JPS63312625A - Manufacture of solid-state electrolytic capacitor - Google Patents

Manufacture of solid-state electrolytic capacitor

Info

Publication number
JPS63312625A
JPS63312625A JP14938087A JP14938087A JPS63312625A JP S63312625 A JPS63312625 A JP S63312625A JP 14938087 A JP14938087 A JP 14938087A JP 14938087 A JP14938087 A JP 14938087A JP S63312625 A JPS63312625 A JP S63312625A
Authority
JP
Japan
Prior art keywords
tcnq salt
salt
tcnq
separator paper
winding element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14938087A
Other languages
Japanese (ja)
Inventor
Shinichi Niwa
丹羽 信一
Hirobumi Inoue
博文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14938087A priority Critical patent/JPS63312625A/en
Publication of JPS63312625A publication Critical patent/JPS63312625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To reduce the number of steps as a whole without excess of carbonization by performing preheating of a winding element and the carbonization of separator sheet in the same step. CONSTITUTION:As preparing step of recrystallizing TCNQ salt on a separator sheet, a winding element is heated at 250 deg.C for 12 min or longer in the air, thereby preneating the element and carbonizing the sheet. The TCNQ salt employs N-(n-butyl)-isoquinolinium. Then, TCNQ salt powder is filled in a bottomed cylindrical aluminum case, heated and held at the melting point of the TCNQ salt to approx. 320 deg.C to be melted and liquified. The element prepared in advance is dipped in the liquified TCNQ salt in the case in the following step to impregnate the sheet with the TCNQ salt. Thereafter, it is cooled to recrystallize the TCNQ salt impregnated to the separator sheet, thereby forming solid electrolyte exhibiting high conductivity.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はTCNQ塩からなる有機半導体を固体電解質と
する固体電解コンデンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a solid electrolytic capacitor using an organic semiconductor made of TCNQ salt as a solid electrolyte.

(ロ)従来の技術 固体電解コンデンサの固体゛ζ解貫としてTCNQ塩か
らなる有機半導体を用い得ることは既に知られている。
(b) Prior Art It is already known that an organic semiconductor made of TCNQ salt can be used as a solid-state insulator for solid electrolytic capacitors.

この場合、固体電解質は酸化皮膜を有するアルミ+クム
などの皮膜形成性金属に直゛接付層されるものでるる汐
1、異なる形態として、陽極箔と1極箔とをセパレータ
紙管挟んで巻取り、上記セパレータ紙に上記の固体を解
質を含浸することも特願昭56−116861号の発明
として既に提案されている。尚TCNQとは7,7,8
゜8テトラシアノキノジメタンを意味する。
In this case, the solid electrolyte is directly attached to a film-forming metal such as aluminum and cum with an oxide film.In a different form, an anode foil and a single electrode foil are sandwiched between a separator paper tube. Winding up the separator paper and impregnating the separator paper with the above-mentioned solid and solute has already been proposed as an invention in Japanese Patent Application No. 56-116861. What is TCNQ? 7, 7, 8
゜8 Tetracyanoquinodimethane.

またTCNQ塩を再結晶化させるための準備工程として
、巻取シ索子を所定の温度で加熱してセパレータ紙を炭
化することも、特願昭57−6344号の発明として既
に提案されている。一方、巻取シ累子管、融解液化した
TCNQ塩に含浸する前には巻取シ素子を予熱する必要
がある。この予熱工程はTCNQ塩の温度を下げずに素
子内部にスムーズにTCNQ塩が入り込むようにするた
めである。
Furthermore, as a preparatory step for recrystallizing TCNQ salt, heating the winding wire at a predetermined temperature to carbonize the separator paper has already been proposed as an invention in Japanese Patent Application No. 57-6344. . On the other hand, it is necessary to preheat the winding element before impregnating the winding element into the melted and liquefied TCNQ salt. The purpose of this preheating step is to allow the TCNQ salt to smoothly enter the inside of the element without lowering the temperature of the TCNQ salt.

(/3 発明が解決しようとする問題点このよづに従来
のTCNQ塩含浸工程に訃いては、その準備工程として
予熱と炭化処理とを別個に行なっているため、炭化処理
をし過ぎた夛、工程が多い為全体として工数が多く経済
的に不利であるとい)問題があった。
(/3 Problems to be Solved by the Invention) The problem with the conventional TCNQ salt impregnation process is that preheating and carbonization treatment are performed separately as preparatory steps, resulting in excessive carbonization. However, there was a problem in that it required a large number of steps and was economically disadvantageous.

本発明は、巻取り型コンデンサの改良を図りたもので、
より具体的VCは、巻取り素子の予熱とセパレータ紙の
炭化処理と全同一工程で兼ねて行ない、上記問題点t−
S決するものでるる。
The present invention aims to improve wound type capacitors.
More specifically, VC is performed by preheating the winding element and carbonizing the separator paper in the same process, and solving the above problem t-
S is decided.

に)問題点を解決するための手段 本発明は、 囚 セパレータ紙を有する巻取フ素子を、該セパレータ
紙に’rCNQ塩を再結晶化させる丸めの準備工程とし
て、240℃〜350℃で加熱して、該巻取り素子を予
熱すると共に、該セパレータ紙を炭化する工程と、 但】 有底円筒状のアルミニクムケースにTCNQ塩全
収納し、該ケースを融点以上320℃以下に加熱するこ
とにより該TCNQ塩を融解液化する工程と、 (Q  譲TCNQ塩に前記予熱した巻取り素子を浸漬
して前記セパレータ紙に該TCNQ塩を金波させる工程
と、 (J))  #記ケースを冷却することにより、該セパ
レータ紙に含浸した前記TCNQ塩を再結晶化する工程
と からなる固体電解コンデンサの製造方法である。
2) Means for Solving the Problem The present invention provides a method for heating a winding element having a separator paper at 240°C to 350°C as a preparatory step for rolling to recrystallize the rCNQ salt on the separator paper. and preheating the winding element and carbonizing the separator paper; however, storing all the TCNQ salt in a bottomed cylindrical aluminum case and heating the case to a temperature above the melting point and below 320°C. melting and liquefying the TCNQ salt; (Q) immersing the preheated winding element in the yielded TCNQ salt to cause the TCNQ salt to form a golden wave on the separator paper; (J)) cooling the case marked with #. Accordingly, the method for producing a solid electrolytic capacitor comprises a step of recrystallizing the TCNQ salt impregnated into the separator paper.

■作 用 巻取り素子全240℃〜350℃で加熱することにより
、巻取シ素子が予熱されるのでTCNQ塩の温度を下げ
ることがなく、且つセパレータ紙が炭化されるので密度
が低下して、TCNQ塩を巻取フ素子内部へ容易に訪引
し、この結果TCNQ塩の含浸度が高まり、再結晶する
TCNQ塩の量全増大させる。
■Function By heating the entire winding element at 240°C to 350°C, the winding element is preheated, so the temperature of the TCNQ salt does not drop, and the separator paper is carbonized, so the density decreases. , easily attracts the TCNQ salt into the interior of the winding element, thereby increasing the degree of impregnation of the TCNQ salt and increasing the total amount of TCNQ salt that recrystallizes.

(へ)実施例 以下本発明実施例として、アルミニクム化成箔を陽極箔
とし、アルミニクムエツをング箔を陰極箔として、こn
らをマニラ紙全セパレータ紙として巻取った足格25V
用巻取り素子に固体電解質を含浸し九場合t1その製造
過程と共に説明する。
(F) Examples Hereinafter, as examples of the present invention, aluminum chemically formed foil is used as an anode foil, and aluminum foil is used as a cathode foil.
Kagaku 25V is made by rolling up all Manila paper as separator paper.
A case in which the winding element is impregnated with a solid electrolyte will be explained along with its manufacturing process.

まず、セパレータ紙にTCNQ塩を再結晶化させるため
の準備工程として、上記巻取り素子を空気中で250℃
、12分以上加熱し、これにより巻取フ素子の予熱と共
にセパレータ紙の炭化が行なわれる。
First, as a preparatory step for recrystallizing TCNQ salt on separator paper, the winding element was heated at 250°C in air.
, for 12 minutes or more, thereby preheating the winding element and carbonizing the separator paper.

巻取シ素子予熱の目的は、液化TCNQ塩に素子″ti
漬含浸する際、TCNQ塩の温度を下げずに素子P[に
スムーズにTCNQ塩が入り込むようにするためである
。もし素子が冷えていnば、TCNQ塩が素子内部に十
分含浸されないのである。従って予熱温度としては、液
化TCNQ塩の温度以上が選択されるべきでるる。具体
的には液化TCNQ塩の温Zfは融点前後でめるから、
素子予熱@度としてはこnよりも20℃程度趙いa友で
ないと含浸がスムーズに行なわれない。
The purpose of preheating the winding element is to heat the element ``ti'' in the liquefied TCNQ salt.
This is to allow the TCNQ salt to smoothly enter the element P without lowering the temperature of the TCNQ salt during dipping and impregnation. If the device is cold, the TCNQ salt will not be sufficiently impregnated into the device. Therefore, the preheating temperature should be selected to be equal to or higher than the temperature of the liquefied TCNQ salt. Specifically, since the temperature Zf of liquefied TCNQ salt is around the melting point,
Impregnation cannot be carried out smoothly unless the element is preheated by about 20 degrees Celsius.

TCNQ塩としてN−(n−ブtルンーイソキノリニク
ムのTCNQ塩を使用する場合は、融点に220℃前後
でるるから素子予熱温度は240℃以上ということ(な
る。しかしながら予熱温度が350℃ti!11えると
セパレータ紙の炭化が急激に進み、セパレータ紙は強度
を失い電気的ie縁および素子としての形状維持が困難
にな]、セパレータ紙としての機能を失うことになる。
When using the TCNQ salt of N-(n-butr-isoquinolinicum) as the TCNQ salt, the melting point is around 220°C, so the element preheating temperature must be 240°C or higher. ℃ti!11, carbonization of the separator paper progresses rapidly, the separator paper loses its strength, and it becomes difficult to maintain the shape of the electrical ie edge and element] and loses its function as a separator paper.

一方、セパレータ紙の炭化が不十分(重を変化9096
以上)であれば、TCNQ塩の含浸率が著しく低下する
。セパレータ紙が機能を失うのは重tま変化40%以下
であるので、セパレータ紙の重R変化とし′Cに当初の
9096〜4096が好ましい。従りて巻取り素子の予
熱温度と時間にセパレータ紙の炭化の程度を考慮して決
定ざnなければならない。
On the other hand, the carbonization of the separator paper is insufficient (change the weight 9096
above), the impregnation rate of TCNQ salt is significantly reduced. Since the separator paper loses its function when the weight R changes by 40% or less, the initial weight R change 'C is preferably 9096 to 4096. Therefore, the temperature and time for preheating the winding element must be determined in consideration of the degree of carbonization of the separator paper.

予熱温度とセパレータ紙の重量変化の関係と第1図に示
す。こnから予熱温度は240℃〜350℃、好りしく
ば250℃〜300℃である。下表は第1図の結果に基
ずさ好ましい予熱条件をまとめ友ものでゐる。
The relationship between the preheating temperature and the weight change of the separator paper is shown in FIG. From this point on, the preheating temperature is 240°C to 350°C, preferably 250°C to 300°C. The table below summarizes the preferred preheating conditions based on the results shown in Figure 1.

一方固体電解貞として、N−(n−プtル]−イソキノ
リニウムのTCNQ塩が準備さnる。斯るTCNQ塩の
作成自体げ、J、Am、Chem、Soc、、Vo 1
.84.P、3374〜3387(1962) f)記
載に眉いて行なえるが、簡単に述べればn−プtル目−
ドとイソキノリンとを反応させて得られるN−(n−プ
tル]−インキノリニクムヨードとTCNQとtアセト
ニトリル中で1:1.3モル比で反応させることにより
粉末結晶状のN−(n−ブtル]−イソキノクニクムの
TCNQ錯塩が作らnる。以後この塩を単にTCNQ塩
と称す。
On the other hand, as a solid electrolyte, a TCNQ salt of N-(n-butyl)-isoquinolinium is prepared.
.. 84. P, 3374-3387 (1962) f) Although it may be difficult to describe, briefly speaking, it is
Powder crystalline N- A TCNQ complex salt of (n-butyl)-isoquinocnicum is prepared. This salt is hereinafter simply referred to as TCNQ salt.

次いで、有底円筒状のアルミニウムケース円に上記TC
NQ塩の粉末を入れ、TCNQ塩の融点以上で約320
℃以下、より好ましくは280℃〜290℃に保持さn
た鉄板上にて上記ケースを加熱保持する。同所るケース
は最終的にコンデンサの外囲器となるものである。上記
TCNQ塩の融点は210℃〜220℃でるり、従りて
上記加熱によフケース内のTCNQ塩は融解液化する。
Next, the above TC is placed in a bottomed cylindrical aluminum case circle.
Add NQ salt powder and heat to about 320℃ above the melting point of TCNQ salt.
℃ or less, preferably maintained at 280℃ to 290℃
The case was heated and held on an iron plate. The same case will eventually become the capacitor's envelope. The melting point of the TCNQ salt is 210°C to 220°C, so the TCNQ salt in the case is melted and liquefied by the heating.

続く工程ではケース円の液化TCNQ塩中に予め準備さ
nている巻取り素子を浸漬し、七ノ(レータ紙にTCN
Q塩を含浸さセる。久の工程では直ちにこの状態でケー
スを室温の水に浸漬して冷却する。斯る冷却は、上記T
CNQ塩の液化完了後す早く開始すべきである。即ち長
時間、上記TCNQ塩を液体状態に保持すれば、TCN
Q塩に激しく発泡し、はソを気的絶縁物となる。より異
体的には、この葎な液化から絶縁物化までの時間はTC
NQ塩の液化保持温度が低い程長く、上記の如くそnが
280℃〜290℃の場合上記冷却開始時期は液化児了
後約4分以内、よシ好ましくは1分以内に設定さnる。
In the following process, the winding element prepared in advance is immersed in the liquefied TCNQ salt of the case circle, and TCN
Q: Impregnated with salt. In the second step, the case is immediately immersed in water at room temperature to cool it down. Such cooling is performed as described above.
It should begin as soon as the liquefaction of the CNQ salt is complete. That is, if the TCNQ salt is kept in a liquid state for a long time, TCNQ salt
Q Salt foams violently and becomes a gas insulator. More specifically, the time from liquefaction to insulator is TC
The lower the liquefaction retention temperature of the NQ salt, the longer it will last, and when the temperature is 280°C to 290°C as described above, the cooling start time is set within about 4 minutes, preferably within 1 minute, after the liquefaction is completed. .

斯る工程により、巻取)素子のセパレータ紙に液状のT
CNQ塩が含浸さnlその後の冷却セパレータ紙に含浸
されたTCNQ塩は44結晶化して、2〜42鋼(25
℃)の高い電導度を示す固体電解質を形成する。
Through this process, liquid T is applied to the separator paper of the winding element.
CNQ salt impregnated nl then cooled TCNQ salt impregnated into separator paper crystallized to 44 and 2 to 42 steel (25
Forms a solid electrolyte that exhibits high conductivity (°C).

Rk後にlijfM9−ド及び陰極リードの先端を露出
し九状悪で上記ケースの開ロ′f!:樹脂封口して目的
とする固体電解コンデンサが完成する。
After Rk, open the above case with the tip of the lead and cathode lead exposed. :The desired solid electrolytic capacitor is completed by resin sealing.

下表に木実施例固体電解コンデンサの特性を示す。表中
、第1、第2、第3夾施例は夫々上記巻取り素子予熱(
250℃ンの時間t−12分、0.5時間、1時間とし
た場合であシ、又参考例If’!歯子予歯音予熱行なわ
なかりた場合でbり、参考例2は素子予熱を5分間行な
りた場合である。尚、靜゛ぼg 鼠C及びtan J 
u 120 Hz テoll定値、ESRは100KH
zでO測定値で69、ΔC/Cは20℃を基準とする容
量変化率、LC/30”は30秒後の平均漏れイ流、ム
C/Cは高温負ぐ試験後の容量変化率を夫々表わす。
The table below shows the characteristics of the wooden solid electrolytic capacitor. In the table, the first, second, and third examples are the winding element preheating (
The case where the time at 250° C. is t-12 minutes, 0.5 hours, and 1 hour, and Reference Example If'! Reference example 2 is a case where tooth preheating was not performed, and reference example 2 is a case where element preheating was performed for 5 minutes. In addition, 靜゛bog mouse C and tan J
u 120 Hz fixed value, ESR is 100KH
z is the O measurement value of 69, ΔC/C is the rate of change in capacity based on 20°C, LC/30'' is the average leakage current after 30 seconds, and C/C is the rate of change in capacity after the high temperature test. respectively.

以下余白 上記表よp木実施例の如く巻取シ素子を予熱すると共に
セパレータ紙に炭化処理を施せば、静電容量の増大、t
anJ及びEARの減少の各効果が現われることは明ら
かでるる、素子予熱によるこの様な効果はセパレータ紙
の繊維が炭化により細<4り、 fJ[間の隙間で大さ
くしセパレータ紙への固体[解質の含浸度が高まり、再
結晶化したTCNQ塩全増大全増大ことによるものであ
る。
The following margins are shown in the table above. If the winding element is preheated and the separator paper is carbonized as in the example, the capacitance increases and t
It is clear that the effect of reducing anJ and EAR appears. Such an effect due to element preheating is due to the fact that the fibers of the separator paper become finer than 4 due to carbonization, and the solid [ This is due to the increased degree of solute impregnation and the total increase in recrystallized TCNQ salt.

素子予熱温度は高すぎると、セパレータ紙の表面付近の
繊維のみが過度に炭化さn1内部の繊維まで炭化が十分
進まない。従2を処理温度は400℃以下より好ましく
は300℃以下に設定すべきである。又第1図より明ら
かな如く、時間をか(fればかけるほど炭化が進むが、
過度の炭化にセパレータ紙の電気的絶縁度の低下やひび
割れを招き、従2て炭化の度合いはセパレータ紙の重量
にして当初の90g6〜40s6が好ましい。
If the element preheating temperature is too high, only the fibers near the surface of the separator paper will be excessively carbonized, and the carbonization will not proceed sufficiently to the fibers inside n1. The treatment temperature for Sub-2 should be set at 400°C or lower, preferably 300°C or lower. Also, as is clear from Fig. 1, the longer the time (f), the more carbonization progresses.
Excessive carbonization leads to a decrease in electrical insulation and cracking of the separator paper, so the degree of carbonization is preferably 90g6 to 40s6 based on the initial weight of the separator paper.

上記実施例において、アルミニクム箔をタンタル箔等、
他の皮膜形成性金Jl箔に変えること、セパレータ紙と
してクラフト紙管用いること、固体電解質として、N−
Cイソ7”(yビル]−キノリニウム、N−(n−プロ
ピル)−キノリニウム、N−(イン1aビル]−イソキ
ノ9ニクム、N−(n−プロピル〕−イソキノリニウム
、N−(n−アミルンーインキノリニクム、N−(iS
O−アミル〕−イソキノリニウムの各TCNQ錯塩を用
いることは何れも可能でろシ、同様に実施され得る。
In the above embodiment, aluminum foil is replaced with tantalum foil, etc.
Changing to other film-forming gold Jl foils, using kraft paper tubes as separator paper, and using N- as a solid electrolyte.
Ciso7''(ybiru)-quinolinium, N-(n-propyl)-quinolinium, N-(inlabiru]-isoquinolinium, N-(n-propyl)-isoquinolinium, N-(n-amyl- Inchinorinicum, N-(iS
Any use of the TCNQ complex salts of O-amyl]-isoquinolinium is possible and can be carried out similarly.

(ト〕発明の効果 以上の説明より明らかな如く、本発明によnば陽極箔と
l[箔とをセパレータ紙を挟んで巻さ取り、上記セパレ
ータ紙にTCNQ塩からなる有機半導体を固体電解質と
して含浸した固体電解コンデンサに訃いて、巻取プ素子
の予熱とセパレータ紙の炭化処理とを同一工程で兼ねて
行なうことができるので、炭化処理をし過ぎることがな
く、工程が減るので全体として工&1低減でき、経隣的
にもV利でるる。
(G) Effects of the Invention As is clear from the above explanation, according to the present invention, an anode foil and a foil are wound up with a separator paper in between, and an organic semiconductor made of TCNQ salt is applied to the separator paper as a solid electrolyte. Since the preheating of the winding element and the carbonization of the separator paper can be performed in the same process using a solid electrolytic capacitor impregnated as a solid electrolytic capacitor, there is no need to perform excessive carbonization, and the number of processes is reduced. The cost can be reduced by +1, and the V gain can be achieved in terms of economy as well.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の巻取り素子の予熱時間とセパレ
ータ紙の重量変化を示す図で6る。
FIG. 1 is a diagram showing the preheating time of the winding element and the change in weight of the separator paper in an example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)(A)セパレータ紙を有する巻取り素子を、該セ
パレータ紙にTCNQ塩を再結晶化させるための準備工
程として、240℃〜360℃で加熱して、該巻取り素
子を予熱すると共に、該セパレータ紙を炭化する工程と
、 (B)有底円筒状のアルミニウムケースにTCNQ塩を
収納し、該ケースを融点以上320℃以下に加熱するこ
とにより該TCNQ塩を融解液化する工程と、 (C)該TCNQ塩に前記予熱した巻取り素子を浸漬し
て前記セパレータ紙に該TCNQ塩を含浸させる工程と
、 (D)前記ケースを冷却することにより、該セパレータ
紙に含浸した前記TCNQ塩を再結晶化する工程と からなる固体電解コンデンサの製造方法。
(1) (A) As a preparatory step for recrystallizing TCNQ salt on the separator paper, the winding element having the separator paper is heated at 240°C to 360°C to preheat the winding element and , a step of carbonizing the separator paper; (B) a step of storing TCNQ salt in a bottomed cylindrical aluminum case and melting and liquefying the TCNQ salt by heating the case to a temperature above the melting point and below 320°C; (C) impregnating the separator paper with the TCNQ salt by immersing the preheated winding element in the TCNQ salt; and (D) impregnating the separator paper with the TCNQ salt by cooling the case. A method for manufacturing a solid electrolytic capacitor, which comprises a step of recrystallizing a solid electrolytic capacitor.
(2)前記TCNQ塩は、N−(n−ブチル)−イソキ
ノリニウムのTCNQ塩であることを特徴とする特許請
求の範囲第1項記載の固体電解コンデンサの製造方法。
(2) The method for manufacturing a solid electrolytic capacitor according to claim 1, wherein the TCNQ salt is a TCNQ salt of N-(n-butyl)-isoquinolinium.
JP14938087A 1987-06-16 1987-06-16 Manufacture of solid-state electrolytic capacitor Pending JPS63312625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14938087A JPS63312625A (en) 1987-06-16 1987-06-16 Manufacture of solid-state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14938087A JPS63312625A (en) 1987-06-16 1987-06-16 Manufacture of solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS63312625A true JPS63312625A (en) 1988-12-21

Family

ID=15473866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14938087A Pending JPS63312625A (en) 1987-06-16 1987-06-16 Manufacture of solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS63312625A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0714109A1 (en) * 1994-11-24 1996-05-29 SANYO ELECTRIC Co., Ltd. Solid electrolyte capacitor and process for producing same
JP2002299175A (en) * 2001-03-29 2002-10-11 Nippon Chemicon Corp Manufacturing method for solid electrolytic capacitor
JP2008071950A (en) * 2006-09-14 2008-03-27 Nichicon Corp Method of manufacturing solid-state electrolytic capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123715A (en) * 1982-01-18 1983-07-23 三洋電機株式会社 Solid electrolytic condenser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123715A (en) * 1982-01-18 1983-07-23 三洋電機株式会社 Solid electrolytic condenser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0714109A1 (en) * 1994-11-24 1996-05-29 SANYO ELECTRIC Co., Ltd. Solid electrolyte capacitor and process for producing same
US5766271A (en) * 1994-11-24 1998-06-16 Sanyo Electric Co., Ltd. Process for producing solid electrolyte capacitor
JP2002299175A (en) * 2001-03-29 2002-10-11 Nippon Chemicon Corp Manufacturing method for solid electrolytic capacitor
JP2008071950A (en) * 2006-09-14 2008-03-27 Nichicon Corp Method of manufacturing solid-state electrolytic capacitor

Similar Documents

Publication Publication Date Title
JPS6252939B2 (en)
JPS6251489B2 (en)
JPS63312625A (en) Manufacture of solid-state electrolytic capacitor
JPH0467331B2 (en)
JP2783932B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JPS6337609A (en) Manufacture of solid electrolytic capacitor
JPS60214519A (en) Method of producing solid electrolytic condenser
JPH04324612A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JPH01205412A (en) Manufacture of solid electrolytic capacitor
JPS60167413A (en) Solid electrolytic condenser and method of producing same
JP3100412B2 (en) Method for manufacturing solid electrolytic capacitor
JP3162738B2 (en) Solid electrolytic capacitors
JPS6251491B2 (en)
JPS60171717A (en) Solid electrolytic condenser and method of producing same
JP2957630B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JPH0252848B2 (en)
JPS63140517A (en) Manufacture of solid electrolytic capacitor
JPS6151910A (en) Solid electrolytic condenser
JPS60171718A (en) Solid electrolytic condenser and method of producing same
JPH0255928B2 (en)
JPH0252849B2 (en)
JPH03136227A (en) Manufacture of solid electrolytic capacitor
JPS6151908A (en) Solid electrolytic condenser
JPH0410731B2 (en)
JPH0547607A (en) Production of electrolytic capacitor