JPH02303017A - Manufacture of solid state electrolytic capacitor - Google Patents

Manufacture of solid state electrolytic capacitor

Info

Publication number
JPH02303017A
JPH02303017A JP12273589A JP12273589A JPH02303017A JP H02303017 A JPH02303017 A JP H02303017A JP 12273589 A JP12273589 A JP 12273589A JP 12273589 A JP12273589 A JP 12273589A JP H02303017 A JPH02303017 A JP H02303017A
Authority
JP
Japan
Prior art keywords
film
insulating layer
polymerization
chemical
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12273589A
Other languages
Japanese (ja)
Inventor
Satoshi Yuzawa
聡 湯澤
Kiyoshi Sakamoto
清志 坂本
Shinichi Kaneko
金子 信一
Minoru Fukuda
実 福田
Hideo Yamamoto
秀雄 山本
Isao Isa
伊佐 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd, Japan Carlit Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP12273589A priority Critical patent/JPH02303017A/en
Publication of JPH02303017A publication Critical patent/JPH02303017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To form a chemical polymerization film into a uniform electrolytic polymerization film and to prevent the shortcircuit failure by a method wherein in the case an electrolytic oxidation polymerization is performed after a chemical oxidation polymerization is performed, a feeder electrode is brought into contact to the chemical polymerization film formed on an insulating layer to perform the electrolytic oxidation polymerization. CONSTITUTION:An anode foil 1 having an anode lead-out terminal 2 and an insulating layer 4 is immersed in a pyrrole/ethanol solution for five minutes and moreover, is immersed in an ammonium persulfate aqueous solution for five minutes to form a polypyrrole film 5, which is a conductive high-molecular film, by a chemical oxidation polymerization. Then, a spacer paper 6 is superposed on this foil to wind spirally and after a wound element 7 is manufactured, a dielectric oxide film is restored by reformation. Moreover, a platinum wire 8 is used as a feeder electrode and the film 5 formed on the layer 4 is brought into contact to the electrode to perform an electrolytic oxidation polymerization. In such a way, the feed electrode dissolves and contributes to the formation of a stable electrolyte without contaminating a polymeric electrolyte.

Description

【発明の詳細な説明】 [発明の目的1 (産業上の利用分野) 本発明は、誘電体醇化皮膜の表面に固体電解質を形成し
てなる固体電解コンデンサの’!’!J n方法に関す
るものである。
[Detailed Description of the Invention] [Objective of the Invention 1 (Field of Industrial Application) The present invention provides a solid electrolytic capacitor in which a solid electrolyte is formed on the surface of a dielectric fertilized film! '! J n method.

(従来の技v11) 固体電解コンデンサは、通常、アルミニウム。(Conventional technique v11) Solid electrolytic capacitors are usually aluminum.

タンタルむどの皮膜形成性金属表面に誘電体である酸化
皮膜を形成し、該酸化皮膜上に二酸化マンガン、TCN
Q錯体などの固体電解1e1 fCi及び2J?Tf体
層を順次形成して構成されている。二酸化マンガンを固
体電解質として用いたコンデンサは、製造工程上誘電体
酸化皮膜を損(セしやすいなどの欠点をもち、一方、T
CNQ釦体を用いたコンデンυは、熱安定性に乏しいな
どの欠点がある。
A dielectric oxide film is formed on the film-forming metal surface of tantalum, and manganese dioxide, TCN
Solid electrolyte such as Q complex 1e1 fCi and 2J? It is constructed by sequentially forming Tf body layers. Capacitors using manganese dioxide as a solid electrolyte have drawbacks such as the dielectric oxide film being easily damaged during the manufacturing process;
Condensate υ using a CNQ button body has drawbacks such as poor thermal stability.

また、誘電体酸化皮膜上にビ[1−ルなどの複素環式化
合物の重合体を電解重合により形成し囚体電M質とした
コンデンサが提案されているが、誘電体酸化皮膜は絶縁
体であるので、その表面に電解重合膜を形成することは
非常に困難というより、形成でき(2かった。
In addition, a capacitor has been proposed in which a polymer of a heterocyclic compound such as beer is formed on a dielectric oxide film by electrolytic polymerization to make it a prisoner-electric material. Therefore, it was not very difficult to form an electrolytically polymerized film on the surface, but it was possible (2).

誘電体酸化皮膜上に重合膜を形成づる方法としては、あ
らかじめ陽極体の酸化皮膜上に化学的酸化によって重合
膜を形成し、その化学I■重合膜電解重合の際の電極と
して、この化学重合膜に金属などの導′ifi牲物質を
接触させ電解液中で通電し、重合膜を形成する方法など
があった。
The method for forming a polymer film on a dielectric oxide film is to form a polymer film in advance on the oxide film of the anode body by chemical oxidation, and use this chemical polymer film as an electrode during electrolytic polymerization. There has been a method in which a conductive material such as a metal is brought into contact with the membrane and electricity is applied in an electrolytic solution to form a polymeric membrane.

前記のごとき酸化皮m形成優の陽極箔に電解重合を行う
場合は、絶縁物である酸化皮膜があるためにl12極と
効率的に通電が行われないので重合膜の形成ができず、
又は形成ができても酸化皮膜の欠陥部あるいは陽極箔と
陰極箔の距離が近いところに電流が集中し、均一な導電
性高分子膜を得ることができない。また、あらかじめ陽
極箔の酸化皮膜上に化学的酸化10合膜を形成し、その
化学重合膜に金I!などの導電性材料を接触させ電解重
合の給電電極として電解重合を行う場合には、誘電体酸
化皮膜や化学重合膜が損傷しや暖いことや、給電電極接
触の接触状態が異なることから、電解重合膜の形成にば
らつきがみられ、漏れ電流が大きい、tanδが大きい
などの改良づべぎ点が残されており、更に給電電極を剥
離するときの機械的ショックにより形成した重合膜が損
傷するなどの問題点があった。
When performing electrolytic polymerization on an anode foil with a good oxide film formation as described above, the presence of the oxide film, which is an insulator, prevents efficient conduction of electricity with the 12 electrode, making it impossible to form a polymer film.
Or, even if it can be formed, the current will concentrate in the defective parts of the oxide film or in the places where the anode foil and the cathode foil are close, making it impossible to obtain a uniform conductive polymer film. In addition, a chemically oxidized 10-layer film was formed on the oxide film of the anode foil in advance, and gold I! When performing electrolytic polymerization by contacting a conductive material such as as a power supply electrode for electrolytic polymerization, the dielectric oxide film or chemical polymer film may be damaged or warm, and the contact state of the power supply electrode may be different. There were variations in the formation of the electrolytic polymer film, and there are still areas for improvement such as large leakage current and large tan δ, and furthermore, the formed polymer film was damaged by the mechanical shock when the power supply electrode was peeled off. There were problems such as.

また、上記のような重合膜の形成においては、誘電体酸
化皮膜の弱点部や電極引出のための未化成部分に■金電
解液が這い上がったりして接触すると短絡することとな
り、使用不能となる欠点があった。このために電極引出
のためのリード線やリードフレームなどには、■台用電
解液面の近傍に樹脂などの絶縁物を設け、電解液との接
触を阻止づることも行われているが、コンデンサ自体が
非常に小さいので絶縁物の塗布作業が困難で非能率であ
り、また、塗布された絶縁物が不揃いと(2る欠点もあ
った。
In addition, when forming a polymer film as described above, if the gold electrolyte creeps up and comes into contact with weak points in the dielectric oxide film or unformed parts for electrode extraction, it will cause a short circuit and become unusable. There were drawbacks. For this reason, lead wires and lead frames for drawing out electrodes are sometimes provided with an insulating material such as resin near the surface of the electrolyte for the table to prevent contact with the electrolyte. Since the capacitor itself is very small, the application of the insulator is difficult and inefficient, and there is also the disadvantage that the applied insulator may be uneven.

(発明が解決しようとする課題) 以上述べたように、従来は誘電体酸化皮膜を 1形成し
た皮膜形成性金属表面に電解i[合躾を形成り“ること
は困難であり、また、化学重合膜を形成し該化学重合膜
を電極として電解重合を行う場合は、給電電極の接触状
態により電解重合膜の形成状態にばらつきを生じ、また
、給ffi電極を剥離したときに重合膜に損傷を与えた
りしていた。更に、重合時に重合液に皮膜形成性金属を
浸漬するが、液の這い上がりによって誘電体酸化皮膜以
外の個所に重合膜が形成されると短絡を生じるので、陽
極引出部の液面よりF部までを被覆する絶縁物を施すが
、この絶縁物の塗布作業が困デ1で、非能率、かつ絶縁
物が不揃いである問題点があった。
(Problems to be Solved by the Invention) As stated above, conventionally it has been difficult to form an electrolytic layer on a film-forming metal surface on which a dielectric oxide film has been formed, and chemical When forming a polymer film and performing electrolytic polymerization using the chemically polymerized film as an electrode, the state of formation of the electropolymer film may vary depending on the contact state of the power supply electrode, and the polymer film may be damaged when the supply ffi electrode is peeled off. Furthermore, during polymerization, the film-forming metal is immersed in the polymer solution, but if the solution creeps up and forms a polymer film in areas other than the dielectric oxide film, a short circuit will occur, so An insulating material is applied to cover the area from the liquid level to the F part, but there are problems in that the application of this insulating material is difficult, inefficient, and the insulating material is uneven.

本発明は、上記の点に鑑みてなされたもので、誘電体酸
化皮膜上に容易に導電性高分子膜を均一に形成すること
ができるとともに、形成した導電性高分子膜を損(13
せずに作業性にも優れた固体電解コンデンサの製造方法
を提供することを目的としだらのである。
The present invention has been made in view of the above points, and it is possible to easily form a conductive polymer film uniformly on a dielectric oxide film, and also to reduce the damage (13
The purpose of this work is to provide a method for manufacturing solid electrolytic capacitors that is easy to use and has excellent workability.

一発明の構成] (課題を解決するための手段) 本発明になる固体電解コンデンサの製造り払は、誘電体
酸化皮膜を生成した皮膜形成性金属に化成処理、化学酸
化重合、電解酸化重合、カーボン層を形成し、該カーボ
ン層上に陰極となる導電性塗膜を施してなる平板形1巻
同形、焼結形又は積層形固体電解コンデンサの製造方法
において、前記化学酸化重合が陽極引出部の化学酸化重
合液面より上部までを被覆する絶縁層を施して行われ、
電解酸化重合が該絶縁層に、又は該絶縁層の下位に形成
された化学重合膜を陽極として行われることを特徴とす
るbのである。
Structure of the Invention] (Means for Solving the Problems) The solid electrolytic capacitor of the present invention is manufactured by chemical conversion treatment, chemical oxidation polymerization, electrolytic oxidation polymerization, etc. In the method for manufacturing a flat plate type one-volume solid electrolytic capacitor of the same type, sintered type or laminated type, in which a carbon layer is formed and a conductive coating film serving as a cathode is applied on the carbon layer, the chemical oxidation polymerization is performed at the anode lead-out part. Chemical oxidation polymerization is carried out by applying an insulating layer that covers the surface from the liquid level to the top.
The electrolytic oxidation polymerization is carried out using a chemical polymer film formed on the insulating layer or below the insulating layer as an anode.

(作 用) 本発明になる固体電解コンデンサの製造方法では、化学
重合膜が誘電体酸化皮膜上及び該誘電体酸化皮膜上に施
した絶縁層上に形成され、電解酸化重合はこの絶縁層上
に形成された化学重合膜に金属線やぞの他の導電性物質
を給電電極として接触させて重合させるが、この接触は
m合液外で行われるから、重合中やΦ合後給電電極を剥
離する際、pA極上の誘電体酸化皮膜や導電性高分子膜
(化学重合膜、電解重合膜)に機械的な&撃が加わらず
、かつ給電電極が溶解して重合電解液を汚染することも
なく、安定な電解質の形成に寄与することができる。更
に、絶縁層としてシリコーンチューブを用い陽極リード
線などに挿入して絶I1層とした場合は、微小個所への
塗布作業もないので、能率よく作業できる利点もある。
(Function) In the method for manufacturing a solid electrolytic capacitor according to the present invention, a chemically polymerized film is formed on a dielectric oxide film and an insulating layer formed on the dielectric oxide film, and electrolytic oxidative polymerization is performed on this insulating layer. Metal wires or other conductive substances are brought into contact with the chemically polymerized film formed as a power supply electrode and polymerized, but since this contact is performed outside the m mixture, the power supply electrode cannot be used during or after polymerization. When peeling off, no mechanical shock is applied to the dielectric oxide film or conductive polymer film (chemical polymer film, electrolytic polymer film) on the pA electrode, and the power supply electrode dissolves and contaminates the polymer electrolyte. This can contribute to the formation of a stable electrolyte. Furthermore, if a silicone tube is used as the insulating layer and inserted into the anode lead wire to form an insulating layer, there is no need to apply the coating to minute areas, so there is the advantage that the work can be done more efficiently.

(実施例) 実IIIP/41 第1図に示゛りように、粗面化して誘電体酸化皮膜を形
成さ「たVさ60μm1幅3IMRの高純度アルミニウ
ム箔にかしめ付けにより陽極引出端子2を取り付けた後
25*に明所して陽極箔1を151だ。次いで1、陽極
引出端子2のリード線3との接続部にシリ−1−ンヂ1
−ブを挿入後加熱収縮して被覆さけ絶縁層4を形成した
(Example) Practical III/41 As shown in Fig. 1, the anode lead terminal 2 was caulked to a high-purity aluminum foil with a roughened surface and a dielectric oxide film formed on it and a diameter of 60 μm and a width of 3 IMR. After installation, place the anode foil 1 in a bright place at 25*.
- After inserting the tube, the insulation layer 4 was formed by heating and shrinking it.

このようにして作製したPA極極用出端子2絶縁層4と
を有する陽極箔1を2m01/J)のビロール/エタノ
ール溶液に5分間浸漬した。史に、0.5mol/j過
硫酸アンモニウム水溶液に5分間浸漬して化学酸化重合
により導電性高分子膜であるボリビ[1−ル膜5を形成
した。
The anode foil 1 having the PA electrode output terminal 2 and the insulating layer 4 thus produced was immersed in a virol/ethanol solution of 2 m01/J for 5 minutes. The conductive polymer film 5 was formed by chemical oxidative polymerization by immersion in a 0.5 mol/j ammonium persulfate aqueous solution for 5 minutes.

これらの操作は前記絶縁層4を溶液に埋没させないよう
にして行う。次いで、この陽極箔1にスペーサ紙6を重
ねて渦巻状に巻回し、巻回素子7を製作後、再化成によ
り誘電体酸化皮膜の修復を行った。
These operations are performed without submerging the insulating layer 4 in the solution. Next, spacer paper 6 was layered on this anode foil 1 and wound in a spiral shape to produce a wound element 7, after which the dielectric oxide film was repaired by re-forming.

更に第2図に示ずように、径0.1#Iの白金線8を給
rfi電極として絶縁層4上に形成したポリピロール膜
5に接触させて電解酸化重合を行った。Ti電解酸化重
合詳細に説明すると、電解液としてビロールモノマー1
m0I/j及び支持電解iとしてパラトルエンスルホン
酸ナトリウム1mol/Jを含むアセトニトリルを用い
、白金$98は電解液に浸漬させずに絶縁層4に接触さ
せ、陽極箔1上に化学酸化重合により形成したポリピロ
ール膜5を陽極として外部陰極との間に定電R電解酸化
重合(1mA/cd、1時15J)を行い、電解酸化重
合によるポリピロール膜を形成した。この素子をコロイ
ダルカーボンに浸漬してカーボン層を形成し、更に銀ペ
ーストを塗布して導電性塗膜を形成しその一部から陰極
を取り出した。この素子をケースに密封して定格10V
−6,7μFの固体電解コンデン勺を完成した。
Further, as shown in FIG. 2, a platinum wire 8 having a diameter of 0.1#I was brought into contact with the polypyrrole film 5 formed on the insulating layer 4 as an RFI electrode to carry out electrolytic oxidation polymerization. Ti electrolytic oxidation polymerization To explain in detail, virol monomer 1 is used as an electrolyte.
Using acetonitrile containing 1 mol/J of sodium p-toluenesulfonate as m0I/j and supporting electrolyte i, platinum $98 was brought into contact with the insulating layer 4 without being immersed in the electrolytic solution, and formed on the anode foil 1 by chemical oxidation polymerization. Constant electric R electrolytic oxidative polymerization (1 mA/cd, 1:15 J) was performed between the polypyrrole film 5 prepared as an anode and an external cathode to form a polypyrrole film by electrolytic oxidative polymerization. This element was immersed in colloidal carbon to form a carbon layer, and then silver paste was applied to form a conductive coating, from which a cathode was taken out. This element is sealed in a case and rated at 10V.
A -6.7 μF solid electrolytic capacitor was completed.

このコンデンサは第1表に示すように、従来のコンデン
サに比べ静電容量・ta、nδ・漏れ電流の改汚、短絡
不良発生率低減がみられた。
As shown in Table 1, this capacitor showed improvements in capacitance, ta, nδ, leakage current, and a reduction in the incidence of short-circuit defects compared to conventional capacitors.

実施例2 前記実施例1におけるシリコーンデユープの代わりにシ
リコーン樹脂を塗布し、これを加熱硬化させて絶縁層を
構成したほかは、すべて実施例1と同じである。このコ
ンデンサの特性を第1表に示1゜ 実施例3 実施例1に用いたものと同様に、リード線にシリコーン
チューブを挿入後加熱収縮させた陽極引出端子を接続し
た陽極箔を巻回し、これを実施例1と同じ条件の化学酸
化重合によりポリピロール膜を形成し、シリコーン上に
形成されたボリピ[1−ル膜に給電電極を接触させて電
解酸化重合によるポリピロール膜を形成した。
Example 2 Everything was the same as in Example 1 except that a silicone resin was applied instead of the silicone dupe in Example 1, and the insulating layer was formed by heating and curing this. The characteristics of this capacitor are shown in Table 1.1゜Example 3 Similar to the one used in Example 1, a silicone tube was inserted into the lead wire, and then an anode foil connected to the heat-shrinked anode lead terminal was wound. A polypyrrole film was formed from this by chemical oxidative polymerization under the same conditions as in Example 1, and a power supply electrode was brought into contact with the polypyrrole film formed on the silicone to form a polypyrrole film by electrolytic oxidative polymerization.

このようにして作製した定格10V−6,7μFの固体
電解コンデンサの特性は第1表に承りとおりである。
The characteristics of the solid electrolytic capacitor with a rating of 10V-6.7μF produced in this way are as shown in Table 1.

なお、このような製造方法において、陽極箔の間に適当
なスペーサを設けてもよい。
In addition, in such a manufacturing method, an appropriate spacer may be provided between the anode foils.

従来例 表面を粗面化して誘電体酸化皮膜を形成させたりさ60
μm2幅3mの高純αアルミニウム箔にかしめ付けによ
り陽極引出端子を取り付けた後25N4に切断して陽極
箔を(9だ。
Conventional example The surface is roughened and a dielectric oxide film is formed60
After attaching the anode lead-out terminal by caulking to a high-purity alpha aluminum foil with a width of 3 m2 μm2, cut the anode foil to 25N4 (9).

次いで、陽極箔を2rnol/jのビ[1−ル/エタノ
ール溶液に5分間浸漬した。更に、0.5m01/J過
硫酸アンモニウム水溶液に5分間浸漬して化学酸化重合
により導電性a1分子膜であるボリピ0−ル膜を形成し
た。この陽極箔にスペーサ紙を(0ねてm巻状に巻回し
素子とした後、再化成により誘電体酸化皮膜の修復を行
った。更に径0.1#Iの白金線を給電電極として、こ
の素子の化学m金膜に接触させ電解液としてビロールモ
ノマー1mol/N及び支持電解質としてパラトルエン
スルホン酎ナトリウム1mol/Jlを含むアセトニリ
トルを用い、外部陰極との間に定電Fi電解酸化重合(
1mA/cIi、11L’i間)を行い、電、解酸化重
合によるボリピ[1−ル股を形成後、実施例1の方法に
準じてコンデンサを完成させた。
The anode foil was then immersed in a 2rnol/j beer/ethanol solution for 5 minutes. Furthermore, it was immersed in a 0.5 m01/J ammonium persulfate aqueous solution for 5 minutes to form a polypylene film, which is a conductive a1 molecular film, by chemical oxidative polymerization. After winding a spacer paper around this anode foil into an m-wound shape to form an element, the dielectric oxide film was repaired by reconversion.Furthermore, a platinum wire with a diameter of 0.1 #I was used as a power supply electrode. Chemistry of this device: Acetonitrile containing 1 mol/N of virol monomer as an electrolyte and 1 mol/Jl of sodium paratoluenesulfone as a supporting electrolyte is used in contact with the gold film, and is connected to the external cathode by electrostatic Fi electrolytic oxidative polymerization (
1 mA/cIi, 11 L'i), and after forming a polypil [1-l crotch] by electrolytic and deoxidative polymerization, a capacitor was completed according to the method of Example 1.

このコンデンサ゛の特性を第1表に示す。The characteristics of this capacitor are shown in Table 1.

第  1  表 実施例」 第3図に示すように、3 tea X 6 m X厚ざ
60μmのアルミニウムP111を粗面化し、49Vの
電圧を印加した化成処理によって誘?ti (A M化
成膜12を形成した。このアルミニウム箔11にシリコ
ーン樹脂を塗布して絶縁層13を形成した後、実施例1
と同じ条件で絶$i層13が埋没しないように化学酸化
用合液に浸漬して厚さ0.5μmrLの化学小金膜14
、該化学■金膜14をwANAとして厚さ10μmの電
lft、金膜15、該電解重合膜15−Eに銀ペースト
の導電Fi416を形成し、第4図のごとき構成のもの
を1!1だ。前記絶R層13の上n1の適宜な個所から
陽極引出端子、導電層16からF2極引出端子を取り出
して作製した定格10V−1μFのコンデンサの特性は
第2表のとおりである。
Table 1 Examples As shown in Fig. 3, aluminum P111 with a size of 3 tea x 6 m x 60 μm in thickness was roughened and subjected to chemical conversion treatment with a voltage of 49 V applied. ti (A M chemically formed film 12 was formed. After applying silicone resin to this aluminum foil 11 to form an insulating layer 13, Example 1
Under the same conditions as above, the chemical small gold film 14 with a thickness of 0.5 μm rL was immersed in the chemical oxidation mixture so that the $i layer 13 would not be buried.
Using the gold film 14 as wANA, a conductive film of silver paste 416 was formed on the gold film 15 and the electropolymerized film 15-E to a thickness of 10 μm, and the structure as shown in FIG. is. Table 2 shows the characteristics of a capacitor with a rating of 10V-1 .mu.F, which was prepared by taking out the anode lead terminal from an appropriate location on the top n1 of the R layer 13 and the F2 pole lead terminal from the conductive layer 16.

第2表 なお、絶縁層13はシリコーン樹脂を塗布して形成した
が、シリコーンのリング状のものを嵌め込んで加熱収縮
させてもよい。
Table 2 Note that the insulating layer 13 was formed by applying silicone resin, but a silicone ring-shaped material may be fitted and heat-shrinked.

実施例5 実施例4にJ:つて第4図、のどと(作製したコンデン
サ素子を複数枚積層した実18 PAについで述べる。
Example 5 Continuing with Example 4, we will now describe an actual 18 PA in which a plurality of prepared capacitor elements are laminated as shown in FIG.

第4図に示したコンデンサ素子の電解小合躾15まで形
成した6のを7枚積層した後、iff記電解千合躾15
に銀ペーストを塗布して共通陰極とし、これに適宜な引
出端子を接続しl12棒引出端了とした。一方、陽極引
出端子も絶縁層13により化パ戸蛋金膜14.電[金膜
15と隔離されたアルミニウム9511に前記1i24
4iの場合と同じ手段によって陽極引出端子を接続し=
1ンデンリを構成した。この積層形固体電解コンデンサ
の特性を第3表に示した。
After laminating 7 sheets of 6 formed up to the electrolytic assembly 15 of the capacitor element shown in FIG.
Silver paste was applied to the common cathode, and an appropriate lead terminal was connected to this to form a 112-rod lead-out end. On the other hand, the anode lead-out terminal is also coated with an insulating layer 13 and a gold film 14. The above 1i24 is applied to the aluminum 9511 isolated from the gold film 15.
Connect the anode lead terminal by the same means as in the case of 4i =
1 Ndenri was constructed. Table 3 shows the characteristics of this multilayer solid electrolytic capacitor.

第  3  表 なお、引出端子はリード線、リードフレームなど適宜な
形状−すのを用いてより、(の接続方法も陰極引出端子
で藝、上根ペーストなどの導電層へ接続することが一般
的に行われ、また、陽極引出端子も同社の手段や、各種
の溶接などによって接続してもよい。また、絶縁層を形
成したアルミニウム箔を所要枚a適当な間隔を乙って併
置し、同時に化グ・酸化重合、電解酸化Φ合を行った優
、共通の導電層を形成することム木発明のfi 171
1にあるしのである。
Table 3 Note that the lead terminal is generally connected to a conductive layer such as a cathode paste using a cathode lead terminal, using a suitable shape such as a lead wire or a lead frame. In addition, the anode lead-out terminal may also be connected by the company's method or by various welding methods.Also, the required sheets of aluminum foil with an insulating layer are placed side by side at an appropriate interval, and the connection is made at the same time. Fi 171 of the invention of Mugi, which was formed by chemical oxidation polymerization, electrolytic oxidation polymerization, and electrolytic oxidation Φ polymerization to form a common conductive layer.
This is Shino in 1.

実施例6 第5図に示1ように、0.3順φタンタル線21を植え
込んでタンタル粉末を成形し3.2履φX5gNの素子
22を得、これを1600℃で焼結して焼結形タンタル
コンデンサ素子を作製した。
Example 6 As shown in FIG. 5, a 0.3 order φ tantalum wire 21 is implanted and tantalum powder is molded to obtain an element 22 of 3.2 mm φ x 5 gN, which is sintered at 1600°C. A type tantalum capacitor element was fabricated.

このコンデンサ素子22に70Vを印加して化成処理を
行った後、前記タンタル線21の素子端面より上部の位
貿にエポキシ樹脂を塗布して絶縁層23どした。このコ
ンデンサ素子22を化学酸化重合するために化学重合液
に浸漬するが、この浸漬は前記絶縁層23を液中に埋没
ざUないようにして行われ、化学重合膜24を形成した
。このようにして化学重合膜24を形成したコンデンサ
素子22を電解重合液に浸漬して電解酸化重合を行うが
、前記絶縁層23トに形成された化学重合膜24に電解
酸化重合1゛るための白金線25からなる給電電極を接
触させ、以下実/J1!!例1に準じて固体電解コンデ
ン1)を作製した。
After applying 70V to this capacitor element 22 to perform a chemical conversion treatment, epoxy resin was applied to the area above the element end face of the tantalum wire 21 to form an insulating layer 23. This capacitor element 22 was immersed in a chemical polymerization solution for chemical oxidation polymerization, but this immersion was carried out without submerging the insulating layer 23 in the solution, thereby forming a chemical polymerization film 24. The capacitor element 22 on which the chemically polymerized film 24 has been formed in this manner is immersed in an electrolytic polymerization solution to perform electrolytic oxidative polymerization. A power supply electrode made of a platinum wire 25 is brought into contact with the power supply electrode, and the following is referred to as real/J1! ! Solid electrolytic condenser 1) was produced according to Example 1.

なお、この実施例では絶縁層としてエポキシ樹脂を塗布
した場合につい又述べたが、i8水性物質であるシリコ
ーン樹脂、フッ素樹脂などを塗布したり、チューブA1
)座金状に加工したものを嵌め込lυで絶縁層とした場
合は、これらの絶縁層の下niに形成される化学重合膜
を陽極として電解酸化重合してもよい。また、これらの
技術はアルミニウム粉末を焼結したアルミニウム焼結形
固体電解コンデンサにも使用できる。
In addition, in this example, the case where epoxy resin was applied as an insulating layer was described, but it is also possible to apply silicone resin, fluororesin, etc., which are i8 aqueous substances, or to
) When the insulating layer is formed by inserting a washer-shaped material into the insulating layer, electrolytic oxidation polymerization may be performed using the chemically polymerized film formed under the insulating layer as an anode. These techniques can also be used for aluminum sintered solid electrolytic capacitors made of sintered aluminum powder.

[発明の効果] 本発明になる囚体雷解コンデンサの!I!J造方法によ
れば、化学酸化重合後電解酸化重合を行う場合に絶縁層
上に形成された化学重合膜に給電電極を)g触さ「て電
解酸化重合を行うことによ′り均一なる電解15合膜を
(りることができるとともに、給電電極を剥離するとき
の機械的シ]ツク費損市も(2きるので、均一な電解重
合膜を栂ることができる。
[Effect of the invention] The prisoner lightning decomposition capacitor of the present invention! I! According to the J manufacturing method, when carrying out electrolytic oxidative polymerization after chemical oxidative polymerization, the chemical polymer film formed on the insulating layer is touched with a power supply electrode to perform electrolytic oxidative polymerization. Since the electrolytic polymer film can be peeled off and the mechanical shock required when peeling off the power supply electrode is reduced by 2, a uniform electrolytic polymer film can be produced.

また、前記の方法では絶縁層を施して化学重合膜及び電
解重合膜を形成するので、これら重合膜と陽極との間に
生じる短絡不良を防止できる。
Further, in the above method, since the chemically polymerized film and the electrolytically polymerized film are formed by applying an insulating layer, it is possible to prevent short circuit failures occurring between these polymerized films and the anode.

そして、シリコーンチューブや座金状のものを用いた場
合は、作業性がよく、かつ絶縁層が不揃いになることが
ない効果を右するものである。
When a silicone tube or washer-like material is used, the workability is good and the insulating layer does not become uneven.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は巻回層コンデン
サ素子を示ザIN開図、第2図は電解酸化重合における
給電方法を示す斜視図、第3図(は平板形コンデンサ素
子をポリ正面図、第4図は電解酸化重合後のコンデンサ
素子を示づ°断面図、第5図は焼結形コンデンサ素子の
電解酸化重合状態を示す断面図である。 1・・・陽(i箔      2・・・陽極引出端子3
・・・リード線     4・・・絶縁層5・・・ポリ
ピロール膜  6・・・スペーサ紙7・・・巻回素子 
    8・・・白金線11・・・アルミニウム箔 1
2・・・誘電体酸化皮膜13・・・絶縁層     1
4・・・化学重合膜15・・・電解重合膜   16・
・・導電層21・・・タンタル線   22・・・コン
アン+1索子23・・・絶縁層     24・・・化
学重合膜25・・・白金線 特  許  出  願  人 マルコン電子株式会社 日本カーリット株式会社
The drawings show embodiments of the present invention, with Fig. 1 showing an open view of a wound layer capacitor element, Fig. 2 a perspective view showing a power supply method in electrolytic oxidation polymerization, and Fig. 3 showing a flat plate capacitor element. 4 is a cross-sectional view showing the capacitor element after electrolytic oxidative polymerization, and FIG. 5 is a cross-sectional view showing the electrolytic oxidative polymerized state of the sintered capacitor element. 1... Positive ( i foil 2... anode lead terminal 3
... Lead wire 4 ... Insulating layer 5 ... Polypyrrole film 6 ... Spacer paper 7 ... Winding element
8...Platinum wire 11...Aluminum foil 1
2...Dielectric oxide film 13...Insulating layer 1
4...Chemical polymerization membrane 15...Electrolytic polymerization membrane 16.
...Conductive layer 21...Tantalum wire 22...CON+1 wire 23...Insulating layer 24...Chemical polymer film 25...Platinum wire Patent application Marcon Electronics Co., Ltd. Nippon Carlit Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)誘電体酸化皮膜を生成した皮膜形成性金属に化成
処理,化学酸化重合,電解酸化重合,カーボン層を形成
し、該カーボン層上に陰極となる導電性塗膜を施してな
る平板形,巻回形,焼結形又は積層形固体電解コンデン
サの製造方法において、前記化学酸化重合が陽極引出部
の化学酸化重合液面より上部までを被覆する絶縁層を施
して行われ、電解酸化重合が該絶縁層に、又は該絶縁層
の下位に形成された化学重合膜を陽極として行われるこ
とを特徴とする固体電解コンデンサの製造方法。
(1) A flat plate formed by forming a carbon layer on a film-forming metal that has produced a dielectric oxide film through chemical conversion treatment, chemical oxidation polymerization, electrolytic oxidation polymerization, and applying a conductive coating film to serve as a cathode on the carbon layer. , a method for manufacturing a wound type, sintered type, or laminated solid electrolytic capacitor, in which the chemical oxidation polymerization is performed by applying an insulating layer covering the area above the chemical oxidation polymerization liquid level of the anode lead-out part, and the electrolytic oxidation polymerization A method for manufacturing a solid electrolytic capacitor, characterized in that step 1 is carried out using a chemically polymerized film formed on or below the insulating layer as an anode.
(2)陽極引出部が皮膜形成性金属に接続したリード線
,リードフレームである請求項(1)記載の固体電解コ
ンデンサの製造方法。
(2) The method for manufacturing a solid electrolytic capacitor according to claim (1), wherein the anode lead-out portion is a lead wire or a lead frame connected to a film-forming metal.
(3)絶縁層がシリコーン樹脂,フッ素樹脂又はエポキ
シ樹脂で形成された請求項(1)又は請求項(2)記載
の固体電解コンデンサの製造方法。
(3) The method for manufacturing a solid electrolytic capacitor according to claim (1) or claim (2), wherein the insulating layer is formed of silicone resin, fluororesin, or epoxy resin.
(4)絶縁層がシリコーンチューブを加熱収縮させた又
は座金状のものを嵌め込んで形成された請求項(1)〜
請求項(3)のいずれかに記載の固体電解コンデンサの
製造方法。
(4) Claims (1) to 10 in which the insulating layer is formed by heat-shrinking a silicone tube or fitting a washer-like member into the insulating layer.
The method for manufacturing a solid electrolytic capacitor according to claim (3).
(5)電解酸化重合が絶縁層上に又は絶縁層の下部に形
成された化学重合膜に給電電極を接触させて行われる請
求項(1)〜請求項(4)のいずれかに記載の固体電解
コンデンサの製造方法。
(5) The solid according to any one of claims (1) to (4), wherein the electrolytic oxidative polymerization is performed by bringing a power supply electrode into contact with a chemical polymer film formed on the insulating layer or under the insulating layer. Method of manufacturing electrolytic capacitors.
JP12273589A 1989-05-18 1989-05-18 Manufacture of solid state electrolytic capacitor Pending JPH02303017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12273589A JPH02303017A (en) 1989-05-18 1989-05-18 Manufacture of solid state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12273589A JPH02303017A (en) 1989-05-18 1989-05-18 Manufacture of solid state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH02303017A true JPH02303017A (en) 1990-12-17

Family

ID=14843293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12273589A Pending JPH02303017A (en) 1989-05-18 1989-05-18 Manufacture of solid state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH02303017A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681921A (en) * 1979-12-07 1981-07-04 Nippon Electric Co Solidstate electrolytic condenser
JPH01105523A (en) * 1987-10-19 1989-04-24 Japan Carlit Co Ltd:The Solid electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681921A (en) * 1979-12-07 1981-07-04 Nippon Electric Co Solidstate electrolytic condenser
JPH01105523A (en) * 1987-10-19 1989-04-24 Japan Carlit Co Ltd:The Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JPH09293639A (en) Solid electrolytic capacitor and manufacture thereof
KR0184637B1 (en) Method for forming a conductive film on a surface of a conductive body coated with an insulating film
JPH11186110A (en) Electrolytic capacitor and manufacture thereof
US6906913B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2001110685A (en) Solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JP2004319795A (en) Aluminum solid electrolytic capacitor and its manufacturing method
JPH03276712A (en) Solid-state electrolytic capacitor
JPH02303017A (en) Manufacture of solid state electrolytic capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11204377A (en) Solid-state electrolytic capacitor
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH03231414A (en) Solid electrolytic capacitor
JPH05304056A (en) Manufacture of solid electrolytic capacitor
JP2811915B2 (en) Method for manufacturing solid electrolytic capacitor
JP3367221B2 (en) Electrolytic capacitor
JPH0446446B2 (en)
JPH0350712A (en) Electrolyte coating to electric conductor on which insulating thin film is formed
JP2786331B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0487316A (en) Capacitor
JPH02308517A (en) Manufacture of solid electrolytic capacitor
JPH03231415A (en) Solid electrolytic capacitor
JPH0352218A (en) Manufacture of solid electrolytic capacitor
JPH0321006A (en) Manufacture of solid electrolytic capacitor