JPH0321006A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH0321006A
JPH0321006A JP15453089A JP15453089A JPH0321006A JP H0321006 A JPH0321006 A JP H0321006A JP 15453089 A JP15453089 A JP 15453089A JP 15453089 A JP15453089 A JP 15453089A JP H0321006 A JPH0321006 A JP H0321006A
Authority
JP
Japan
Prior art keywords
electrolytic
film
polymerized film
carbon fibers
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15453089A
Other languages
Japanese (ja)
Inventor
Satoshi Yuzawa
聡 湯澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd, Japan Carlit Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP15453089A priority Critical patent/JPH0321006A/en
Publication of JPH0321006A publication Critical patent/JPH0321006A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To eliminate risk of damaging a chemically polymerized film and an oxide film by a method wherein electrolytic oxidation polymerization is performed with carbon fibers wound around a capacitor element as a power supply electrode and then the carbon fibers protruding from an electrolytic polymerized film are cut off. CONSTITUTION:Electrolytic oxidation polymerization with carbon fibers 7 wound around a capacitor element 5 as a power supply electrode is performed and then the carbon fibers 7 protruding from an electrolytic polymerized film 10 are cut off. That is, since the carbon fibers 7 used as the power supply electrode are soft, a chemically polymerized film and an oxide film are not damaged even if the fibers 7 are in contact with a chemically polymerized film 3 and the oxide film to contribute to effective formation of the electrolytic polymerized film 10 as well as the carbon fibers 7 in contact with the capacitor element 5 are not removed after the formation of the electrolytic polymerized film 10 with only portions protruding from the electrolytic polymerized film 10 to be cut off. Thus not only the electrolytic polymerized film 10 but also the chemically polymerized film 3 and the oxide film are free from damage.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、導電性高分子膜を固体電解質として用いた固
体電解コンデンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer membrane as a solid electrolyte.

(従来の技術) 近年、小形高性能化の要請に応えた固体電解コンデンサ
として特開昭60−24401 7号公報又は特開昭6
3−181308号公報に開示されたものがある。
(Prior art) In recent years, Japanese Patent Application Laid-Open No. 60-24401-7 or Japanese Patent Application Laid-open No. 6
There is one disclosed in Publication No. 3-181308.

これら公報に開示ざれた技術は、表面を粗面化した弁作
用金属を化成し酸化皮膜を形成して得た陽極体を陽極と
して電解液に浸漬して通電し、前記酸化皮膜上に形成し
て電解重合膜を固体電解質として用いるものであるが、
酸化皮膜が絶縁物であるため陰極と効果的な通電が行わ
れず、酸化皮膜の欠陥部あるいは陰極との距離が近いと
ころに電流が集中し、固体電解質としての均一な電解重
合膜を得ることが極めて困難であった。
The techniques disclosed in these publications involve chemically converting a valve metal with a roughened surface to form an oxide film, and using the anode body as an anode, immersing it in an electrolytic solution and energizing it to form an oxide film on the oxide film. In this method, an electrolytic polymer membrane is used as a solid electrolyte.
Since the oxide film is an insulator, there is no effective electrical conduction with the cathode, and current concentrates in defective parts of the oxide film or in areas close to the cathode, making it difficult to obtain a uniform electrolytic polymer film as a solid electrolyte. It was extremely difficult.

そのため、あらかじめ陽極体の酸化皮膜上に化学酸化重
合によって薄い化学重合膜を形成し、その化学重合膜上
に給電電極として白金線,ニッケル線又はステンレス線
などの金属線を接触させ、電解液中で通電して電解酸化
重合を行うことにより、固体電解質としての電解重合膜
を形成するようにしている。
Therefore, a thin chemical polymer film is formed in advance on the oxide film of the anode body by chemical oxidation polymerization, and a metal wire such as a platinum wire, nickel wire, or stainless steel wire is brought into contact with the chemical polymer film as a power supply electrode, and then placed in the electrolyte. By applying electricity to perform electrolytic oxidative polymerization, an electrolytically polymerized membrane as a solid electrolyte is formed.

しかしながら、給電電極として用いる上記の金属線は砂
いため、酸化皮膜上への接触時、化学重合膜はもとより
酸化皮膜を損傷してしまう危険性を有し、更に、電解重
合膜形成後、給電電極を分離する際、給電電極接触部分
にも化学重合股上に形成された電解重合膜ど連続して形
威された電解重合膜はもとより化学重合膜をも破損させ
、漏れ電流の増大や短絡不良発生となる危険性を有し、
必ずしも有効な手段とは言えなかった。
However, since the metal wire used as the power supply electrode is sandy, there is a risk of damaging not only the chemically polymerized film but also the oxide film when it comes into contact with the oxide film. When separating, the electrolytic polymer film formed on the chemically polymerized film at the contact part of the power supply electrode may be damaged, as well as the chemically polymer film, resulting in an increase in leakage current and short-circuit failure. There is a risk that
It was not necessarily an effective method.

(発明が解決しようとづる課題) 以上のように、従来開示ざれている手段では所望の電解
重合膜を得る上で解決すべき課題をかかえる結果となっ
ていた。
(Problems to be Solved by the Invention) As described above, the conventionally undisclosed means have resulted in problems that need to be solved in order to obtain a desired electrolytically polymerized membrane.

本発明は、上記の点に鑑みてなされたもので、酸化皮膜
や化学重合膜はもとより、電解重合股などに損傷を与え
ることなく、固体電解質となる優れた電解重合膜を形成
できる固体電解]ンデンザの製造方法を提供することを
目的どするものである。
The present invention has been made in view of the above points, and is a solid electrolyte that can form an excellent electrolytic polymer film that becomes a solid electrolyte without damaging the oxide film, chemical polymer film, or electrolytic polymer film. The purpose of this invention is to provide a method for manufacturing denza.

[発明の構成] (課題を解決するための手段) 本発明の固体電解コンデンザの製造方法は、弁作用金属
に形成した酸化皮膜上に化学酸化重合によって化学重合
膜を形成した後、この化学重合膜上に電解酸化重合によ
り電解重合膜を形成する固体電解コンデンザの製造方法
において、前記コンデンサ素子に給電電極としての炭素
繊維を巻きつけ電解酸化重合を行い、しかる後、電解重
合膜から突出している炭素繊維を切断除去することを特
徴とづるものである。
[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing a solid electrolytic capacitor of the present invention includes forming a chemical polymer film by chemical oxidation polymerization on an oxide film formed on a valve metal, and then performing the chemical polymerization. In a method for producing a solid electrolytic capacitor in which an electrolytic polymerized film is formed on the membrane by electrolytic oxidative polymerization, carbon fibers as a power supply electrode are wound around the capacitor element and subjected to electrolytic oxidative polymerization, and then carbon fibers protruding from the electrolytic polymeric film are formed. This method is characterized by cutting and removing carbon fibers.

(作用) 以上の構成によれば、給電N極として用いる炭素m維は
柔らかいため、化学重合膜や酸化皮膜に接触してもこれ
ら化学重合膜や酸化皮膜を損傷するこどなく効率的な電
解重合膜形成に貢献すると同時に、コンデンザ素子に接
触ざれた炭素繊維は電解重合膜形成後取りはがさず、電
解重合膜から突出した部分のみを切断除去づ−るため、
電解重合膜はもとより化学重合膜や酸化3 4 皮膜を破損させることはない。
(Function) According to the above configuration, since the carbon fiber used as the power supply N electrode is soft, even if it comes into contact with a chemical polymer film or oxide film, it will not damage the chemical polymer film or oxide film, and the electrolysis can be carried out efficiently. At the same time as it contributes to the formation of a polymerized film, the carbon fibers that have come into contact with the condenser element are not removed after the electrolytic polymerized film is formed, but only the parts that protrude from the electrolytic polymerized film are cut and removed.
It does not damage electrolytically polymerized membranes, chemically polymerized membranes, or oxidized 34 films.

(実施例) 以下、本発明の一実施例につき説明する。すなわち、第
2図に示すように、酸化皮膜を形成した高純度アルミニ
ウム箔に陽極リ−ド1を取着し、表面に化学酸化重合に
より化学重合膜2を形成した陽極箔3とセパレータ紙4
を積層巻回しコンデンサ素子5を得る。
(Example) An example of the present invention will be described below. That is, as shown in FIG. 2, an anode lead 1 is attached to a high-purity aluminum foil on which an oxide film is formed, and an anode foil 3 and a separator paper 4 on which a chemically polymerized film 2 is formed on the surface by chemical oxidation polymerization.
A laminated winding capacitor element 5 is obtained.

次に、この]ンデンザ素子5を再化成し酸化皮膜の修復
を行い、しかる後、第1図に示すように、コンデンナ素
子5複数個を例えばアルミウム板6を介して連続して取
り付【プ、]ンデンザ素子5それぞれに対ずる給電電極
として炭素$117を用い、この炭素繊雑7をコンデン
サ素子5それぞれに連続して巻きつけた状態で電解槽8
内の電解液9にコンデンザ素子5を浸漬して電解酸化重
合を行い、第3図に示すように」ンデンザ素子5表面に
形成された化学重合膜2表面に固体電解質としての電解
重合膜10を形成し、しかる後、この電解重合膜10か
ら突出している給電電極としての炭素繊維7を切断除去
し、次に陰極を引き出す手段として電解重合膜10表面
にカーボン層を形成し、更に、銀ぺ−ス1−を塗布して
導電性塗膜を形成し、その一部から陰極リードを取り出
し、最後に外装を施してなるものである。
Next, the condenser element 5 is reformed to repair the oxide film, and then, as shown in FIG. ,] Carbon $117 is used as a power supply electrode for each of the capacitor elements 5, and the electrolytic cell 8 is placed in a state in which this carbon fiber 7 is continuously wound around each of the capacitor elements 5.
The condenser element 5 is immersed in the electrolytic solution 9 in the electrolyte solution 9 to perform electrolytic oxidative polymerization, and as shown in FIG. After that, the carbon fibers 7 protruding from the electrolytic polymer membrane 10 as power supply electrodes are cut and removed, and then a carbon layer is formed on the surface of the electrolytic polymer membrane 10 as a means for drawing out the cathode, and then silver A conductive coating film is formed by applying a conductive coating film, a cathode lead is taken out from a part of the coating film, and finally an exterior is applied.

以上の構成になる固体電解コンデンサの製造方法によれ
ば、給電電極として用いる炭素繊維7は柔らかいため、
コンデンザ素子5に巻きつき化学重合膜2に接触したと
しても化学重合膜2自体の損傷はなく、酸化皮膜の損傷
による短絡不良の要因は解消され、かつ固体電解質とし
ての電解重合膜10が効率的に形成できる。
According to the manufacturing method of the solid electrolytic capacitor having the above configuration, since the carbon fiber 7 used as the power supply electrode is soft,
Even if it wraps around the capacitor element 5 and comes into contact with the chemically polymerized film 2, the chemically polymerized film 2 itself is not damaged, the cause of short circuit failure due to damage to the oxide film is eliminated, and the electrolytic polymerized film 10 as a solid electrolyte is efficient. can be formed into

また、]ンデンザ素子5の化学重合膜2部に接触された
炭素m紐7は電解重合膜10形成後取りはがすことがな
いので、電解重合膜10はもとより化学重合膜2や酸化
皮膜に対する機械的ストレスが加わらず諸特性向上に大
きく貢献できる。
In addition, since the carbon m-string 7 that has come into contact with the 2 parts of the chemically polymerized film of the Ndenza element 5 is not removed after the electrolytic polymeric film 10 is formed, the carbon m-string 7 that is in contact with the chemically polymerized film 2 of the electrolytic polymeric film 10 of the electrolytic polymeric film 10 is not removed. It can greatly contribute to improving various properties without adding stress.

次に、本発明によって得られた固体電解コンデンサと、
給電電極どして金属線を用い電解酸化重合後金属線を取
り除くようにした従来例によって得られた固体電解コン
デンサの特性比較について次表に示す。
Next, a solid electrolytic capacitor obtained by the present invention,
The following table shows a comparison of the characteristics of solid electrolytic capacitors obtained by conventional methods in which metal wires are used as power supply electrodes and the metal wires are removed after electrolytic oxidation polymerization.

実施例及び従来例とも化学酸化重合手段は、2mol/
J)ピロール/エタノール溶液に5分間浸漬後0.5m
ol/41過硫酸アンモニウム水溶液に5分間浸漬によ
り、電解酸化重合手段は、ピロールモノマ−1mOI/
1及び支持電解質としてパラトルエンスルホン酸ナトリ
ウム1mol/Jを含むアセトニトリルからなる電解液
に浸漬し、177LA/cn,30分間定電流印加によ
る。
In both the example and the conventional example, the chemical oxidation polymerization means was 2 mol/
J) 0.5m after immersion in pyrrole/ethanol solution for 5 minutes
The electrolytic oxidative polymerization means produced pyrrole monomer-1 mOI/41 by immersion in an aqueous solution of ammonium persulfate for 5 minutes.
1 and acetonitrile containing 1 mol/J of sodium p-toluenesulfonate as a supporting electrolyte, and a constant current of 177 LA/cn was applied for 30 minutes.

試料は実施例,従来例とも35V−1.5μ「である。The sample voltage was 35V-1.5μ for both the example and the conventional example.

表 上表から明らかなように、本発明に係るものは従来例に
係るものと比較し短絡不良の改善に大幅に貢献すること
はもとより、諸特性改善においても有効であることがわ
かった。
As is clear from the above table, it was found that the products according to the present invention not only significantly contributed to the improvement of short-circuit defects, but also were effective in improving various characteristics, compared to the products according to the conventional example.

なお、上記実施例では陽極箔としてアルミニウム箔を用
いるものを例示して説明したが、タンタル箔又はニオブ
簡などの弁作用金属を用いたものに適用できることはも
とより、これら弁作用金属粉末を焼結し焼結陽極体とし
たものに適用できることは勿論である。
In the above embodiments, aluminum foil was used as the anode foil, but it can also be applied to valve metals such as tantalum foil or niobium strips, and these valve metal powders can be sintered. Of course, the present invention can be applied to a sintered anode body.

[発明の効果] 本発明によれば、電解酸化重合過程の給電電極接触によ
る化学重合膜や酸化皮膜損傷の危険性がなく、短絡不良
防止に大きく貢献することはもとより、電解重合膜形成
後電解重合膜をはじめ化学重合膜や酸化皮膜はがれの危
険性がなく、諸特性改善に有効な固体電解コンデンサの
製造方法を得ることができる。
[Effects of the Invention] According to the present invention, there is no risk of damage to the chemically polymerized film or oxide film due to contact with the power supply electrode during the electrolytic oxidation polymerization process, and it not only greatly contributes to preventing short circuits but also It is possible to obtain a method for manufacturing a solid electrolytic capacitor that is effective in improving various characteristics without the risk of peeling off of polymer films, chemical polymer films, or oxide films.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の一実施例に係るもので、第1
図は電解酸化重合手段における電解槽にコンデンサ素子
を浸漬した状態を示す断面図、第2図は電解酸化重合前
のコンデンサ素子を示す展開斜視図、第3図は電解酸化
重合後のコンデンサ素子構成を示す一部切欠断面図であ
る。 2・・・化学重合膜 特  許  出  願  人 マルコン電子株式会社 日本カーリット株式会社
Figures 1 to 3 relate to one embodiment of the present invention;
The figure is a cross-sectional view showing a state in which a capacitor element is immersed in an electrolytic bath in an electrolytic oxidative polymerization method, Figure 2 is a developed perspective view showing a capacitor element before electrolytic oxidative polymerization, and Figure 3 is a configuration of a capacitor element after electrolytic oxidative polymerization. FIG. 2...Chemical polymer membrane patent application Hitomarukon Electronics Co., Ltd. Nippon Carlit Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims]  弁作用金属に形成した酸化皮膜上に化学酸化重合によ
って化学重合膜を形成した後、この化学重合膜上に電解
酸化重合により電解重合膜を形成する固体電解コンデン
サの製造方法において、前記コンデンサ素子に給電電極
としての炭素繊維を巻きつけ電解酸化重合を行い、しか
る後、電解重合膜から突出している炭素繊維を切断除去
することを特徴とする固体電解コンデンサの製造方法。
In the method for producing a solid electrolytic capacitor, in which a chemically polymerized film is formed by chemical oxidation polymerization on an oxide film formed on a valve metal, and then an electrolytically polymerized film is formed on this chemically polymerized film by electrolytic oxidation polymerization, the capacitor element is A method for producing a solid electrolytic capacitor, which comprises winding carbon fibers as a power supply electrode, performing electrolytic oxidation polymerization, and then cutting and removing carbon fibers protruding from an electrolytically polymerized film.
JP15453089A 1989-06-19 1989-06-19 Manufacture of solid electrolytic capacitor Pending JPH0321006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15453089A JPH0321006A (en) 1989-06-19 1989-06-19 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15453089A JPH0321006A (en) 1989-06-19 1989-06-19 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0321006A true JPH0321006A (en) 1991-01-29

Family

ID=15586272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15453089A Pending JPH0321006A (en) 1989-06-19 1989-06-19 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0321006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377073A (en) * 1992-01-27 1994-12-27 Nec Corporation Stacked type solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5377073A (en) * 1992-01-27 1994-12-27 Nec Corporation Stacked type solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US6239965B1 (en) Electrolytic capacitor and method of producing the same
KR0184637B1 (en) Method for forming a conductive film on a surface of a conductive body coated with an insulating film
JPH0322516A (en) Manufacture of solid electrolytic capacitor
JP3416099B2 (en) Capacitor and manufacturing method thereof
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JPH0321006A (en) Manufacture of solid electrolytic capacitor
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JP2004158580A (en) Process for producing laminated aluminum solid electrolytic capacitor and capacitor produced by that method
JP2730192B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH02308517A (en) Manufacture of solid electrolytic capacitor
JP2870805B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JPH02137311A (en) Solid electrolytic capacitor
JPH04103117A (en) Manufacture of solid electrolytic capacitor
JP3198749B2 (en) Method for manufacturing solid electrolytic capacitor
WO2022118785A1 (en) Electrolytic capacitor and method for manufacturing electrolytic capacitor
JPH0423411B2 (en)
JPH11283878A (en) Method and device for manufacturing solid electrolytic capacitor
JPH05304056A (en) Manufacture of solid electrolytic capacitor
JP2924310B2 (en) Manufacturing method of capacitor
JP2001257132A (en) Electrolytic capacitor and manufacturing method
JPH0453117A (en) Solid electrolytic capacitor and its manufacture
JPH03139816A (en) Manufacture of solid electrolytic capacitor