JP2783932B2 - Manufacturing method of organic semiconductor solid electrolytic capacitor - Google Patents

Manufacturing method of organic semiconductor solid electrolytic capacitor

Info

Publication number
JP2783932B2
JP2783932B2 JP4267892A JP4267892A JP2783932B2 JP 2783932 B2 JP2783932 B2 JP 2783932B2 JP 4267892 A JP4267892 A JP 4267892A JP 4267892 A JP4267892 A JP 4267892A JP 2783932 B2 JP2783932 B2 JP 2783932B2
Authority
JP
Japan
Prior art keywords
organic semiconductor
solid electrolytic
electrolytic capacitor
capacitor element
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4267892A
Other languages
Japanese (ja)
Other versions
JPH05243096A (en
Inventor
博文 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saga Sanyo Industry Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Saga Sanyo Industry Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saga Sanyo Industry Co Ltd, Sanyo Denki Co Ltd filed Critical Saga Sanyo Industry Co Ltd
Priority to JP4267892A priority Critical patent/JP2783932B2/en
Publication of JPH05243096A publication Critical patent/JPH05243096A/en
Application granted granted Critical
Publication of JP2783932B2 publication Critical patent/JP2783932B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は有機半導体固体電解コン
デンサの製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an organic semiconductor solid electrolytic capacitor.

【0002】[0002]

【従来の技術】固体電解コンデンサの固体電解質として
TCNQの錯塩からなる有機半導体を用い得ることは既
に知られている。この場合、固体電解質は酸化被膜を有
するアルミニウムなどの被膜形成性金属に直接に付着さ
れるものであるが、異なる形態として、陽極箔と陰極箔
とをセパレータ紙を挟んで巻回し、セパレータ紙に上記
固体電解質を含浸することも提案されている(特公昭6
2−52939号公報、H01G 9/02)。尚、TCNQ
とは7.7.8.8−テトラシアノキノジメタンを意味
する。
2. Description of the Related Art It is already known that an organic semiconductor comprising a complex salt of TCNQ can be used as a solid electrolyte of a solid electrolytic capacitor. In this case, the solid electrolyte is directly attached to a film-forming metal such as aluminum having an oxide film, but as a different form, an anode foil and a cathode foil are wound with a separator paper interposed therebetween, and the separator paper is It has also been proposed to impregnate the above solid electrolyte (Japanese Patent Publication No. Sho 6
2-52939, H01G 9/02). In addition, TCNQ
Means 7.7.8.8-tetracyanoquinodimethane.

【0003】上記後者の従来技術は、化成した陽極用エ
ッチドアルミニウム箔と陰極用アルミニウム箔とをセパ
レータ紙を介して捲回した後、化成エッチドアルミニウ
ム箔の切り口部及びリードカシメ部の化成と誘電体であ
る化成皮膜の欠損部の修復を目的として、コンデンサ素
子の状態で再化成処理を行なっている。この再化成処理
は、完成後のコンデンサの漏れ電流特性を向上させる。
[0003] In the latter prior art, after forming an etched aluminum foil for an anode and an aluminum foil for a cathode through a separator paper, forming a cut portion and a lead caulking portion of the chemically etched aluminum foil. For the purpose of repairing the defective portion of the chemical conversion film, which is a dielectric, a re-chemical conversion treatment is performed in the state of the capacitor element. This re-chemical treatment improves the leakage current characteristics of the completed capacitor.

【0004】次に、TCNQ錯塩からなる適量の有機半
導体の粉末を適度に加圧し、良熱伝導性のアルミニウム
製コンデンサケースに収納し、約250〜350℃に加
熱して有機半導体の粉末を融解液化し、予め予熱したコ
ンデンサ素子をケースに投入して溶融液化した有機半導
体を含浸させる。
[0004] Next, an appropriate amount of organic semiconductor powder composed of a TCNQ complex salt is moderately pressurized, stored in an aluminum capacitor case having good thermal conductivity, and heated to about 250 to 350 ° C to melt the organic semiconductor powder. The capacitor element that has been liquefied and preheated in advance is put into a case and impregnated with the melted and liquefied organic semiconductor.

【0005】コンデンサ素子に、融解液化した有機半導
体を含浸後、ただちに急冷固化させる。その後、ケース
開口部をエポキシ樹脂にて封口し、完成品としている。
After the capacitor element is impregnated with the melted and liquefied organic semiconductor, it is immediately quenched and solidified. After that, the case opening is sealed with epoxy resin to complete the product.

【0006】[0006]

【本発明が解決しようとする課題】ところで、コンデン
サ素子の陽極には誘電体である酸化被膜が形成されてい
るが、該素子の予熱及び融解液化した有機半導体の含浸
時の熱衝撃、 或はエポキシ樹脂による封口時、コンデ
ンサ素子の運搬時の機械的衝撃等によって、誘電体層で
ある酸化皮膜に極微細ではあるが傷(クラック)が入
り、完成品後の漏れ電流特性を悪化させていた。
By the way, an oxide film as a dielectric is formed on the anode of the capacitor element. However, heat shock during preheating of the element and impregnation of the molten and liquefied organic semiconductor, or Due to mechanical shock during the sealing of the epoxy resin and the transportation of the capacitor element, the oxide film, which is the dielectric layer, was extremely fine but cracked, deteriorating the leakage current characteristics after the finished product. .

【0007】そのため、有機半導体を含浸又は樹脂によ
る封口後、酸化被膜を修復し、漏れ電流値を小さくする
目的で100゜C前後の温度で電圧処理、所謂エージン
グ処理を施している。しかし、一般の電解液を用いたア
ルミ電解コンデンサに比べて、固体電解質であるTCN
Q錯塩は、酸化被膜の修復性が弱い欠点があり、上述の
漏れ電流値が大きく歩留りが低い問題があった。本発明
は、有機半導体の漏れ電流の修復性能を向上させ、漏れ
電流特性を改善するものである。
[0007] Therefore, after impregnating with an organic semiconductor or sealing with a resin, a voltage treatment, that is, an aging treatment is performed at a temperature of about 100 ° C for the purpose of repairing an oxide film and reducing a leakage current value. However, compared to the aluminum electrolytic capacitor using a general electrolytic solution, the solid electrolyte TCN
The Q complex salt has a drawback that the oxide film has poor repairability, and has a problem that the above-described leakage current value is large and the yield is low. The present invention improves the repair performance of the leakage current of the organic semiconductor and improves the leakage current characteristics.

【0008】[0008]

【課題を解決するための手段】本発明の有機半導体固体
電解コンデンサは、被膜形成性金属に陽極酸化被膜を形
成してなるコンデンサ素子に、融解液化した有機半導体
を含浸し、冷却固化した固体電解コンデンサの製法にお
いて、有機半導体を融解液化前に予めその融点以下の温
度にて熱処理することを特徴とする。
According to the present invention, there is provided an organic semiconductor solid electrolytic capacitor comprising a capacitor element formed by forming an anodic oxide film on a film-forming metal, impregnated with a molten organic semiconductor, and cooled and solidified. In a method of manufacturing a capacitor, an organic semiconductor is heat-treated at a temperature equal to or lower than its melting point before melting and liquefaction.

【0009】[0009]

【作用】本発明の如く、有機半導体を融解液化すること
に先立って、該有機半導体を溶解温度以下の温度で熱処
理することによって、エージング処理での酸化被膜の修
復性が向上し、漏れ電流値を小さくできる。上記作用の
メカニズムは明らかではないが、次のことが考えられ
る。誘電体層のうち、極微細ではあるが、傷(クラッ
ク)などのため耐圧的に弱くなった箇所にエージングに
より電流が集中し、そのジュール熱によって有機半導体
が絶縁化し、漏れ電流が修復するものと考えられる。そ
の際、本発明による熱処理を施した有機半導体は、熱処
理を施さないものに比べエージングによる絶縁化が促進
されると考えられる。
According to the present invention, before the organic semiconductor is melted and liquefied, the organic semiconductor is heat-treated at a temperature equal to or lower than the melting temperature, thereby improving the repairability of the oxide film during the aging treatment and improving the leakage current value. Can be reduced. Although the mechanism of the above action is not clear, the following may be considered. Aging concentrates current due to aging in the part of the dielectric layer, which is extremely fine but weakened due to flaws (cracks), and the Joule heat insulates the organic semiconductor to repair the leakage current. it is conceivable that. At that time, it is considered that the organic semiconductor that has been subjected to the heat treatment according to the present invention is more likely to be insulated by aging than the one that has not been subjected to the heat treatment.

【0010】[0010]

【実施例】【Example】

第1実施例 エッチング処理、化成処理を行なった陽極用アルミニウ
ム箔と陰極用アルミニウム箔との間に厚み50μmのマ
ニラ紙をセパレータ紙として介装し、これを円筒状に捲
き取ってコンデンサ素子を形成する。
First Embodiment Manila paper having a thickness of 50 μm is interposed as a separator paper between an aluminum foil for an anode and an aluminum foil for a cathode which has been subjected to an etching treatment and a chemical conversion treatment, and this is wound up into a cylindrical shape to form a capacitor element. I do.

【0011】その後、アジピン酸アンモニウム等からな
る化成液を用いて、陽極箔の切り口部、リードカシメ部
及び誘電体層である酸化アルミニウム皮膜の欠損部を修
復する目的でコンデンサ素子ごと化成処理を行なう。
Thereafter, a chemical conversion treatment is carried out together with the capacitor element for the purpose of repairing the cut portion of the anode foil, the lead caulking portion, and the defective portion of the aluminum oxide film as the dielectric layer, using a chemical conversion solution composed of ammonium adipate or the like. .

【0012】次に、有底円筒状のアルミニウム製コンデ
ンサケースに、有機半導体であるTCNQ錯塩(N−n
−ブチルイソキノリニウムTCNQ2)の粉末を適度に
加圧て詰め込み、該TCNQ錯塩の融解温度以下であ
る、150℃、160℃、170℃の各温度について、1時間、
2時間、3時間、4時間、5時間と加熱時間を違えてア
ルミケースごと熱処理を行なう。本実施例では、温度
(3通り)×時間(5通り)=計15通りの条件にて行な
う。
Next, a TCNQ complex salt (N-n) as an organic semiconductor is placed in a bottomed cylindrical aluminum capacitor case.
-Butylisoquinolinium (TCNQ 2 ) powder is packed under moderate pressure, and for each temperature of 150 ° C., 160 ° C. and 170 ° C. which is lower than the melting temperature of the TCNQ complex salt, 1 hour,
The heat treatment is performed for the entire aluminum case with different heating times of 2 hours, 3 hours, 4 hours, and 5 hours. In this embodiment, the temperature
(3 ways) × time (5 ways) = 15 conditions in total.

【0013】次に、上記熱処理したTCNQ錯塩を28
0〜300℃の温度で融解液化し、コンデンサ素子を浸
漬して液化TCNQ錯塩を含浸させる。含浸後ケースご
と急冷し、コンデンサ素子に含浸したTCNQ錯塩を冷
却固化させる。斯かる工程により、コンデンサ素子に液
状のTCNQ錯塩が含浸され、その後の急冷によりTC
NQ錯塩が再結晶して高い電導性を示す。
Next, the heat-treated TCNQ complex salt was added to 28
The mixture is melted and liquefied at a temperature of 0 to 300 ° C., and the capacitor element is immersed to impregnate the liquefied TCNQ complex salt. After the impregnation, the entire case is rapidly cooled to cool and solidify the TCNQ complex salt impregnated in the capacitor element. By such a step, the capacitor element is impregnated with the liquid TCNQ complex salt,
The NQ complex recrystallizes and exhibits high conductivity.

【0014】更に、ケース開口部をエポキシ樹脂にて封
口後、最後に約125℃にて1時間、コンデンサの規定
直流電圧を印加、即ち、エージング処理を施して目的と
する有機半導体固体電解コンデンサを完成する。尚、本
実施例に用いたコンデンサ素子の定格は、20V、33
μFで、規定のエージング電圧は、20Vで行なった。
Further, after closing the opening of the case with epoxy resin, a specified DC voltage of the capacitor is finally applied at about 125 ° C. for 1 hour, that is, aging treatment is performed to obtain the desired organic semiconductor solid electrolytic capacitor. Complete. Incidentally, the rating of the capacitor element used in this embodiment is 20 V, 33
The specified aging voltage was 20 V in μF.

【0015】下記の表1は、本実施例の条件をマトリッ
クスにし、各条件をアルファベットで記号化したもので
ある。
Table 1 below shows the conditions of the present embodiment in a matrix, and each condition is represented by an alphabet.

【0016】[0016]

【表1】 [Table 1]

【0017】下記の表2に、本試験結果を報告する。漏
れ電流については、0.02CV(13.2μA)にて合否判定
し、その良品のみ各30個の平均値をLC欄に記載す
る。(C:静電容量、V:定格電圧)LC歩留について
は、上記合否判定基準で選別した良品率を記載してい
る。従来例は、TCNQ錯塩の融解液化に先立つ熱処理
は行なっていない。
Table 2 below reports the results of this test. For the leakage current, a pass / fail judgment is made at 0.02 CV (13.2 μA), and only the non-defective products have an average value of 30 samples in the LC column. (C: capacitance, V: rated voltage) For LC yield, the percentage of non-defective products selected based on the above-mentioned pass / fail judgment criteria is described. In the conventional example, heat treatment prior to melting and liquefaction of the TCNQ complex salt is not performed.

【0018】[0018]

【表2】 [Table 2]

【0019】Cap.(静電容量)、tanδ:120HZ(室
温)、 ESR(等価直列抵抗):100KHZ(室温) LC(漏れ電流):D.C.20V印加、30秒値(室温)に
て測定。
. [0019] Cap (capacitance), tan [delta: 120H Z (room temperature), ESR (equivalent series resistance): 100KH Z (room temperature) LC (leakage current): DC 20 V is applied, measured at 30 seconds value (room temperature).

【0020】第2実施例 コンデンサ素子は上記第1実施例と同様のものを用い
た。有機半導体は、N−n−アミルイソキノリニウムT
CNQ2であり、この粉末をアルミニウム製コンデンサ
ーケースに適量収納し、170℃×1時間及び170℃×2時
間熱処理を行なう。以下の試作条件は、第1実施例と全
く同じである。下記の表3にN−n−アミルイソキノリ
ニウムTCNQ2を用いた場合の試験結果を報告する。
Second Embodiment A capacitor element similar to that of the first embodiment was used. The organic semiconductor is Nn-amylisoquinolinium T
A CNQ 2, the powder was suitable amount contained in an aluminum condenser case, a heat treatment is performed 170 ° C. × 1 hour and 170 ° C. × 2 hours. The following trial production conditions are exactly the same as in the first embodiment. Report a test result using the N-n-amyl isoquinolinium TCNQ 2 in Table 3 below.

【0021】[0021]

【表3】 [Table 3]

【0022】Cap.、tanδ:120HZ(室温) ESR:100KHZ(室温) LC:D.C.20V印加、30秒値(室温)にて測定。[0022] Cap, tan [delta:. 120H Z (room temperature) ESR: 100KH Z (room temperature) LC: D.C.20V applied, measured at 30 seconds value (room temperature).

【0023】尚、本発明はコンデンサ素子として前記の
如く、陽極箔と陰極箔とをセパレータ紙を介して巻回し
てなる巻取り素子を用いた場合に限定されるものではな
く、タンタル、ニオブ、アルミニウム等の弁作用を有す
る金属粉末を加圧し、焼成したものをコンデンサ素子と
して使用した焼結素子にも適用される。
As described above, the present invention is not limited to the case where a winding element formed by winding an anode foil and a cathode foil with a separator paper interposed therebetween is used as the capacitor element. The present invention is also applied to a sintered element in which a metal powder having a valve action, such as aluminum, is pressed and fired and used as a capacitor element.

【0024】次に、焼結素子での本発明の実施例につい
て説明する。粒径10〜40μmのアルミニウム微粉末
に、陽極用アルミリード線を植立して焼結してなるコン
デンサ素子を化成液を用いて誘電体となる酸化被膜層を
電気化学的に形成させる。
Next, an embodiment of the present invention in a sintered element will be described. A capacitor element formed by implanting and sintering an aluminum lead wire for an anode on aluminum fine powder having a particle size of 10 to 40 μm is electrochemically formed with an oxide film layer serving as a dielectric using a chemical conversion solution.

【0025】上記コンデンサ素子に固体電解質として、
前記実施例と同様にしてTCNQ錯塩を用いる。ケース
内にてTCNQ錯塩を280〜300℃の温度で融解液
化し、上記コンデンサ素子を浸漬してTCNQ錯塩を含
浸する。含浸後コンデンサ素子をケースから取り出し、
エアーにて急冷し、TCNQ錯塩を固化させる。斯かる
工程により、コンデンサ内部に液状のTCNQ錯塩が含
浸され、その後の急冷却によってTCNQ錯塩は再結晶
して、高い電導度を示す固体電解質を形成する。
As the solid electrolyte in the capacitor element,
A TCNQ complex salt is used in the same manner as in the above embodiment. The TCNQ complex salt is melted at a temperature of 280 to 300 ° C. in the case, and the capacitor element is immersed in the case to impregnate the TCNQ complex salt. After the impregnation, remove the capacitor element from the case,
The mixture is quenched with air to solidify the TCNQ complex salt. By such a process, the liquid TCNQ complex salt is impregnated inside the capacitor, and the TCNQ complex salt is recrystallized by rapid cooling to form a solid electrolyte having high conductivity.

【0026】続く工程で、図1に示す如く、銅ペイント
導電層(6)、半田層(7)を形成し、陰極用リード線(4)
を導出し、陽極用リード線(3)をコンデンサ素子(1)に
植立しているアルミリード(2)に陽極用リード線(3)を
溶接する。最後にエポキシ樹脂(8)にて外層し、125
℃ にて約1時間、ほぼコンデンサの定格電圧を印加し
て、目的とするコンデンサを完成する。尚、符号(5)は
有機半導体である。
In a subsequent step, as shown in FIG. 1, a copper paint conductive layer (6) and a solder layer (7) are formed, and a cathode lead (4) is formed.
And the anode lead wire (3) is welded to the aluminum lead (2) planted on the capacitor element (1). Finally, an outer layer is formed with an epoxy resin (8), and 125
Apply the rated voltage of the capacitor at about ° C for about 1 hour to complete the target capacitor. Reference numeral (5) denotes an organic semiconductor.

【0027】[0027]

【発明の効果】第1実施例、第2実施例の結果から明ら
かなように、本発明によって、漏れ電流特性が向上し、
その歩留が大幅に改善できる。又、有機半導体の熱処理
条件は、厳しくなれば(温度:高く、時間:長く)、L
C歩留は向上するものの、他の電気的特性(tanδ、ES
R)が悪化していく傾向にあるので、TCNQ錯塩の熱
処理条件としては、本実施例に記載している条件(15
0〜170℃×1〜5時間)が望ましい条件といえる
が、100℃以上融点以下の温度で熱処理を行なえば当
初の目的を達することができる。尚、本発明は上記実施
例の構成に限定されることはなく、特許請求の範囲に記
載の範囲で種々の変形が可能である。
As is apparent from the results of the first and second embodiments, the present invention improves the leakage current characteristics,
The yield can be greatly improved. In addition, if the heat treatment conditions of the organic semiconductor become severe (temperature: high, time: long), L
C yield is improved, but other electrical characteristics (tanδ, ES
R) tends to worsen. Therefore, the heat treatment conditions for the TCNQ complex salt are the same as those described in this example (15
(0.about.170.degree. C..times.1 to 5 hours) can be said to be a desirable condition. However, if the heat treatment is performed at a temperature of 100.degree. It should be noted that the present invention is not limited to the configuration of the above embodiment, and various modifications can be made within the scope described in the claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の別の実施例を示す断面図である。FIG. 1 is a sectional view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

(1) コンデンサ素子 (1) Capacitor element

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被膜形成性金属に陽極酸化被膜を形成し
てなるコンデンサ素子に融解液化した有機半導体を含浸
し、冷却固化した固体電解コンデンサの製法において、
有機半導体を融解液化前に予め100℃以上融点以下の
温度にて熱処理することを特徴とする有機半導体固体電
解コンデンサの製法。
1. A method for producing a solid electrolytic capacitor in which a capacitor element formed by forming an anodic oxide film on a film-forming metal is impregnated with a melted and liquefied organic semiconductor and cooled and solidified.
A method for producing an organic semiconductor solid electrolytic capacitor, wherein an organic semiconductor is heat-treated at a temperature of 100 ° C. or more and a melting point or less before melting and liquefaction.
【請求項2】 タンタル、ニオブ、アルミニウム等の弁
作用を有する金属焼結体の表面に酸化皮膜を形成したも
のをコンデンサ素子に用いた請求項1に記載の有機半導
体固体電解コンデンサの製法。
2. The method for producing an organic semiconductor solid electrolytic capacitor according to claim 1, wherein an oxide film is formed on the surface of a metal sintered body having a valve action, such as tantalum, niobium, or aluminum, as a capacitor element.
【請求項3】 有機半導体は、7.7.8.8−テトラ
シアノキノジメタン(TCNQ)の錯塩である請求項1
又は請求項2に記載の有機半導体固体電解コンデンサの
製法。
3. The organic semiconductor is a complex salt of 7.7.8.8-tetracyanoquinodimethane (TCNQ).
Alternatively, the method for producing an organic semiconductor solid electrolytic capacitor according to claim 2.
JP4267892A 1992-02-28 1992-02-28 Manufacturing method of organic semiconductor solid electrolytic capacitor Expired - Fee Related JP2783932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4267892A JP2783932B2 (en) 1992-02-28 1992-02-28 Manufacturing method of organic semiconductor solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4267892A JP2783932B2 (en) 1992-02-28 1992-02-28 Manufacturing method of organic semiconductor solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH05243096A JPH05243096A (en) 1993-09-21
JP2783932B2 true JP2783932B2 (en) 1998-08-06

Family

ID=12642692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4267892A Expired - Fee Related JP2783932B2 (en) 1992-02-28 1992-02-28 Manufacturing method of organic semiconductor solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2783932B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6552896B1 (en) 1999-10-28 2003-04-22 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
US6324051B1 (en) 1999-10-29 2001-11-27 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor
CN117175145B (en) * 2023-11-01 2024-01-30 柔电(武汉)科技有限公司 Cellulose-based all-solid-state polymer electrolyte membrane, and preparation method and application thereof

Also Published As

Publication number Publication date
JPH05243096A (en) 1993-09-21

Similar Documents

Publication Publication Date Title
US5707407A (en) Method of forming chip-formed solid electrolytic capacitor without an anode lead projecting from anode member
US3516150A (en) Method of manufacturing solid electrolytic capacitors
US4735823A (en) Organic semiconductor electrolyte capacitor and process for producing the same
JP2783932B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JP3084895B2 (en) Method for manufacturing solid electrolytic capacitor
EP0285728B1 (en) Solid electrolytic capacitor, and method of manufacturing same
JP3266205B2 (en) Method for manufacturing solid electrolytic capacitor
KR970004277B1 (en) Method of manufacturing solid electrolytic capacitor
US6504704B1 (en) Solid electrolytic capacitor and production method thereof
JP3253126B2 (en) Solid electrolytic capacitors
JP3100411B2 (en) Method for manufacturing solid electrolytic capacitor
JPH01205412A (en) Manufacture of solid electrolytic capacitor
JPH07115042A (en) Manufacture of electrolytic capacitor
JPH06188154A (en) Manufacture of solid electrolytic capacitor
JPS60214519A (en) Method of producing solid electrolytic condenser
JP2771767B2 (en) Method for manufacturing solid electrolytic capacitor
JPH062675U (en) Solid electrolytic capacitor
JP2000277389A (en) Solid electrolytic capacitor and its manufacturing method
JP3162738B2 (en) Solid electrolytic capacitors
JP3363508B2 (en) Organic semiconductor solid electrolytic capacitors
JPH0744131B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0337854B2 (en)
JPH0547607A (en) Production of electrolytic capacitor
JPH03241726A (en) Electrolytic capacitor
JPS6032970B2 (en) Solid electrolytic capacitor and its manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980421

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080522

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090522

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees