ20と同様である。 In the solid electrolytic capacitor 20 ′ shown in FIG. 4B, in addition to one long dielectric-covered valve metal sheet, the remaining dielectric-coated valve metal sheet is also embedded in the insulating portion 9. Other points are the same as those of the solid electrolytic capacitor 20 shown in FIG.
 かかる固体電解コンデンサ20’は、固体電解コンデンサ20と同様にして製造することができるが、実施形態1と同様に、接合部Y’を形成する前に、絶縁部9を利用して複数の誘電体被覆弁作用金属シート1’を相互に固定(後の工程において接合部を形成する前に仮固定)することが好ましい。より詳細には、1つの長い誘電体被覆弁作用金属シートと、残りの短い誘電体被覆弁作用金属シートを適切に積層した後、これら誘電体被覆弁作用金属シートにまたがって絶縁性樹脂を塗布し、そして、絶縁性樹脂を加熱などによって固化または硬化させて、相互に固定することができる。 Such a solid electrolytic capacitor 20 ′ can be manufactured in the same manner as the solid electrolytic capacitor 20. However, as in the first embodiment, before forming the junction Y ′, a plurality of dielectrics can be obtained using the insulating portion 9. It is preferable to fix the body-covered valve action metal sheet 1 ′ to each other (temporarily fix before forming the joint in the subsequent step). More specifically, after appropriately laminating one long dielectric coated valve metal sheet and the remaining short dielectric coated valve metal sheet, an insulating resin is applied across the dielectric coated valve metal sheet. Then, the insulating resins can be solidified or cured by heating or the like and fixed to each other.
 本実施形態の固体電解コンデンサ20、20’においては、第1部分1a(陽極リード部)を、複数の誘電体被覆弁作用金属シート1’のうち、1つの誘電体被覆弁作用金属シートのみに設けている。第1部分1a(陽極リード部)は静電容量形成に寄与しない。すなわち、本実施形態によれば、静電容量形成に寄与しない第1部分1a(陽極リード部)が占める領域を、実施形態1の固体電解コンデンサより小さくすることができるので、単位体積当りの静電容量がより大きな固体電解コンデンサを製造することができる。 In the solid electrolytic capacitors 20 and 20 ′ of the present embodiment, the first portion 1a (anode lead portion) is used only for one dielectric-coated valve metal sheet among the plurality of dielectric-coated valve metal sheets 1 ′. Provided. The first portion 1a (anode lead portion) does not contribute to capacitance formation. That is, according to the present embodiment, the area occupied by the first portion 1a (anode lead portion) that does not contribute to capacitance formation can be made smaller than that of the solid electrolytic capacitor of the first embodiment. A solid electrolytic capacitor having a larger capacitance can be manufactured.
(実施形態3)
 本実施形態は、実施形態1の別の改変例である。図5において、実施形態1にて説明したものと同様の部材には同様の符号を付し、以下、実施形態1と異なる点を中心に説明し、特に断りのない限り、実施形態1と同様の説明が当て嵌まる。
(Embodiment 3)
This embodiment is another modification of the first embodiment. In FIG. 5, the same members as those described in the first embodiment are denoted by the same reference numerals, and hereinafter, differences from the first embodiment will be mainly described. Unless otherwise noted, the same as in the first embodiment. The explanation is true.
 図5に示す固体電解コンデンサ30において、積層体3’’は、誘電体被覆弁作用金属シート1’’が複数積層され(図示する例においては、6枚の誘電体被覆弁作用金属シート’’を示すが、これに限定されない)、これら誘電体被覆弁作用金属シート1’’が接合部Xのみにて接合されて成る。これら誘電体被覆弁作用金属シート1’’は、ロウ材17a(またはロウ材に由来する導電性物質)により接合されており、これにより、弁作用金属基体同士を接合部を介して電気的に接合している。複数の誘電体被覆弁作用金属シート1’’は、実施形態1における複数の誘電体被覆弁作用金属シート1と同様の説明が当て嵌まる。 In the solid electrolytic capacitor 30 shown in FIG. 5, the multilayer body 3 ″ includes a plurality of dielectric-coated valve metal sheets 1 ″ (in the illustrated example, six dielectric-coated valve metal sheets ″. The dielectric-coated valve metal sheet 1 ″ is joined only at the joint X. These dielectric-coated valve action metal sheets 1 '' are joined by a brazing material 17a (or a conductive material derived from the brazing material), whereby the valve action metal bases are electrically connected to each other via a joint portion. It is joined. For the plurality of dielectric-coated valve metal sheets 1 ″, the same description as that of the plurality of dielectric-coated valve metal sheets 1 in the first embodiment applies.
 かかる固体電解コンデンサ30は、接合部Yにおける接合を行わない点を除いて、実施形態1と同様にして製造することができる。 Such a solid electrolytic capacitor 30 can be manufactured in the same manner as in Embodiment 1 except that the joining at the joining portion Y is not performed.
 本実施形態の固体電解コンデンサ30においては、第2部分1b(固体電解質層被覆部)に接合部を設けていない。第2部分1b(固体電解質層被覆部)は静電容量形成に寄与する。すなわち、本実施形態によれば、静電容量形成に寄与する第2部分1b(固体電解質層被覆部)の全体を静電容量形成に用いることができるので、単位体積当りの静電容量がより大きな固体電解コンデンサを製造することができる。 In the solid electrolytic capacitor 30 of the present embodiment, no joint is provided in the second portion 1b (solid electrolyte layer covering portion). The second portion 1b (solid electrolyte layer covering portion) contributes to the formation of capacitance. That is, according to the present embodiment, the entire second portion 1b (solid electrolyte layer covering portion) that contributes to capacitance formation can be used for capacitance formation. Large solid electrolytic capacitors can be manufactured.
 以上、本発明をいくつかの実施形態により説明したが、これら実施形態は種々の改変がなされ得る。例えば、ロウ材を塗布する領域(ひいては接合部)の数、位置、配置などは、製造する固体電解コンデンサに求められる要件に応じて適宜設定してよい。 As mentioned above, although this invention was demonstrated by some embodiment, these embodiment can be variously changed. For example, the number, position, arrangement, and the like of the region (and thus the joint) to which the brazing material is applied may be appropriately set according to the requirements required for the solid electrolytic capacitor to be manufactured.
 また、本発明は、その基本的概念を逸脱しない範囲で種々の改変がなされ得るであろう。例えば、工程(c)および(d)を実施する順序は、接合部の位置に応じて異なり得る。少なくとも1つの接合部が誘電体被覆弁作用金属シートの第2部分(固体電解質層被覆部)に存在する場合には、工程(c)を実施してから工程(d)を実施する。しかし、全ての接合部が誘電体被覆弁作用金属シートの第1部分(陽極リード部)に存在する場合には、工程(c)を実施してから工程(d)を実施しても、工程(d)を実施してから工程(c)を実施してもよいであろう。 In addition, the present invention can be variously modified without departing from the basic concept. For example, the order in which steps (c) and (d) are performed can vary depending on the location of the joint. When at least one joining part exists in the 2nd part (solid electrolyte layer coating | coated part) of a dielectric coating valve action metal sheet, a process (d) is implemented after implementing a process (c). However, when all the joints are present in the first part (anode lead part) of the dielectric-coated valve metal sheet, the process (d) is performed after the process (c) is performed. Step (c) may be performed after (d) is performed.
 本発明は、小型大容量化が求められる固体電解コンデンサを製造するために幅広く利用され得る。本発明によって製造される固体電解コンデンサは、その用途等において特に限定されるものではない。 The present invention can be widely used to manufacture a solid electrolytic capacitor that is required to have a small size and a large capacity. The solid electrolytic capacitor produced according to the present invention is not particularly limited in its use.
  1、1’、1’’ 誘電体被覆弁作用金属シート
  1a 第1部分(陽極リード部)
  1b 第2部分(固体電解質層被覆部)
  3、3’、3’’ 積層体(接合された積層体)
  5 固体電解質層
  7 陰極引出層
  7a カーボン含有層
  7b 銀含有層
  9 絶縁部
  10、10’、20、20’、30 固体電解コンデンサ
  11 弁作用金属基体
  13 誘電体皮膜
  15 マスク
  17a、17b、17b’ ロウ材
  X、Y、Y’ 接合部
1, 1 ′, 1 ″ Dielectric coated valve metal sheet 1a First part (anode lead part)
1b Second part (solid electrolyte layer covering part)
3, 3 ', 3 "laminate (joined laminate)
DESCRIPTION OF SYMBOLS 5 Solid electrolyte layer 7 Cathode extraction layer 7a Carbon containing layer 7b Silver containing layer 9 Insulating part 10, 10 ', 20, 20', 30 Solid electrolytic capacitor 11 Valve action metal base | substrate 13 Dielectric film 15 Mask 17a, 17b, 17b ' Brazing material X, Y, Y 'joint

Claims (4)

  1.  固体電解コンデンサの製造方法であって、
     (a)弁作用金属基体と、該弁作用金属基体の表面を被覆する誘電体皮膜とを含む誘電体被覆弁作用金属シートの表面の一部の領域にロウ材を塗布する工程、
     (b)複数の該誘電体被覆弁作用金属シートを、これら誘電体被覆弁作用金属シート間に隙間を有し、かつ各誘電体被覆弁作用金属シートの該ロウ材を塗布した領域の位置が合わさるように積層して、誘電体被覆弁作用金属シートの積層体を得る工程、
     (c)積層された複数の該誘電体被覆弁作用金属シートにおいて隣接する弁作用金属基体同士を、ロウ材を用いて接合し、これによって接合された積層体を得る工程、および
     (d)固体電解質層を、積層体における誘電体被覆弁作用金属シート間の該隙間を充填し、かつ該積層体の外表面を被覆するように連続層として形成する工程
    を含む製造方法。
    A method for producing a solid electrolytic capacitor, comprising:
    (A) applying a brazing material to a partial region of the surface of the dielectric-coated valve-acting metal sheet including the valve-acting metal substrate and a dielectric film covering the surface of the valve-acting metal substrate;
    (B) A plurality of the dielectric-coated valve metal sheets are provided with gaps between the dielectric-coated valve metal sheets, and the positions of the regions where the brazing material of each dielectric-coated valve metal sheet is applied. Laminating to fit together to obtain a laminate of dielectric coated valve metal sheet,
    (C) joining adjacent valve action metal substrates in the plurality of laminated dielectric-coated valve action metal sheets using a brazing material, thereby obtaining a laminated body, and (d) a solid A manufacturing method comprising a step of forming an electrolyte layer as a continuous layer so as to fill the gaps between dielectric-coated valve metal sheets in a laminate and to cover the outer surface of the laminate.
  2.  誘電体皮膜が酸化皮膜であり、ロウ材が、酸化物を除去する作用を有する添加剤を含む、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the dielectric film is an oxide film, and the brazing material includes an additive having an action of removing the oxide.
  3.  誘電体被覆弁作用金属シートを複数積層し、これら誘電体被覆弁作用金属シートを接合して成る積層体と、
     積層体を構成する誘電体被覆弁作用金属シート間の隙間を充填し、かつ積層体の外表面を被覆する固体電解質層の連続層と
    を備え、誘電体被覆弁作用金属シートの各々は、弁作用金属基体と、弁作用金属基体の表面を被覆する誘電体皮膜とを含み、積層された複数の前記誘電体被覆弁作用金属シートにおいて隣接する弁作用金属基体同士がロウ材を用いて接合され、ロウ材またはロウ材に由来する導電性物質が固体電解質層から電気的に絶縁されている、固体電解コンデンサ。
    A plurality of dielectric-coated valve metal sheets, and a laminate formed by bonding these dielectric-coated valve metal sheets;
    Each of the dielectric-coated valve-acting metal sheets includes a continuous layer of a solid electrolyte layer that fills a gap between the dielectric-coated valve-acting metal sheets constituting the laminate and covers the outer surface of the laminate. The working metal substrate and a dielectric film that covers the surface of the valve metal substrate are bonded to each other in the plurality of laminated dielectric coated valve metal sheets that are adjacent to each other using a brazing material. A solid electrolytic capacitor in which a brazing material or a conductive material derived from the brazing material is electrically insulated from the solid electrolyte layer.
  4.  前記隣接する弁作用金属基体同士のロウ材による接合部において、弁作用金属基体とロウ材またはロウ材に由来する導電性物質との間に誘電体が介在していない、請求項3に記載の固体電解コンデンサ。 4. The dielectric material according to claim 3, wherein a dielectric is not interposed between the valve action metal substrate and the brazing material or the conductive material derived from the brazing material at a joint portion of the adjacent valve action metal substrates with the brazing material. Solid electrolytic capacitor.
PCT/JP2011/071846 2010-11-15 2011-09-26 Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor WO2012066853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-254883 2010-11-15
JP2010254883 2010-11-15

Publications (1)

Publication Number Publication Date
WO2012066853A1 true WO2012066853A1 (en) 2012-05-24

Family

ID=46083796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071846 WO2012066853A1 (en) 2010-11-15 2011-09-26 Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor

Country Status (1)

Country Link
WO (1) WO2012066853A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156468A (en) * 2011-01-28 2012-08-16 Murata Mfg Co Ltd Solid electrolytic capacitor and method for manufacturing the same
WO2021161975A1 (en) * 2020-02-12 2021-08-19 株式会社村田製作所 Positive electrode for electrolytic capacitors, electrolytic capacitor, method for producing positive electrode for electrolytic capacitors, and method for producing electrolytic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130019A (en) * 1984-07-20 1986-02-12 日通工株式会社 Method of forming anode oxide film
JP2003318068A (en) * 2002-02-21 2003-11-07 Showa Denko Kk Solid electrolytic capacitor and method of manufacturing the same
JP2007180160A (en) * 2005-12-27 2007-07-12 Showa Denko Kk Capacitor chip and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6130019A (en) * 1984-07-20 1986-02-12 日通工株式会社 Method of forming anode oxide film
JP2003318068A (en) * 2002-02-21 2003-11-07 Showa Denko Kk Solid electrolytic capacitor and method of manufacturing the same
JP2007180160A (en) * 2005-12-27 2007-07-12 Showa Denko Kk Capacitor chip and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156468A (en) * 2011-01-28 2012-08-16 Murata Mfg Co Ltd Solid electrolytic capacitor and method for manufacturing the same
WO2021161975A1 (en) * 2020-02-12 2021-08-19 株式会社村田製作所 Positive electrode for electrolytic capacitors, electrolytic capacitor, method for producing positive electrode for electrolytic capacitors, and method for producing electrolytic capacitor

Similar Documents

Publication Publication Date Title
US10032567B2 (en) Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor
JP6798560B2 (en) Solid electrolytic capacitors
WO2018074407A1 (en) Solid electrolytic capacitor and method for producing solid electrolytic capacitor
JP5267586B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP7408288B2 (en) solid electrolytic capacitor
JP7067512B2 (en) Solid electrolytic capacitors
JP2023027349A (en) Method for manufacturing electrolytic capacitor and electrolytic capacitor
US11881360B2 (en) Electrolytic capacitor
WO2021210367A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
JP5623214B2 (en) Solid electrolytic capacitor
JP5861049B2 (en) Solid electrolytic capacitor and solid electrolytic capacitor manufacturing method
WO2012066853A1 (en) Solid-state electrolytic capacitor manufacturing method and solid-state electrolytic capacitor
JP7419791B2 (en) solid electrolytic capacitor
JP5585618B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP7200912B2 (en) Electrolytic capacitor
CN114556506A (en) Electrolytic capacitor
JP5429392B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR101116120B1 (en) Solid electrolytic capacitor element and solid electrolytic capacitor
CN114503229A (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
WO2021112239A1 (en) Solid electrolytic capacitor
JP5754179B2 (en) Manufacturing method of solid electrolytic capacitor
CN112466667B (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP5682277B2 (en) Manufacturing method of solid electrolytic capacitor
WO2023090141A1 (en) Electrolytic capacitor element
JP2007227716A (en) Laminated solid electrolytic capacitor and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP