JPH0322516A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH0322516A
JPH0322516A JP1157399A JP15739989A JPH0322516A JP H0322516 A JPH0322516 A JP H0322516A JP 1157399 A JP1157399 A JP 1157399A JP 15739989 A JP15739989 A JP 15739989A JP H0322516 A JPH0322516 A JP H0322516A
Authority
JP
Japan
Prior art keywords
film
oxide film
conductive polymer
dielectric oxide
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1157399A
Other languages
Japanese (ja)
Other versions
JP2810418B2 (en
Inventor
Hidenori Kamikawa
上川 秀徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Sanyo Industry Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Saga Sanyo Industry Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Sanyo Industry Co Ltd, Sanyo Electric Co Ltd filed Critical Saga Sanyo Industry Co Ltd
Priority to JP1157399A priority Critical patent/JP2810418B2/en
Priority to US07/540,061 priority patent/US5017272A/en
Priority to KR1019900009000A priority patent/KR0184637B1/en
Priority to DE69029614T priority patent/DE69029614T2/en
Priority to EP90111692A priority patent/EP0408913B1/en
Publication of JPH0322516A publication Critical patent/JPH0322516A/en
Application granted granted Critical
Publication of JP2810418B2 publication Critical patent/JP2810418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To unnecessitate a specific power feeding electrode by applying a charge-and- discharge current to the surface of a sheet of metal foil having a valve action, a conductive high molecular layer such as pyrrole, thiophenef, anilin and the like is formed by a method wherein, when electrolytic polymerization is conducted, an alternating current in which a DC bias current is superposed, and direct current, which will be periodically or intermittently conductive, are applied. CONSTITUTION:As a metal having a valve work, an element 6 composed of an Al sintered body 1, for example, and a lead wire 5, which is led out from the internal part of the sintered body 1, are dipped into an ammonium adipate aqueous solution, an anodizing process is conducted by applying the prescribed voltage through the intermediary of the lead wire 5, and a dielectric oxide film layer 2 is formed. The element 6 is dipped into an acetonitrile solution 9 containing a pyrrole monomer and parathorenlunephone acid, and when an alternate current power source 12 of the prescribed frequency, on which DC bias voltage 10 is superposed in such a manner that negative voltage will not be applied, is applied between the lead wire 5 and a counter electrode stainless steel plate 11 through the intermediary of a dielectric oxide film 2, a uniform polypyrole conductive high molecular film 4 is formed by electrolytic polymerization. This element is washed and dried up, and after silver paint has been coated, a cathode lead 7 is adhered to the silver paint, and a mold-cladding is conducted using epoxy resin.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は導電性高分子を電解質として用いる高性能固体
電解コンデンサの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a high-performance solid electrolytic capacitor using a conductive polymer as an electrolyte.

(ロ)従来の技術 従米、化学酸化重合法や電解重合法により、ポリピロー
ル、ボリアニリン、ポリチオフエン、ポリフラン等の導
電性高分子膜を誘電体酸化皮膜上に形或し、この導電性
高分子膜を電解質として使用する固体電解コンデンサの
製造方法が種々提案されている。例えば特開昭63−1
73313号(HO IG9/’0 2) 、特開昭6
4−32620号(801G9/02)および特開昭6
476713号(HO I G9/0 2)に上述の如
き従来技術が開示されている。
(b) Conventional technology: A conductive polymer film of polypyrrole, polyaniline, polythiophene, polyfuran, etc. is formed on a dielectric oxide film by a chemical oxidative polymerization method or an electrolytic polymerization method. Various methods of manufacturing solid electrolytic capacitors used as electrolytes have been proposed. For example, JP-A-63-1
No. 73313 (HO IG9/'0 2), Japanese Patent Application Publication No. 1986
No. 4-32620 (801G9/02) and Unexamined Japanese Patent Publication No. 6
No. 476713 (HO I G9/0 2) discloses the above-mentioned prior art.

化学酸化重合の場合、一般に弁作用を有する金属の箔あ
るいは焼結体等の誘電体酸化皮膜上に、酸化剤と導電性
高分子となりうる単量体の溶液あるいは気体を接触させ
ることにより導電性高分子層を形成させている。
In the case of chemical oxidative polymerization, conductive polymerization is generally achieved by bringing an oxidizing agent into contact with a solution or gas of a monomer that can become a conductive polymer on a dielectric oxide film such as a metal foil or sintered body that has a valve effect. A polymer layer is formed.

また、電解重合の場合、あらかじめ誘電体酸化皮膜上に
化学酸化重合による薄い導電性高分子膜等の何らかの導
電性物質の薄膜を形戒させた後、外部より電解重合用の
陽極電極を前記導電性膜に接触させて給電し、電解重合
膜を得る方法があり、更にまた金属箔上の酸化皮膜を一
部破壊し、金属部分を露出させて前処理による導電性膜
と金属部を短絡することにより給電し、電解重合膜を形
戒させた後、短絡した部分を化学的に酸化剤及び還元剤
に接触させて絶縁化したり、レーザ等の熱的なエネルギ
をその部分に加える事により絶縁化させる方法等が提案
されている(特開昭64−76713号参照)。
In addition, in the case of electrolytic polymerization, after forming a thin film of some kind of conductive material such as a thin conductive polymer film by chemical oxidation polymerization on the dielectric oxide film in advance, the anode electrode for electrolytic polymerization is connected to the conductive material from the outside. There is a method of supplying electricity by contacting the conductive film to obtain an electrolytically polymerized film.Furthermore, the oxide film on the metal foil is partially destroyed, the metal part is exposed, and the conductive film and the metal part are short-circuited by pretreatment. After supplying power and insulating the electropolymerized film, the short-circuited part can be insulated by chemically contacting it with an oxidizing agent and reducing agent, or by applying thermal energy such as a laser to that part. A method has been proposed for converting the image into 1980 (see Japanese Patent Application Laid-open No. 76713/1983).

以」一のような方法が導電性高分子を電解質とする高性
能固体電解コンデンサの製造方法であった。
The method described above was a method for producing high-performance solid electrolytic capacitors using a conductive polymer as an electrolyte.

さて、導電性高分子を誘電体酸化皮膜上に形或させるに
は、前述したように化学酸化重合法(気相重合も含む)
と電解重合法がある。
Now, in order to form a conductive polymer on a dielectric oxide film, as mentioned above, chemical oxidation polymerization method (including gas phase polymerization) is used.
and electrolytic polymerization method.

次に従来の製造方法について説明する。第3図に示す如
く、弁作用を有するアルミ粉末の焼結体或はアルミ金属
箔(1)を電解酸化または空気酸化により、その表面に
誘電体酸化皮膜(2)を作る。
Next, a conventional manufacturing method will be explained. As shown in FIG. 3, a dielectric oxide film (2) is formed on the surface of a sintered body of aluminum powder or aluminum metal foil (1) having a valve action by electrolytic oxidation or air oxidation.

まず、化学酸化重合の場合、誘電体酸化皮膜(2)上に
酸化剤を含む溶液を塗布した後、導電性高分子の単量体
を含む溶液に接触させて、誘電体酸化皮膜層(2)の上
に化学酸化重合による導電性高分子層(3)を形成し、
表面を導電化する。この作業には問題がないが、膜の強
度及び電気特性的3 ・1 にコンデンサとして満足できる皮膜が得られない等の問
題がある。
First, in the case of chemical oxidative polymerization, a solution containing an oxidizing agent is applied onto the dielectric oxide film (2), and then the dielectric oxide film layer (2) is brought into contact with a solution containing a conductive polymer monomer. ), a conductive polymer layer (3) is formed by chemical oxidation polymerization,
Make the surface conductive. Although there are no problems with this operation, there are problems such as the inability to obtain a film that is satisfactory as a capacitor in terms of film strength and electrical properties.

次に電解重合においては、第3図および第4図に示す如
く、支持電解質および導電性高分子単量体を含む電解液
(9)中に、前述の化学酸化重合により導電性高分子層
(3)が形成され且つ金属箔(1)に接続されたコンデ
ンサ用リード線(5)を備えるコンデンサ素子(6)を
浸漬し、化学酸化重合により形成された導電性高分子膜
(3)に白金、カーボン等よりなる外部電極(8)を接
触させ、定電圧且つ定電流直流電源(10)から正電圧
を供給する。また、その直流電源(10)の負電圧をス
テンレス等よりなる電解重合用対極電極(11)に供給
し、電解酸化重合を行なう。この電解重合においては、
電解液(9)により差はあるが、一般に良質の電解重合
による導電性高分子膜(4)が得られるが、絶縁体であ
る誘電体酸化皮膜(2)上に導電性高分子皮膜(4)を
形成させる際、その給電方法が非常に困難である。例え
ば誘電体酸化皮膜(2)−ヒに前処理として化学酸化重
合、導電性高分子膜(3)を形成させ、その膜に外部よ
り外部電極(8)を接触させる給電方式が一般に採用さ
れているが、この方式によると、個々の電極接触度合に
より電流密度が一定でなく、均一な膜形成が困難であり
、かつ外部電極(8)にも導電性高分子膜(4a)が形
戒されるので、この無駄な高分子膜(4a)による材料
の量的損失が大きい。更にこの導電性高分子膜(4a)
により素子(6)および化学酸化重合導電性高分子膜(
3)に強固に接着された外部電極(8)を素子(6)か
ら無理に分離する際、導電性高分子膜(4)の一部(4
b)が欠落するが、その時、酸化皮膜(3)を傷つける
ため漏れ電流の劣化等の諸問題がある。尚、(7)は電
解酸化重合導電性高分子膜(4)の−Lに銀ペーストを
塗布し、その上に導電的に接着して設けたコンデンサの
陰極リードである。
Next, in electrolytic polymerization, as shown in FIGS. 3 and 4, a conductive polymer layer ( A capacitor element (6) having a capacitor lead wire (5) formed thereon and connected to a metal foil (1) is immersed in a conductive polymer film (3) formed by chemical oxidation polymerization, and platinum is applied to the conductive polymer film (3) formed by chemical oxidation polymerization. , an external electrode (8) made of carbon or the like is brought into contact with the external electrode (8), and a positive voltage is supplied from a constant voltage and constant current DC power source (10). Further, the negative voltage of the DC power source (10) is supplied to a counter electrode (11) for electrolytic polymerization made of stainless steel or the like to perform electrolytic oxidative polymerization. In this electrolytic polymerization,
Although there are differences depending on the electrolytic solution (9), generally a good quality conductive polymer film (4) can be obtained by electrolytic polymerization. ), the method of supplying power is extremely difficult. For example, a power supply method is generally adopted in which a dielectric oxide film (2) is subjected to chemical oxidation polymerization as a pretreatment to form a conductive polymer film (3), and an external electrode (8) is brought into contact with the film from the outside. However, according to this method, the current density is not constant depending on the degree of contact between the individual electrodes, making it difficult to form a uniform film, and the conductive polymer film (4a) is also formed on the external electrode (8). Therefore, the quantitative loss of material due to this wasteful polymer film (4a) is large. Furthermore, this conductive polymer film (4a)
The element (6) and chemical oxidation polymerized conductive polymer film (
When forcibly separating the external electrode (8) firmly adhered to the element (6) from the conductive polymer film (4), part of the conductive polymer film (4)
b) is missing, but at that time, the oxide film (3) is damaged, causing various problems such as deterioration of leakage current. Note that (7) is a cathode lead of a capacitor, which is provided by applying silver paste to -L of the electrolytically oxidized conductive polymer film (4) and adhering it conductively thereon.

また、第5図(a)に示す如く化学重合導電性高分子膜
(3)の下端を切断して金属露出部(1a)を設け、こ
の表面にそのまま電解重合により電解酸化重合導電性高
分子膜(4)を形成し、その後、第5図(b)に示す如
く、金属箔(1)と接触する導電性高分子膜(4)を酸
化剤または還元剤を用いて絶縁層(13)を形或して絶
縁化している(特開昭6476713号参照)。この場
合には、給電部での不均一な膜戊長が生じたり、さらに
は部分的な絶縁化(13)という作業性に問題があり、
特にチップ対応の小さなコンデンサでは非常に困難であ
る。
In addition, as shown in FIG. 5(a), the lower end of the chemically polymerized conductive polymer membrane (3) is cut to provide a metal exposed portion (1a), and the electrolytically oxidized conductive polymer is directly applied to this surface by electrolytic polymerization. After forming a film (4), as shown in FIG. 5(b), the conductive polymer film (4) in contact with the metal foil (1) is coated with an insulating layer (13) using an oxidizing agent or a reducing agent. (See Japanese Patent Laid-Open No. 6476713). In this case, there are problems with workability such as non-uniform film length at the power feeding section and partial insulation (13).
This is especially difficult for small capacitors that are compatible with chips.

(ハ)発明が解決しようとする課題 化学酸化重合法や電解重合法により、導電性高分子膜を
アルミ等の金属箔上Jこ形成された誘電体酸化皮膜上に
形成させる際、従来方法では上述の如く多くの問題があ
る。
(c) Problems to be Solved by the Invention When forming a conductive polymer film on a dielectric oxide film formed on a metal foil such as aluminum using a chemical oxidation polymerization method or an electrolytic polymerization method, conventional methods cannot As mentioned above, there are many problems.

本発明はこのような問題を解決できる製造方法を提供す
るものである。
The present invention provides a manufacturing method that can solve these problems.

(二)手 段 本発明では上記諸問題点を解決すべく、アルミニウムや
タンタル等の弁作用を有する金属箔や焼結体等に電極引
き出し用のリード線を接続し、既知の方法で化或処理を
行ない、誘電体酸化皮膜を形成した素子を、支持電解質
および導電性高分子単量体を含む電解液に浸漬し、その
接続されたJ−ド線を介し、その酸化皮膜と対極用電極
との間に、負電圧が負荷されないように直流バイアスが
重畳された交流を通電させたり、あるいは直流電流を周
期的あるいは断続的に通電し、充放電を繰り返したりす
る事により誘電体酸化皮膜上に直接、電解重合導電性高
分子膜を形成させる。
(2) Means In order to solve the above-mentioned problems, the present invention connects a lead wire for drawing out an electrode to a metal foil or sintered body having a valve action such as aluminum or tantalum, and converts or converts it by a known method. The element on which the dielectric oxide film has been formed is immersed in an electrolytic solution containing a supporting electrolyte and a conductive polymer monomer, and the oxide film and counter electrode are immersed in an electrolytic solution containing a supporting electrolyte and a conductive polymer monomer. By passing an alternating current with a DC bias superimposed on it to prevent negative voltage from being applied between the directly to form an electrolytically polymerized conductive polymer film.

(ホ)作 用 本発明においては電解重合の際、直流バイアス電流が重
畳された交流電流、周期的或は断続的に通電する直流電
流を使用するので、弁作用のある金属箔の表面にたとえ
絶縁体である誘電体酸化皮膜が形或されていても、充放
tt流が流れ、正電圧の印加される金属箔の酸化皮膜上
にピロール、チオフエンやアニリン等の導電性高分子層
が形成される。而して本発明によれば、あらかじめ電極
引き出し用に接続しているリード線を介して、誘電体酸
化皮膜上に直接通電する為化学重,合膜形成の工程を省
いても何等問題なく、良質の電解重合膜が酸化皮膜上に
均一に形成される。また、従来7 8 方法の如く外部電極(8)を分離する際の誘電体酸化皮
膜の損傷による漏れ電流の劣化の現象も全く起こらない
(E) Function In the present invention, during electrolytic polymerization, an alternating current with a superimposed direct current bias current or a periodically or intermittently applied direct current is used, so it can be compared to the surface of a metal foil with a valve action. Even if a dielectric oxide film is formed as an insulator, a charge/discharge tt current flows, and a conductive polymer layer of pyrrole, thiophene, aniline, etc. is formed on the oxide film of the metal foil to which a positive voltage is applied. be done. According to the present invention, electricity is passed directly onto the dielectric oxide film through the lead wires that are connected in advance for drawing out the electrodes, so there is no problem even if the steps of chemical polymerization and composite film formation are omitted. A high-quality electrolytic polymer film is uniformly formed on the oxide film. In addition, unlike the conventional 78 method, the phenomenon of leakage current deterioration due to damage to the dielectric oxide film when separating the external electrodes (8) does not occur at all.

(へ)実施例 本実施例ではアルミ焼結体を採用しているが、弁作用を
有する金属であれば、例えばアルミ箔の間にセパレー夕
を介挿してなる持回型コンデンサ素子にも本発明を適用
できる。
(f) Example Although sintered aluminum is used in this example, any metal that has a valve action can also be used, for example, in a recirculating capacitor element made by inserting a separator between aluminum foils. The invention can be applied.

実施例(1) 次に本発明の実施例を第1図および第2図と共に説明す
る。AI焼結体(1)とその内部より引き出されたリー
ド線(5)によって構或された素子(6)をアジピン酸
アンモニウム水溶液( 2 wt!)中に浸漬し、リー
ド線(5)を介して100vを印加して陽極酸化を行い
誘電体酸化皮膜層(2)を形戒させる。
Embodiment (1) Next, an embodiment of the present invention will be described with reference to FIGS. 1 and 2. An element (6) constituted by an AI sintered body (1) and a lead wire (5) pulled out from the inside thereof is immersed in an ammonium adipate aqueous solution (2 wt!), and a Anodic oxidation is performed by applying 100 V to form the dielectric oxide film layer (2).

次に第2図に示す如く該素子(6)をピロール単量体(
 0 . 1 mol/j) 、パラトルエンスルホン
酸( 0 . 0 5 mol/!)を含むアセトニト
リル溶液(9)に浸漬し、誘電体酸化皮膜(2)を介し
てリード線(5)と対極用ステンレス板(11)間に、
負電圧が印加されないように直流バイアス電圧(10)
の重畳されたIOOK}Izの交流電源(12)を0 
. 8 mA/Pで90分間通電すると、電解重合によ
る均一なポリピロール導電性高分子膜(4)が形成され
る。この素子をアセトンで洗浄及び乾燥し、銀ペイント
塗布後、該銀ペイントに陰極用リード(7)を接着し、
エポキシ樹脂でモールド外装を行ない、コンデンサとし
て完戒する。
Next, as shown in FIG.
0. 1 mol/j) and para-toluenesulfonic acid (0.05 mol/!), and connected the lead wire (5) and the counter electrode stainless steel plate through the dielectric oxide film (2). (11) In between,
DC bias voltage (10) so that negative voltage is not applied
The superimposed IOOK}Iz AC power supply (12) is set to 0
.. When electricity is applied for 90 minutes at 8 mA/P, a uniform polypyrrole conductive polymer film (4) is formed by electrolytic polymerization. After cleaning and drying this element with acetone and applying silver paint, a cathode lead (7) is glued to the silver paint,
The exterior is molded with epoxy resin, and it can be used as a capacitor.

比較例(1) 本発明の方法と従来方法を比較するため従来方法で製造
した比較例を作った。その比較例として誘電体酸化皮膜
(2)を形成させた後、過酸化水素水溶液( 1 mo
l/j)に10分間、ピロール単量体に30分間浸漬し
て酸化皮膜(2)上に化学酸化重合によるボリピロール
膜(3)を形成させ、洗浄、乾燥、及び酸化皮膜修復の
為に中間化或処理を施す。次に化学酸化重合導電性高分
子皮膜(3)上に直径3 mmの白金線(8)を接触さ
せて陽極とし、ステンレス板(11)を陰極として、9
0分間0 . 8 mA/P定電流電解を行ない、ポリ
ピロールの電解重合膜(4)を形成させ、素子(6)よ
り臼金M(8)を分離し、洗浄、乾燥後本発明実施例と
同様に組み立てた。次に本実施例(1)と比較例(1)
との結果を第1表に示す。
Comparative Example (1) In order to compare the method of the present invention with the conventional method, a comparative example manufactured by the conventional method was prepared. As a comparative example, after forming a dielectric oxide film (2), a hydrogen peroxide aqueous solution (1 mo
l/j) for 10 minutes and pyrrole monomer for 30 minutes to form a polypyrrole film (3) by chemical oxidation polymerization on the oxide film (2). Apply a chemical treatment. Next, a platinum wire (8) with a diameter of 3 mm was brought into contact with the chemical oxidation polymerized conductive polymer film (3) to serve as an anode, and a stainless steel plate (11) was used as a cathode.
0 minutes 0. 8 mA/P constant current electrolysis was performed to form an electrolytic polymerized film (4) of polypyrrole, and the die M (8) was separated from the element (6), washed and dried, and then assembled in the same manner as in the example of the present invention. . Next, this example (1) and comparative example (1)
The results are shown in Table 1.

第  1  表 なお、ここでCad;静電容量, tanδ;損失角の
正接, E.S.R.;等価直列抵抗, L.C;漏れ
電流実施例(2) 実施例(1)と同様に誘電体酸化皮膜(2)を形成した
アルミニウム焼結体素子(6)を、ピロール単1体( 
0 . 1 mol/j) 、パラトルエンスルホン酸
( 0 . 0 5 mol/j)を含むアセトニトリ
ル溶液(9)に浸漬後、電圧50v、電流値を0 . 
5 mA/Pに設定し、ステンレス板(11)を陰極と
し、リード線(5)をHh極として、充@ 1 sec
、放t9secで12O分間充、放電を繰り返し、電解
重合によるポリピロールの均一な導電性高分子薄膜(4
)を得た。
Table 1 Here, Cad: capacitance, tan δ: tangent of loss angle, E. S. R. ;Equivalent series resistance, L. C: Leakage current example (2) A sintered aluminum element (6) on which a dielectric oxide film (2) was formed in the same manner as in example (1) was heated to a single pyrrole (
0. After immersion in an acetonitrile solution (9) containing 1 mol/j) and para-toluenesulfonic acid (0.05 mol/j), the voltage was 50 V and the current value was 0.
Set to 5 mA/P, use the stainless steel plate (11) as the cathode, and use the lead wire (5) as the Hh electrode, and charge for 1 sec.
By repeating charging and discharging for 120 minutes at a discharge time of 9 seconds, a uniform conductive polymer thin film of polypyrrole (4
) was obtained.

この薄膜(4)の上に銀ペイントを塗り、その上に陰極
リード(7)を接着し、エボキシ樹脂でモールド威形し
てコンデンサを完威する。
This thin film (4) is coated with silver paint, the cathode lead (7) is glued onto it, and the capacitor is completed by molding with epoxy resin.

比較例(2) 比較例として実施例(1)の比較例(1)と同様に化学
酸化重合導電性高分子膜(3)を形成させ、その膜上に
直径0.3IIuI1の白金線(8)を接触させて陽極
とし、ステンレス板(11)を陰極として、120分間
0 . 5 mA/Pで定電流電解を行ない、ポリピロ
ールの電解重合膜(4)を形成させ、素子(6)より白
金線(8)を分離し、洗浄、乾燥後、実施例と同様に組
み立てた。第2表に本実施例(2)と比較例(2)の比
較を示す。
Comparative Example (2) As a comparative example, a chemical oxidation polymerized conductive polymer film (3) was formed in the same manner as in Comparative Example (1) of Example (1), and a platinum wire (8 ) in contact with each other to serve as an anode, and the stainless steel plate (11) as a cathode for 120 minutes at 0. Constant current electrolysis was performed at 5 mA/P to form an electrolytically polymerized polypyrrole film (4), and the platinum wire (8) was separated from the element (6), washed and dried, and then assembled in the same manner as in the example. Table 2 shows a comparison between Example (2) and Comparative Example (2).

第  2  表 l1 12 なお、上述においては本発明の電解重合により誘電体酸
化皮膜(2)上に直接電解重合による導電性高分子膜を
形成する例について述べたが、化学酸化重合により誘電
体酸化皮膜(2)上に化学酸化重合導電性高分子膜(3
)を形戒後、本発明の電解重合法による導電性高分子膜
(4)を形成してもよい。また、そのようにする方法が
均一の電解重合導電性高分子膜を形成しやすい。
Table 2 l1 12 In the above, an example was described in which a conductive polymer film is formed by direct electrolytic polymerization on the dielectric oxide film (2) by electrolytic polymerization of the present invention, but dielectric oxidation by chemical oxidative polymerization A chemical oxidation polymerized conductive polymer film (3) is applied on the film (2).
), then a conductive polymer film (4) may be formed by the electrolytic polymerization method of the present invention. Furthermore, such a method facilitates the formation of a uniform electrolytically polymerized conductive polymer film.

(ト)発明の効果 本発明においては電解重合の際、直流バイアス電流が重
畳された交流電流、周期的或は断続的に通電する直流電
流を使用するので、弁作用のある金属箔の表面に、たと
え絶縁体である誘電体酸化皮膜が形成されていても、充
放電電流が流れ、正電圧の印加される金属箔の酸化皮膜
上にピロール、チオフエンやアニリン等の導電性高分子
層が形成される。而して本発明では、コンデンサ素子の
電極引き出しリード線を介して、ボリピロール等の導電
性高分子の電解重合のための給電を行なう為、特別な給
電用電極も不要で且つ素子を傷付けることなく、均一な
導電性高分子膜を形戒でき、漏れ電流を小さくすること
が可能となる。しかも誘電体酸化皮膜上に直接良質な導
電性高分子の電解重合膜を形成することができるので、
コンデンサの電気特性が向上する。また、従来の製造方
法の如く外部電極の使用による外部電極外周面に形成さ
れる導電性高分子膜は形成されないため導電性高分子材
のロスが少なく、経済的にも有効であり、製造方法とし
ても従来例よ9、簡単な方法であるので、量産化に極め
て好適である。
(g) Effects of the invention In the present invention, during electrolytic polymerization, an alternating current with a direct current bias current superimposed on it, or a periodically or intermittently applied direct current, is used, so that the surface of the metal foil with valve action is Even if a dielectric oxide film, which is an insulator, is formed, a charge/discharge current flows, and a conductive polymer layer of pyrrole, thiophene, aniline, etc. is formed on the oxide film of the metal foil where a positive voltage is applied. be done. In the present invention, power is supplied for electrolytic polymerization of conductive polymers such as polypyrrole through the electrode lead wire of the capacitor element, so a special power supply electrode is not required and the element is not damaged. This makes it possible to form a uniform conductive polymer film and reduce leakage current. Moreover, it is possible to form a high-quality electrolytic polymer film of conductive polymer directly on the dielectric oxide film.
The electrical characteristics of the capacitor are improved. In addition, unlike conventional manufacturing methods, a conductive polymer film is not formed on the outer peripheral surface of the external electrode due to the use of external electrodes, so there is less loss of conductive polymer material, and the manufacturing method is also economically effective. However, since it is a simple method compared to the conventional example, it is extremely suitable for mass production.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の固体電解コンデンサの製
造方法を説明するための図面であり、第1図はコンデン
サの断面図、第2図は電解重合の給電状態を示す図面、
第3図および第4図は従来の製造方法を説明するための
図面であり、第3図はコンデンサの断面図、第4図は電
解重合の給電状態を示す図面、第5図および第6図は従
来の製造方法の他の実施例を説明するための図面であり
、第5図はコンデンサの断面図である。 (1)・・・弁作用を有する金属箔、(2)・・・誘電
体酸化皮膜、(3)・・・化学酸化重合による導電性高
分子層、(4)・・・電解重合による導電性高分子膜、
(5)・・・コンデンサ用リード線、(6)・・・コン
デンサ素子、(7)・・・コンデンサの陰極リード、(
8)・・・外部電極、(9)・・・電解液、(10)・
・・直流電源、(】1)・・・電解重合用対極電極、(
12)・・・交流電源。
1 and 2 are drawings for explaining the method of manufacturing a solid electrolytic capacitor of the present invention, in which FIG. 1 is a sectional view of the capacitor, FIG. 2 is a drawing showing the power supply state of electrolytic polymerization,
3 and 4 are drawings for explaining the conventional manufacturing method, in which FIG. 3 is a cross-sectional view of the capacitor, FIG. 4 is a drawing showing the power supply state of electrolytic polymerization, and FIGS. 5 and 6. 5 is a drawing for explaining another embodiment of the conventional manufacturing method, and FIG. 5 is a sectional view of the capacitor. (1)...Metal foil with valve action, (2)...Dielectric oxide film, (3)...Conductive polymer layer by chemical oxidation polymerization, (4)...Conductivity by electrolytic polymerization polymer membrane,
(5)... Capacitor lead wire, (6)... Capacitor element, (7)... Capacitor cathode lead, (
8)...External electrode, (9)...Electrolyte, (10)...
・・DC power supply, (】1) ・・Counter electrode for electrolytic polymerization, (
12)...AC power supply.

Claims (3)

【特許請求の範囲】[Claims] (1)アルミニウムやタンタル等の弁作用を有する皮膜
形成性金属箔の表面に誘電体酸化皮膜を形成し、該誘電
体酸化皮膜上にピロール、チオフェニン、アニリン等の
導電性高分子膜を電解重合により形成させる固体電解コ
ンデンサの製造方法において、前記電解重合の際、交流
電流に正の直流バイアス電流を重畳して或は交流電流を
剪断して負電圧が負荷されないようにして、前記誘電体
酸化皮膜上に通電させ、該皮膜上に導電性高分子層を形
成させることを特徴とする固体電解コンデンサの製造方
法。
(1) A dielectric oxide film is formed on the surface of a valve-forming metal foil such as aluminum or tantalum, and a conductive polymer film of pyrrole, thiophenine, aniline, etc. is electrolytically polymerized on the dielectric oxide film. In the method for manufacturing a solid electrolytic capacitor formed by electrolytic polymerization, a positive DC bias current is superimposed on the alternating current or the alternating current is sheared so that a negative voltage is not applied to the dielectric oxidation. 1. A method for manufacturing a solid electrolytic capacitor, which comprises applying electricity to a film to form a conductive polymer layer on the film.
(2)アルミニウムやタンタル等の弁作用を有する皮膜
形成性金属箔の表面に誘電体酸化皮膜を形成し、該誘電
体酸化皮膜上にピロール、チオフェニン、アニリン等の
導電性高分子膜を電解重合により形成させる固体電解コ
ンデンサの製造方法において、前記電解重合の際、直流
電流を周期的に或は断続的に印加し、充放電を繰返し、
誘電体酸化皮膜上の充電電流により該皮膜上に導電性高
分子層を形成させることを特徴とする固体電解コンデン
サの製造方法。
(2) A dielectric oxide film is formed on the surface of a valve-forming metal foil such as aluminum or tantalum, and a conductive polymer film of pyrrole, thiophenine, aniline, etc. is electrolytically polymerized on the dielectric oxide film. In the method for manufacturing a solid electrolytic capacitor formed by, during the electrolytic polymerization, a direct current is applied periodically or intermittently, and charging and discharging are repeated,
A method for manufacturing a solid electrolytic capacitor, comprising forming a conductive polymer layer on a dielectric oxide film by applying a charging current to the film.
(3)皮膜形成性金属箔を含むコンデンサ素子に予め接
続されている電極引出用リード線を介して電解重合の給
電を行なうことを特徴とする特許請求の範囲第1項或は
第2項に記載の固体電解コンデンサの製造方法。
(3) According to claim 1 or 2, wherein power is supplied for electrolytic polymerization via an electrode lead wire that is connected in advance to a capacitor element containing a film-forming metal foil. A method of manufacturing the solid electrolytic capacitor described.
JP1157399A 1989-06-20 1989-06-20 Method for manufacturing solid electrolytic capacitor Expired - Lifetime JP2810418B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1157399A JP2810418B2 (en) 1989-06-20 1989-06-20 Method for manufacturing solid electrolytic capacitor
US07/540,061 US5017272A (en) 1989-06-20 1990-06-19 Method for forming a conductive film on a surface of a conductive body coated with an insulating film
KR1019900009000A KR0184637B1 (en) 1989-06-20 1990-06-19 Method for forming a conductive film on a surface of a conductive body coated with an insulating film
DE69029614T DE69029614T2 (en) 1989-06-20 1990-06-20 Method for producing an electrically conductive film on a substrate from an electrically conductive body which is coated with an insulating film
EP90111692A EP0408913B1 (en) 1989-06-20 1990-06-20 Method for forming a conductive film on a surface of a conductive body caoted with an insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1157399A JP2810418B2 (en) 1989-06-20 1989-06-20 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0322516A true JPH0322516A (en) 1991-01-30
JP2810418B2 JP2810418B2 (en) 1998-10-15

Family

ID=15648784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1157399A Expired - Lifetime JP2810418B2 (en) 1989-06-20 1989-06-20 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2810418B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350712A (en) * 1989-07-18 1991-03-05 Sanyo Electric Co Ltd Electrolyte coating to electric conductor on which insulating thin film is formed
JPH0737764A (en) * 1993-07-22 1995-02-07 Nec Corp Manufacture of solid electrolyte capacitor
KR20000014116A (en) * 1998-08-17 2000-03-06 이형도 method FOR MANUFACTURING ALUMINUM SOLID ELECTROLYTIC CONDENSER
JP2006261438A (en) * 2005-03-17 2006-09-28 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP2006261439A (en) * 2005-03-17 2006-09-28 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
WO2007049688A1 (en) * 2005-10-27 2007-05-03 Showa Denko K. K. Reaction container for manufacturing capacitor element, method for manufacturing capacitor element, and method for manufacturing capacitor
WO2012035899A1 (en) * 2010-09-17 2012-03-22 昭和電工株式会社 Solid electrolytic capacitor element, method for producing same, and tool for producing said solid electrolytic capacitor element
US8559163B2 (en) 2004-09-09 2013-10-15 Showa Denko K. K. Reaction vessel for producing capacitor element, production method for capacitor element, capacitor element and capacitor
US8792225B2 (en) 2009-12-21 2014-07-29 Showa Denko K.K. Partitioned reaction container for manufacturing capacitor element including openable and closable passage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6671168B2 (en) 2001-11-30 2003-12-30 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350712A (en) * 1989-07-18 1991-03-05 Sanyo Electric Co Ltd Electrolyte coating to electric conductor on which insulating thin film is formed
JPH0737764A (en) * 1993-07-22 1995-02-07 Nec Corp Manufacture of solid electrolyte capacitor
KR20000014116A (en) * 1998-08-17 2000-03-06 이형도 method FOR MANUFACTURING ALUMINUM SOLID ELECTROLYTIC CONDENSER
US8559163B2 (en) 2004-09-09 2013-10-15 Showa Denko K. K. Reaction vessel for producing capacitor element, production method for capacitor element, capacitor element and capacitor
JP2006261438A (en) * 2005-03-17 2006-09-28 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
JP4610382B2 (en) * 2005-03-17 2011-01-12 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP4610383B2 (en) * 2005-03-17 2011-01-12 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP2006261439A (en) * 2005-03-17 2006-09-28 Sanyo Electric Co Ltd Solid electrolytic capacitor and its manufacturing method
WO2007049688A1 (en) * 2005-10-27 2007-05-03 Showa Denko K. K. Reaction container for manufacturing capacitor element, method for manufacturing capacitor element, and method for manufacturing capacitor
US8792225B2 (en) 2009-12-21 2014-07-29 Showa Denko K.K. Partitioned reaction container for manufacturing capacitor element including openable and closable passage
WO2012035899A1 (en) * 2010-09-17 2012-03-22 昭和電工株式会社 Solid electrolytic capacitor element, method for producing same, and tool for producing said solid electrolytic capacitor element
KR101430536B1 (en) * 2010-09-17 2014-08-18 쇼와 덴코 가부시키가이샤 Solid electrolytic capacitor element, method for producing same, and tool for producing said solid electrolytic capacitor element
US9224538B2 (en) 2010-09-17 2015-12-29 Showa Denko K.K. Solid electrolytic capacitor element, method for producing same, and tool for producing said solid electrolytic capacitor element
JP5925682B2 (en) * 2010-09-17 2016-05-25 昭和電工株式会社 Solid electrolytic capacitor element, method for manufacturing the same, and jig for manufacturing
EP2618351A4 (en) * 2010-09-17 2017-01-18 Showa Denko K.K. Solid electrolytic capacitor element, method for producing same, and tool for producing said solid electrolytic capacitor element

Also Published As

Publication number Publication date
JP2810418B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
KR0184637B1 (en) Method for forming a conductive film on a surface of a conductive body coated with an insulating film
JPH09293639A (en) Solid electrolytic capacitor and manufacture thereof
JPH0322516A (en) Manufacture of solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JPH0396210A (en) Manufacture of solid electrolytic capacitor
JP3416076B2 (en) Manufacturing method of electrolytic capacitor
JPH0350712A (en) Electrolyte coating to electric conductor on which insulating thin film is formed
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH11204377A (en) Solid-state electrolytic capacitor
JP2995109B2 (en) Method for manufacturing solid electrolytic capacitor
JP2640866B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03231414A (en) Solid electrolytic capacitor
JPH03228305A (en) Manufacture of aluminum solid electrolytic capacitor
JPH0521295A (en) Manufacture of laminated solid electrolytic capacitor
JP3669191B2 (en) Manufacturing method of solid electrolytic capacitor
JP2924251B2 (en) Method for manufacturing solid electrolytic capacitor
JPH11283878A (en) Method and device for manufacturing solid electrolytic capacitor
JPH10335187A (en) Solid electrolytic capacitor and its manufacturing method
JP2005268681A (en) Manufacturing method of solid electrolytic capacitor
JP2786331B2 (en) Method for manufacturing solid electrolytic capacitor
JPH10321474A (en) Solid electrolytic capacitor and its manufacture
JPH11186105A (en) Solid electrolytic capacitor and its manufacture
JPH0453117A (en) Solid electrolytic capacitor and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

EXPY Cancellation because of completion of term