JP3100411B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JP3100411B2
JP3100411B2 JP03069013A JP6901391A JP3100411B2 JP 3100411 B2 JP3100411 B2 JP 3100411B2 JP 03069013 A JP03069013 A JP 03069013A JP 6901391 A JP6901391 A JP 6901391A JP 3100411 B2 JP3100411 B2 JP 3100411B2
Authority
JP
Japan
Prior art keywords
impregnation
complex
electrolytic capacitor
temperature
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03069013A
Other languages
Japanese (ja)
Other versions
JPH05304054A (en
Inventor
伸次 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Capacitor Ltd
Nippon Steel Corp
Original Assignee
Nichicon Capacitor Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Capacitor Ltd, Nippon Steel Corp filed Critical Nichicon Capacitor Ltd
Priority to JP03069013A priority Critical patent/JP3100411B2/en
Publication of JPH05304054A publication Critical patent/JPH05304054A/en
Application granted granted Critical
Publication of JP3100411B2 publication Critical patent/JP3100411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体電解質としてTC
NQ錯体を用いた固体電解コンデンサの製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a method for manufacturing a solid electrolytic capacitor using an NQ complex.

【0002】[0002]

【従来の技術】表面に陽極酸化皮膜を有する弁作用金属
からなる陽極体電極と該電極に対向して構成された陰極
用電極との間に固体電解質を介在させてなる従来の固体
電解コンデンサは二酸化マンガンが用いられてきた。
2. Description of the Related Art A conventional solid electrolytic capacitor in which a solid electrolyte is interposed between an anode body electrode made of a valve action metal having an anodic oxide film on its surface and a cathode electrode formed to face the electrode is known. Manganese dioxide has been used.

【0003】しかしながら、この方法は二酸化マンガン
を電極上に形成させる際に、一般に陽極体電極を硝酸マ
ンガン溶液に浸漬させた後、加熱分解を行なうため、陽
極酸化皮膜が損傷をうけること、加えて二酸化マンガン
による陽極酸化皮膜の皮膜修復性が乏しいという欠点が
あった。
However, in this method, when manganese dioxide is formed on the electrode, since the anode body electrode is generally immersed in a manganese nitrate solution and then thermally decomposed, the anodic oxide film is damaged. There is a drawback that the anodic oxide film is poorly repaired by manganese dioxide.

【0004】これらの欠点を補う方法としてTCNQ錯
体等の有機半導体を固体電解質として用いた固体電解コ
ンデンサが出現している。この含浸方法に関する代表的
な例として特開昭57-173928号公報に記載されているよ
うにTCNQ錯体を含む有機半導体を加熱融解により液
化させ、分解にいたるまでの間に素子を入れ、急冷固化
させるもの(以下融解含浸法という)である。
As a method for compensating for these disadvantages, a solid electrolytic capacitor using an organic semiconductor such as a TCNQ complex as a solid electrolyte has appeared. As a typical example of this impregnation method, as described in JP-A-57-173928, an organic semiconductor containing a TCNQ complex is liquefied by heating and melting, and the element is put into the device until decomposition, followed by rapid solidification. (Hereinafter referred to as a melt impregnation method).

【0005】しかしながら、この方法によれば、用いる
TCNQ錯体は融解点と分解点を有し、且つその温度間
隔がある程度なければ含浸性が悪くなる。又この含浸法
では、分解点以下に完全にコントロールしながら含浸す
ることはむずかしく、またこれらの温度では加えられる
熱総量が多いため錯体が分解してしまう。従って不良品
ができる割合が多い。TCNQ錯体の分解点はTCNQ
の昇華温度の290℃付近であり、融解点から分解点まで
の温度幅を広くするためには、どうしても融解温度を下
げることになる。
[0005] However, according to this method, the TCNQ complex used has a melting point and a decomposition point, and impregnation becomes poor unless the temperature interval is to some extent. In addition, in this impregnation method, it is difficult to impregnate while controlling completely below the decomposition point, and at these temperatures the complex is decomposed due to the large amount of heat applied. Therefore, the ratio of defective products is large. The decomposition point of the TCNQ complex is TCNQ
The sublimation temperature is around 290 ° C., and in order to widen the temperature range from the melting point to the decomposition point, the melting temperature must be lowered.

【0006】一方において、固体電解コンデンサには耐
熱性が要求されており、特にチップ製品については面実
装時に半田ディップ、リフロ−の温度に耐えられる電解
質でなくてはならず、従来の融解含浸法に適したTCN
Q錯体では上記の耐熱性に耐えられるものは、かなり困
難である。即ち耐熱性に優れたTCNQ錯体は融解点も
高く分解点との温度差も少なくなるので含浸性が極端に
悪くなる。逆に含浸性を良好にしようとすれば融解点が
低温側になるので耐熱性が極端に悪くなる。
On the other hand, solid electrolytic capacitors are required to have heat resistance. Particularly, chip products must be electrolytes that can withstand the temperature of solder dip and reflow during surface mounting. TCN suitable for
It is quite difficult for a Q complex to withstand the above heat resistance. That is, the TCNQ complex having excellent heat resistance has a high melting point and a small temperature difference from the decomposition point, so that the impregnation becomes extremely poor. Conversely, if the impregnation property is to be improved, the melting point will be lower, and the heat resistance will be extremely poor.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の問題点
を解決することである。即ち耐熱性錯体は融解点が高く
分解点との差が充分なくて含浸が不可能であったが一度
エッチングの穴の中に入った錯体を加熱再処理をすると
いう本発明により可能ならしめ、又電極表面とTCNQ
錯体の接合性が強固となりコンデンサのtanδの改良
を図ったものである。
SUMMARY OF THE INVENTION The present invention is to solve the above problems. That is, the heat-resistant complex had a high melting point and a sufficient difference from the decomposition point, so that impregnation was impossible, but once the complex once entered the etching hole was heated and reprocessed, it was made possible by the present invention. Electrode surface and TCNQ
This is to improve the bonding property of the complex and improve the tan δ of the capacitor.

【0008】[0008]

【課題を解決するための手段】本発明の具体的手法とし
ては、表面積拡大のためエッチング処理を施し、該表面
に陽極酸化皮膜を有する弁作用金属からなる陽極用電極
を用い、TCNQ錯体を塩化メチレン、クロロホルム等
のハロゲン系有機溶媒、メタノ−ル、エタノ−ル等のア
ルコ−ル系有機溶媒、アセトン、アセトニトリル等の酸
素、窒素を含む有機溶媒、あるいはTCNQ錯体が分解
せずに溶解する溶媒に溶解させ、100℃からTCNQ錯
体の分解点以下に加熱させた上記電極上に噴霧、噴射、
流下もしくは滴下させることによりTCNQ錯体を含浸
させ、その後更に加熱処理を行いエッチングピット内部
に含浸されたTCNQ錯体の結晶の再配列化を行い陽極
酸化皮膜との接合性を良好ならしめることである。
As a specific method of the present invention, an etching process is performed to increase the surface area, and an anode electrode made of a valve action metal having an anodic oxide film on the surface is used to convert the TCNQ complex into a chloride. Halogen-based organic solvents such as methylene and chloroform, alcohol-based organic solvents such as methanol and ethanol, organic solvents containing oxygen and nitrogen such as acetone and acetonitrile, and solvents in which the TCNQ complex is dissolved without decomposition Is sprayed onto the above-mentioned electrode heated from 100 ° C. to the decomposition point of the TCNQ complex or lower,
This implies that the TCNQ complex is impregnated by flowing down or dripping, and then heat treatment is further performed to rearrange the crystals of the TCNQ complex impregnated inside the etching pits to improve the bonding property with the anodic oxide film.

【0009】本発明の基本的な骨子はTCNQ錯体溶液
が陽極酸化皮膜に付着されると同時に溶媒が蒸発気化す
ることにより、TCNQ錯体を微粉末、細粒のまま緻密
に析出させ、その結果析出されたTCNQ錯体の密度を
高くさせることにより電導度の向上を図ると同時に、ア
ルミ電解コンデンサの電極表面や、Al−Zr合金箔の
ように極めて微細なエッチング処理を施したエッチング
孔内部にも含浸されることが可能になった。また溶媒の
沸点に近い温度で行った場合、溶媒により含浸率が異な
ることから、溶媒が酸化皮膜に影響を与え(溶媒処理)
これにより含浸率が増大する。同様にタンタル電解コン
デンサのように焼結された電極にも同様な効果が認めら
れる。又陽極酸化皮膜との接合も錯体の結晶成長が極力
抑制されているのでTCNQ錯体の析出開始点が増大
し、陽極酸化皮膜に接合されている面積は飛躍的に増大
され含浸率の増大、接合抵抗の減少をもたらす。しかし
ながら陽極酸化皮膜との接合について更に改良を試みた
ところ、上記含浸の終了後更に含浸時での加熱温度以上
から錯体の分解点以下の温度で加熱処理を行い、エッチ
ングピット内の錯体の結晶を再配列させたところコンデ
ンサ特性のtanδが更に良好となった。
The basic gist of the present invention is that the TCNQ complex solution adheres to the anodic oxide film and the solvent evaporates and evaporates at the same time. The conductivity of the electrode is improved by increasing the density of the TCNQ complex, and at the same time, the electrode surface of the aluminum electrolytic capacitor and the inside of the etching hole that has been subjected to extremely fine etching treatment such as Al-Zr alloy foil are impregnated. It became possible to be. In addition, when the temperature is close to the boiling point of the solvent, the solvent affects the oxide film because the impregnation rate varies depending on the solvent (solvent treatment).
This increases the impregnation rate. Similarly, the same effect is observed for electrodes sintered like a tantalum electrolytic capacitor. In addition, since the crystal growth of the complex is suppressed as much as possible in the bonding with the anodic oxide film, the starting point of the precipitation of the TCNQ complex is increased, and the area bonded to the anodic oxide film is dramatically increased, and the impregnation rate is increased. This results in a reduction in resistance. However, when further attempts were made to improve the bonding with the anodized film, after the completion of the impregnation, a heat treatment was performed at a temperature not lower than the heating temperature during the impregnation and not higher than the decomposition point of the complex, and the crystal of the complex in the etching pit was removed. When rearranged, tan δ of the capacitor characteristics was further improved.

【0010】以上のように本発明のポイントとしてはT
CNQ錯体溶液の溶媒を急速に蒸発気化させることによ
り、アルミ酸化皮膜に溶媒処理を行いながら、TCNQ
錯体を微細状態で析出させ、更にエッチングピット内部
に含浸させたTCNQ錯体を加熱処理して含浸されたT
CNQ錯体の結晶を再配列させることにより誘電体皮膜
と錯体との接合強度を高め製品のtanδの改善、高周
波特性の改善を図ったものである。上記エッチングピッ
ト内部に含浸させたTCNQ錯体の加熱処理は、該錯体
の融点以上の温度で処理するとより効果が上がる。な
お、含浸時の溶媒を急速に蒸発気化させる際に減圧雰囲
気で行ったものに関しても当然良好な結果になる。減圧
は1/3気圧から1気圧の範囲内が望ましい。
As described above, the point of the present invention is that T
By rapidly evaporating and evaporating the solvent of the CNQ complex solution, it is possible to perform TCNQ while performing solvent treatment on the aluminum oxide film.
The complex is precipitated in a fine state, and the TCNQ complex impregnated inside the etching pit is further heat-treated to impregnate the TCNQ complex.
By rearranging the crystals of the CNQ complex, the bonding strength between the dielectric film and the complex is increased to improve the tan δ of the product and the high-frequency characteristics. The effect of the heat treatment of the TCNQ complex impregnated inside the etching pit is improved when the complex is treated at a temperature equal to or higher than the melting point of the complex. It should be noted that good results are naturally obtained also in the case where the solvent used during the impregnation is rapidly evaporated and vaporized in a reduced-pressure atmosphere. The pressure reduction is preferably in the range of 1/3 atmosphere to 1 atmosphere.

【0011】本発明者は数々の溶媒を用い検討を行った
結果、電極の加熱温度は100℃から錯体の分解点の間が
良好であることを見出した。100℃以下になると溶媒の
蒸発に不均一が生じ、又溶媒の気化が遅くなり結晶の成
長が進み含浸率の低下を招く。
As a result of investigations using various solvents, the present inventors have found that the heating temperature of the electrode is good between 100 ° C. and the decomposition point of the complex. If the temperature is lower than 100 ° C., the evaporation of the solvent becomes non-uniform, and the evaporation of the solvent is slowed, and the growth of the crystal proceeds, resulting in a decrease in the impregnation rate.

【0012】又、含浸終了後、含浸された錯体の再配列
を誘導し誘電体皮膜との接合を良好ならしめる温度は含
浸時での温度以上から効果が認められ、錯体の分解点ま
でその効果はあった。なお、TCNQ錯体の中には当然
融解点を有するものもあり、融点以上になると液化する
が、この場合の含浸状態は、すでにエッチングピット内
に含浸された錯体が液化再析出するものであり、従来採
用されているような融解含浸法とは本質的に異なるもの
である。
After completion of the impregnation, the effect of inducing the rearrangement of the impregnated complex and improving the bonding with the dielectric film is recognized from the temperature at the time of the impregnation, and the effect is observed up to the decomposition point of the complex. There was. Some of the TCNQ complexes naturally have a melting point and liquefy when the melting point or higher is reached. In this case, the impregnation state is such that the complex already impregnated in the etching pits is liquefied and reprecipitated. This is essentially different from the melt impregnation method conventionally used.

【0013】[0013]

【実施例1】以下、本発明の具体的実施例について述べ
る。厚さ90μmの高純度アルミニウム箔(純度99.99%)
を交流により電解エッチングを行った後、中性燐酸溶液
にて20V化成を行い、誘電体皮膜を形成させた。(電極
A)
Embodiment 1 Hereinafter, a specific embodiment of the present invention will be described. 90μm high-purity aluminum foil (purity 99.99%)
Was subjected to electrolytic etching with an alternating current, and then subjected to 20 V chemical conversion with a neutral phosphoric acid solution to form a dielectric film. (Electrode A)

【0014】上記電極箔を190℃に加熱したホットプ
レ−ト上に配し、イソアミルイソキノリンTCNQ錯体
をクロロホルムに飽和溶解させた溶液を150秒間憤霧
させた。その後電極箔を反転させ反対面に同様の処理を
行い、この一連の操作を5回繰り返し含浸を終了させ
た。次いで、240℃に加熱した赤外反射炉に20秒間
保持し、含浸後の加熱処理を行なった。その後コロイダ
ルカ−ボンを塗布形成し、更に銀ペ−ストで陰極リ−ド
を取り出しエポキシ樹脂で外装し、定格10V33μF
の固体電解コンデンサを作製した。又比較のため、含浸
後加熱処理を行なわなかったものと、従来の融解含浸法
により製作したものについても特性調査を行なった。そ
の結果を表1に示す。
The above-mentioned electrode foil was placed on a hot plate heated to 190 ° C., and a solution in which the isoamylisoquinoline TCNQ complex was saturated and dissolved in chloroform was mist for 150 seconds. Thereafter, the electrode foil was inverted and the same treatment was performed on the opposite surface, and this series of operations was repeated five times to complete the impregnation. Next, it was kept in an infrared reflecting furnace heated to 240 ° C. for 20 seconds, and heat treatment after impregnation was performed. After that, a colloidal carbon is applied and formed, and the cathode lead is taken out with silver paste, and is covered with an epoxy resin.
Was manufactured. For comparison, characteristics were also investigated for those not subjected to heat treatment after impregnation and those produced by the conventional melting and impregnation method. Table 1 shows the results.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【実施例2】厚さ40μmのAl90Zr10合金箔を超急冷
法により作製し、芯材として99.99%アルミ箔70μm厚み
のものを用い、三層クラッド電極箔を作製した。この電
極箔を電解エッチングした後、中性燐酸溶液にて20V
化成を行い、誘電体皮膜を形成させた。(電極B)
Example 2 An Al90Zr10 alloy foil having a thickness of 40 μm was prepared by a super-quenching method, and a 99.99% aluminum foil having a thickness of 70 μm was used as a core material to prepare a three-layer clad electrode foil. After electrolytically etching this electrode foil, the neutralized phosphoric acid solution is applied to 20 V
Chemical conversion was performed to form a dielectric film. (Electrode B)

【0017】上記電極箔を200℃に加熱したホットプ
レ−ト上に配し、ジフェニルオクチルフェナントロリン
TCNQ錯体を塩化メチレンに飽和溶解させた溶液を2
00秒間憤霧させた。その後電極箔を反転させ反対面に
同様の処理を行い、この一連の操作を5回繰り返し含浸
を終了させた。次いで、250℃に加熱した赤外反射炉
に20秒間保持し、加熱処理を行なった。その後コロイ
ダルカ−ボンを塗布形成し、更に銀ペ−ストで陰極リ−
ドを取り出しエポキシ樹脂で外装し、定格10V100
μFの固体電解コンデンサを作製した。又比較のため、
含浸後加熱処理を行なわなかったものと、従来の融解含
浸法により製作したものについても特性調査を行なっ
た。その結果を表2に示す。
The above-mentioned electrode foil was placed on a hot plate heated to 200 ° C., and a solution of diphenyloctylphenanthroline TCNQ complex saturated in methylene chloride was dissolved in
Made rage for 00 seconds. Thereafter, the electrode foil was inverted and the same treatment was performed on the opposite surface, and this series of operations was repeated five times to complete the impregnation. Next, it was kept in an infrared reflecting furnace heated to 250 ° C. for 20 seconds to perform a heat treatment. Thereafter, colloidal carbon is applied and formed, and further, a cathode paste is applied with silver paste.
Take out the package and cover it with epoxy resin, rated 10V100
A μF solid electrolytic capacitor was produced. For comparison,
The characteristics were also investigated for those not subjected to the heat treatment after the impregnation and those produced by the conventional melt impregnation method. Table 2 shows the results.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】上記実施例1及び実施例2に示したよう
に、本発明法によってTCNQ錯体を含浸処理された固
体電解コンデンサは、tanδの改良に加え、含浸性も
向上している。又従来の融解含浸法と比較しても良い電
気特性を示している。又含浸プロセスも非常に簡潔であ
り、ポリピロ−ルに代表される電導性高分子の含浸プロ
セスと比較して、含浸時間の大幅な短縮、工数の削減が
可能となり、製造コストもそれにより大幅に下がり、工
業的並びに実用的価値大なるものである。
As shown in Examples 1 and 2, the solid electrolytic capacitor impregnated with the TCNQ complex by the method of the present invention has improved tan δ and improved impregnation. It also shows electrical properties that may be compared to conventional melt impregnation methods. Also, the impregnation process is very simple, and the impregnation time and man-hour can be greatly reduced and the production cost can be significantly reduced as compared with the impregnation process of a conductive polymer represented by polypyrrole. It has a low industrial and practical value.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 表面積拡大のため表面にエッチング処理
を行い、該表面に陽極酸化皮膜を有する弁作用金属から
なる陽極用電極を加熱させながら、該電極上に溶媒に溶
解したTCNQ錯体を噴霧、噴射、流下もしくは滴下さ
せながら含浸処理を行ない、該処理によりエッチングピ
ット内部に含浸させたTCNQ錯体を更に加熱処理を行
なうことを特徴とする固体電解コンデンサの製造方法。
An etching process is performed on the surface to increase the surface area, and a TCNQ complex dissolved in a solvent is sprayed onto the electrode while heating an anode electrode made of a valve action metal having an anodic oxide film on the surface. A method for producing a solid electrolytic capacitor, comprising performing an impregnation process while spraying, flowing down or dripping, and further subjecting the TCNQ complex impregnated in the etching pit to a heat treatment.
【請求項2】 上記含浸時での陽極用電極の加熱温度は
100℃からTCNQ錯体の分解点以下の温度であること
を特徴とする請求項1の固体電解コンデンサの製造方
法。
2. The heating temperature of the anode electrode during the impregnation is as follows:
2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the temperature is from 100 ° C. to a temperature not higher than the decomposition point of the TCNQ complex.
【請求項3】 上記含浸終了後の加熱温度は、含浸時の
加熱温度以上から上記錯体の分解点以下の温度であるこ
とを特徴とする請求項1の固体電解コンデンサの製造方
法。
3. The method for producing a solid electrolytic capacitor according to claim 1, wherein the heating temperature after the completion of the impregnation is a temperature not lower than the heating temperature during the impregnation and not higher than the decomposition point of the complex.
JP03069013A 1991-03-07 1991-03-07 Method for manufacturing solid electrolytic capacitor Expired - Fee Related JP3100411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03069013A JP3100411B2 (en) 1991-03-07 1991-03-07 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03069013A JP3100411B2 (en) 1991-03-07 1991-03-07 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH05304054A JPH05304054A (en) 1993-11-16
JP3100411B2 true JP3100411B2 (en) 2000-10-16

Family

ID=13390285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03069013A Expired - Fee Related JP3100411B2 (en) 1991-03-07 1991-03-07 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3100411B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3155360B2 (en) * 1992-07-27 2001-04-09 オリンパス光学工業株式会社 Visual display device

Also Published As

Publication number Publication date
JPH05304054A (en) 1993-11-16

Similar Documents

Publication Publication Date Title
JPH04229611A (en) Solid electrolytic capacitor
JP3100411B2 (en) Method for manufacturing solid electrolytic capacitor
JP3100412B2 (en) Method for manufacturing solid electrolytic capacitor
JP3093810B2 (en) Method for manufacturing solid electrolytic capacitor
EP0285728B1 (en) Solid electrolytic capacitor, and method of manufacturing same
US6504704B1 (en) Solid electrolytic capacitor and production method thereof
US20090090997A1 (en) Solid electrolytic capacitor element and production method thereof
US7423862B2 (en) Solid electrolytic capacitor element, solid electrolytic capacitor and production method thereof
JP2783932B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JP2833383B2 (en) Method for manufacturing solid electrolytic capacitor
JP3092512B2 (en) Method for manufacturing solid electrolytic capacitor
JP3123772B2 (en) Organic semiconductor solid electrolytic capacitors
KR970004277B1 (en) Method of manufacturing solid electrolytic capacitor
JP3221889B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0722078B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0358404A (en) Manufacture of solid electrolytic capacitor
JP2000277389A (en) Solid electrolytic capacitor and its manufacturing method
JPH01205412A (en) Manufacture of solid electrolytic capacitor
JP2999842B2 (en) Organic semiconductor solid electrolytic capacitors
JPH0821516B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001085277A (en) Solid electrolytic capacitor and its manufacture
JPS61244012A (en) Manufacture of solid electrolytic capacitor
JPS61107716A (en) Solid electrolytic capacitor
JPH06188154A (en) Manufacture of solid electrolytic capacitor
JPS60160111A (en) Method of producing solid electrolytic condenser

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000724

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees