JPH03241726A - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JPH03241726A
JPH03241726A JP3918090A JP3918090A JPH03241726A JP H03241726 A JPH03241726 A JP H03241726A JP 3918090 A JP3918090 A JP 3918090A JP 3918090 A JP3918090 A JP 3918090A JP H03241726 A JPH03241726 A JP H03241726A
Authority
JP
Japan
Prior art keywords
diameter
capacitor element
capacitor
organic semiconductor
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3918090A
Other languages
Japanese (ja)
Inventor
Shinichi Kaneko
金子 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP3918090A priority Critical patent/JPH03241726A/en
Publication of JPH03241726A publication Critical patent/JPH03241726A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To enable the favorable impregnation with semiconductor of a capacitor element by providing the core of the capacitor element with space at least one-third the element diameter or more in diameter. CONSTITUTION:In an electrolytic capacitor, which is constituted by impregnating a capacitor element 6, where a spacer 3 is interposed between an anode foil 1 made of a value metal and a cathode foil 2 and they are rolled, with organic semiconductor 11, space 7 at least one-third the element diameter or more in diameter is provided in the core part of the capacitor element 6. Putting the diameter of the space 7 to the diameter one-third the element diameter or more is atributable to that the effect of improvement of the impregnation can not be gotten so much in the case where it is put to below one-third. Hereby, great capacitance high in impregnation of organic semiconductor and free of variation can be gotten.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、有機半導体を固体電解質として用いた電解コ
ンデンサに係り、特に、素子構造を改良した電解コンデ
ンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrolytic capacitor using an organic semiconductor as a solid electrolyte, and particularly to an electrolytic capacitor with an improved element structure.

[従来の技術] 一般に乾式箔形電解コンデンサは、例えば、高純度アル
ミニウム箔からなる一対の陽・陰極箔に同じくアルミニ
ウムからなる一対の引出端子を接続し、前記一対の陽・
陰極箔相互間にスペーサを介在して巻回してなるコンデ
ンサ素子に駆動用電解液を含浸してケースに収納し、こ
のケース開口部を密閉し、外装を施してなるものである
[Prior Art] In general, a dry foil electrolytic capacitor is constructed by connecting a pair of positive and negative electrode foils made of high-purity aluminum foil to a pair of lead terminals also made of aluminum, and
A capacitor element formed by winding cathode foils with a spacer interposed between them is impregnated with a driving electrolyte and housed in a case, the opening of the case is sealed, and an exterior is applied.

以上のような電解コンデンサにおいて、駆動用電解液と
しては、例えばエチレングリコールなどの有機溶媒にア
ジピン酸アンモニウムなどの有機カルボン酸を使用して
いるため、tanδ特性改善に限度があり、また低温で
比抵抗が」二かり低温特性が極度に悪化し、広域温度範
囲で使用するには信頼性に欠けるなど市場要求を満足す
るためには解決すべき課題をかかえていた。
In the electrolytic capacitors described above, the driving electrolyte uses an organic carboxylic acid such as ammonium adipate in an organic solvent such as ethylene glycol, so there is a limit to the improvement of tan δ characteristics and There were problems that needed to be resolved in order to meet market demands, such as low resistance and extremely poor low-temperature characteristics, and lack of reliability for use over a wide temperature range.

そのため、近年では、このような駆動用電解液に代え、
TCNQ錯体からなる有機半導体を用いた電解コンデン
サが種々提案され、−綿実用化を迎えている。
Therefore, in recent years, instead of such driving electrolytes,
Various electrolytic capacitors using organic semiconductors consisting of TCNQ complexes have been proposed and are now being put into practical use.

コンデンサ素子にTCNQ錯体を含浸する方法としては
、一般に溶液含浸法、分散含浸法、さらには真空蒸着法
があるが、TCNQ錯体の特性はいろいろの条件で変化
し、極めて扱い難い物質であるため、使用に当たっては
種々の工夫が講じられている。
Methods for impregnating capacitor elements with TCNQ complexes generally include solution impregnation methods, dispersion impregnation methods, and even vacuum evaporation methods, but the characteristics of TCNQ complexes change under various conditions and are extremely difficult to handle. Various measures have been taken for its use.

特に、固体電解質の条件としては、コンデンサ特性とし
てのtanδ及び等価直列抵抗に影響するそれ自体とし
ての抵抗値が小さく、且つ温度、特に高温下でも安定し
た比抵抗値があることが重要である。
In particular, as conditions for the solid electrolyte, it is important that the resistance value itself, which affects tan δ as a capacitor characteristic and the equivalent series resistance, is small, and that the solid electrolyte has a stable resistivity value even under temperature, especially high temperatures.

ところで、TCNQ錯体を、コンデンサ素子内部へ工業
的に満遍なく必要量浸透させるための含浸手段としては
、従来提案されている幾つかの特許公報または技術文献
に記載されているように、加熱溶融液化処理が有効とさ
れている。この加熱溶融液化処理の具体的工程は、外装
ケースに入れ加熱溶融させた所望のTCNQ錯体液に予
め加熱してなるコンデンサ素子を収納し、この素子を構
成する絶縁紙の繊維と電極箔の微細なエツチングピット
を介して含浸するものである。
By the way, as an impregnation means for industrially uniformly infiltrating the required amount of TCNQ complex into the inside of a capacitor element, heat melting and liquefaction treatment is proposed as described in several patent publications or technical documents that have been proposed in the past. is considered valid. The specific process of this heat-melting and liquefaction process involves placing a capacitor element that has been heated in advance in a desired TCNQ complex liquid that has been heated and melted in an exterior case, and then storing a capacitor element that has been heated in advance in a desired TCNQ complex liquid that has been heated and melted. The impregnation is carried out through etching pits.

この工程において、コンデンサ素子を収納した際に、こ
の素子全体がTCNQ錯体液に浸漬されればコンデンサ
素子への含浸性を良好にできるが、通常は、素子全体を
TCNQ錯体液に浸漬する方法は採用されていない。す
なわち、TCNQ錯体は皮膜修復作用が少なく、このT
CNQ錯体が陽極側ターミナルの未化成部分に付着した
場合、ショート不良という致命的な問題誘発となるため
、一般にはTCNQ錯体を必要最小限の量のみに止どめ
、コンデンサ素子の一方端(ケース内底部に位置する端
面)からの毛細管現象を利用して含浸を行っている。
In this step, when the capacitor element is housed, if the entire element is immersed in the TCNQ complex liquid, the impregnating properties of the capacitor element can be improved; however, normally, the method of immersing the entire element in the TCNQ complex liquid is Not adopted. In other words, the TCNQ complex has little film-repairing effect;
If the CNQ complex adheres to the unformed part of the anode side terminal, it will cause a fatal problem of short circuit failure, so generally, the amount of TCNQ complex is kept to the minimum necessary amount, and one end of the capacitor element (case Impregnation is performed using capillary action from the end surface (located at the inner bottom).

しかしながら、以上のような含浸方法は、素子が比較的
小さい場合には適しているものの、素子が大型になると
、コンデンサ素子の含浸側の端部から他方の端部までの
距離が長くなるため、TCNQ錯体液が、コンデンサ素
子全体に充分に含浸される前に硬化或いは分解してしま
い、結局目的とする静電容量が得られず、損失が大きく
なり、さらに、漏れ電流が増大するなどの欠点を生じて
いた。
However, although the impregnation method described above is suitable when the element is relatively small, when the element becomes large, the distance from the impregnated end of the capacitor element to the other end becomes long. Disadvantages include that the TCNQ complex liquid hardens or decomposes before it is sufficiently impregnated into the entire capacitor element, resulting in failure to obtain the desired capacitance, increased loss, and increased leakage current. was occurring.

[発明が解決しようとする課題] 」二記のように、従来の電解コンデンサは、コンデンサ
素子に対する有機半導体の含浸を充分に行うことかでき
ず、緒特性が低下する欠点を有していた。
[Problems to be Solved by the Invention] As described in Section 2, conventional electrolytic capacitors have the disadvantage that capacitor elements cannot be sufficiently impregnated with organic semiconductors, resulting in a decrease in performance characteristics.

本発明は、このような従来技術の課題を解決するために
提案されたものであり、その目的は、有機半導体の含浸
性が高く、ばらつきのない大きな静電容量を得られ、損
失特性及び漏れ電流特性の良好な電解コンデンサを提供
することである。
The present invention was proposed in order to solve the problems of the prior art, and its purpose is to achieve high impregnability with organic semiconductors, obtain a large capacitance with no variation, and improve loss characteristics and leakage. An object of the present invention is to provide an electrolytic capacitor with good current characteristics.

[課題を解決するための手段] 本発明の電解コンデンサは、弁作用金属からなる陽極箔
と陰極箔間にスペーサを介在して巻回したコンデンサ素
子に有機半導体を含浸してなる電解コンデンサにおいて
、コンデンサ素子が、その巻芯部に、少なくとも素子径
の1/3以上の直径の空隙部を有することを特徴として
いる。
[Means for Solving the Problems] The electrolytic capacitor of the present invention is an electrolytic capacitor formed by impregnating an organic semiconductor into a capacitor element wound with a spacer interposed between an anode foil and a cathode foil made of a valve metal. The capacitor element is characterized in that the winding core thereof has a gap having a diameter of at least 1/3 or more of the element diameter.

[作用] 以上のような構成を有する本発明においては、コンデン
サ素子の巻芯部に、少なくとも素子径の1/3以上の直
径の空隙部を設けたことにより、円筒状の素子底部から
の含浸性を格段に向−にできるため、コンデンサ素子へ
の良好な半導体含浸が容易に可能となり、特性劣化要因
が解消される。
[Function] In the present invention having the above-described configuration, by providing a void portion having a diameter of at least 1/3 of the element diameter in the winding core of the capacitor element, impregnation from the bottom of the cylindrical element is prevented. Since the properties can be greatly improved, it becomes possible to easily impregnate the capacitor element with a good semiconductor, and the causes of characteristic deterioration are eliminated.

この場合、空隙部の直径を、少なくとも素子径の1/3
以上の直径としているのは、1/3未満とした場合には
、含浸性の向上の効果が余り得られないためである。
In this case, the diameter of the cavity should be set to at least 1/3 of the element diameter.
The reason why the diameter is set to the above value is that if the diameter is less than 1/3, the effect of improving impregnability cannot be obtained much.

[実施例] 以下に、本発明による電解コンデンサの基本的な一実施
例について、図面を参照して具体的に説明する。
[Example] Below, a basic example of the electrolytic capacitor according to the present invention will be specifically described with reference to the drawings.

まず、第2図に示すように、アルミニウム箔表面をエツ
チング液で粗面化し表面積を拡大した後、陽極酸化皮膜
を生成した陽極箔1と、アルミニウム箔表面を前記同様
エツチング液で粗面化し表面積を拡大した陰極箔2にク
ラフト紙またはマニラ紙などからなるスペーサ3を介在
し、途中前記陽極箔1及び陰極箔2の任意の箇所に、そ
れぞれ陽極引出端子4または陰極引出端子5を取着して
巻回する。
First, as shown in Fig. 2, the surface of the aluminum foil is roughened with an etching solution to increase the surface area, and then the anode foil 1 with an anodized film formed thereon and the aluminum foil surface are roughened with an etching solution in the same manner as described above to increase the surface area. A spacer 3 made of kraft paper or manila paper is interposed on the enlarged cathode foil 2, and an anode lead-out terminal 4 or a cathode lead-out terminal 5 is attached to an arbitrary part of the anode foil 1 and cathode foil 2, respectively. and wind it.

この巻回に当たっては、完成素子の直径の少なくとも1
/3以上の径の円柱または円筒形状の巻芯を使用し、コ
ンデンサ素子6を形成する。この後、巻芯を抜取ること
により、コンデンサ素子6の巻芯部に、素子径の1/3
以−1−の直径を有する断面円形状の空隙部7を形成す
る。次に、第3図に示すように、」二部開口形のアルミ
ニウム製ケス8内にTCNQ錯体からなる有機半導体を
入れ、この有機半導体を加熱溶融して有機半導体溶融液
9とし、この有機半導体溶融液9内に、第1図に示すよ
うに、コンデンサ素子6を予熱状態で収納し、有機半導
体溶融液9をコンデンサ素子6内に含浸し、しかる後に
冷却硬化し、前記ケース8の上部開口部を封口体10に
て密閉してコンデンサを完成する。なお、第1図中11
は、硬化後の有機半導体を示している。
In this winding, at least one part of the diameter of the finished element is
The capacitor element 6 is formed using a cylindrical or cylindrical winding core having a diameter of /3 or more. After that, by removing the winding core, 1/3 of the element diameter is placed on the winding core of the capacitor element 6.
A cavity 7 having a circular cross-section having a diameter of -1- is formed. Next, as shown in FIG. 3, an organic semiconductor made of a TCNQ complex is placed in a double-opening aluminum case 8, and this organic semiconductor is heated and melted to form an organic semiconductor melt 9. As shown in FIG. 1, the capacitor element 6 is housed in the melt 9 in a preheated state, and the organic semiconductor melt 9 is impregnated into the capacitor element 6, and then cooled and hardened to form the upper opening of the case 8. The capacitor is completed by sealing the portion with a sealing body 10. Note that 11 in Figure 1
indicates the organic semiconductor after curing.

以上のような本実施例の電解コンデンサにおいては、ま
ず、従来と同様に、有機半導体溶融液9の含浸が、コン
デンサ素子6の下側端面で行なわれると共に、コンデン
サ素子6の側面とケース8の側面との空隙部からはい一
1xかり、コンデンサ素子6の上部端面からも行なわれ
る。これに加えて、本実施例においては、特に、コンデ
ンサ素子6の巻芯部に、素子径の1/3以上の直径を有
する大きな空隙部7を形成していることにより、この空
隙部7からも有機半導体溶融液9がはい」二がるため、
コンデンサ素子6全体で、毛細管現象による含浸が行わ
れることになる。従って、従来に比べて短時間で、充分
且つ確実な含浸を行なうことが可能となり、ばらつきの
ない、大きな静電容量を得られ、損失特性を向上できる
。また、短時間で含浸が終了することから、酸化皮膜の
劣化を低減できるため、漏れ電流特性の改善に大きく貢
献できる。
In the electrolytic capacitor of this embodiment as described above, first, the lower end surface of the capacitor element 6 is impregnated with the organic semiconductor melt 9 as in the conventional case, and the side surface of the capacitor element 6 and the case 8 are impregnated with the organic semiconductor melt 9. The injection is carried out from the gap with the side surface 1x, and also from the upper end surface of the capacitor element 6. In addition, in this embodiment, in particular, by forming a large gap 7 having a diameter of 1/3 or more of the element diameter in the winding core of the capacitor element 6, Because the organic semiconductor melt 9 is also
The entire capacitor element 6 will be impregnated by capillary action. Therefore, it is possible to perform sufficient and reliable impregnation in a shorter time than in the past, and it is possible to obtain a large capacitance without variation and improve loss characteristics. Furthermore, since the impregnation is completed in a short time, deterioration of the oxide film can be reduced, which can greatly contribute to improving leakage current characteristics.

次に、本発明の作用効果をより具体的に説明するために
、本発明に従って実際に一定の寸法の電極箔を使用して
、一定の定格の電解コンデンサ(本発明品A)を製造す
ると共に、比較例として、従来技術に従って、本発明品
Aと同寸法の電極箔を使用して、同定格の電解コンデン
サ(従来品B)を製造した。すなわち、本発明品Aとし
ては、幅5 m m 、長さ25mmの陽極箔と、幅5
 m m、長さ35mmの陰極箔を使用し、直径2.5
mmの巻芯でマニラ紙と共に巻回して素子径5mmφの
コンデンサ素子を作製した。従来例Bとしては、本考案
と同寸法の陽極箔及び陰極箔を使用し、直径1mmの巻
芯でマニラ紙と共に巻回して素子径4.5mmφのコン
デンサ素子を作製した。そして、巻芯の径以外は、前記
実施例の工程に従って、本発明品A1従来品B共に、全
く同様に構成した。
Next, in order to explain the effects of the present invention more specifically, an electrolytic capacitor (inventive product A) with a constant rating was manufactured using electrode foil of a constant size according to the present invention, and As a comparative example, an electrolytic capacitor (conventional product B) having the same rating as the product A of the present invention was manufactured using an electrode foil having the same dimensions as the product A of the present invention according to the prior art. That is, the product A of the present invention includes an anode foil with a width of 5 mm and a length of 25 mm, and an anode foil with a width of 5 mm.
mm, using a cathode foil with a length of 35 mm, and a diameter of 2.5 mm.
A capacitor element having an element diameter of 5 mmφ was prepared by winding the capacitor with manila paper around a core of 5 mm in diameter. As Conventional Example B, an anode foil and a cathode foil having the same dimensions as those of the present invention were used and wound together with manila paper around a winding core having a diameter of 1 mm to produce a capacitor element having an element diameter of 4.5 mmφ. Except for the diameter of the winding core, both the invention product A and the conventional product B were constructed in exactly the same manner according to the process of the above embodiment.

なお、有機半導体としては、いずれもN−メチル3−n
プロピルイミダシルのTCNQ錯体を使用した。また、
定格は、本発明品A1従来品B共に16Wv−10μF
である。
In addition, as an organic semiconductor, N-methyl 3-n
A TCNQ complex of propylimidacil was used. Also,
The rating is 16Wv-10μF for both the invention product A and conventional product B.
It is.

以上のように作成した本発明品A、従来品Bについて、
それぞれ多数の試料を使用し、静電容量分布、損失分布
、及び漏れ電流分布を調査したところ、第4図乃至第6
図に示すような結果が得られた。
Regarding the present invention product A and the conventional product B created as described above,
When we investigated the capacitance distribution, loss distribution, and leakage current distribution using a large number of samples, we found that Figs.
The results shown in the figure were obtained.

これらの第4図乃至第6図から明らかなように、いずれ
の特性においても、従来品Bに比べて、本発明品Aは、
ばらつきの少ない優れた特性を有することかわかる。特
に、第4図及び第5図に示すように、静電容量の増大、
損失の低減における効果は明確であり、これらは、本発
明品において巻芯部に空隙部7を設けたことによる有機
半導体の含浸性の向上の効果を実証するものである。
As is clear from these FIGS. 4 to 6, the product A of the present invention has better properties than the conventional product B in all characteristics.
It can be seen that it has excellent characteristics with little variation. In particular, as shown in FIGS. 4 and 5, an increase in capacitance,
The effect in reducing the loss is clear, and these prove the effect of improving the impregnability of the organic semiconductor by providing the void portion 7 in the winding core in the product of the present invention.

なお、本発明は前記実施例に限定されるものではなく、
例えば、巻芯の形状、従って巻芯部に形成する空隙部の
形状は、断面円形状に限定されるものではなく、例えば
、三角形状、四角形状及びその他の多角形状など、適宜
選択可能である。
Note that the present invention is not limited to the above embodiments,
For example, the shape of the winding core, and therefore the shape of the void formed in the winding core, is not limited to a circular cross-section, and can be selected as appropriate, such as triangular, square, or other polygonal shapes. .

[発明の効果] 以上説明した通り、本発明においては、コンデンサ素子
の巻芯部に、素子径の少なくとも1/3以上の直径を有
する空隙部を設けるという極めて簡単な構成の改良によ
り、この空隙部においても毛細管現象を生じ、円筒状の
素子底部からの含浸性を格段に向上でき、コンデンサ素
子に対する有機半導体の含浸を短時間で充分且つ確実に
行なうことができるため、有機半導体の含浸性が高く、
ばらつきのない大きな静電容量を得られ、損失特性及び
漏れ電流特性の良好な電解コンデンサを提供できる。
[Effects of the Invention] As explained above, in the present invention, by improving the extremely simple structure of providing a void portion having a diameter of at least 1/3 or more of the element diameter in the winding core of a capacitor element, this void can be reduced. Capillary action also occurs at the bottom of the cylindrical element, which greatly improves the impregnating property from the bottom of the cylindrical element, and the capacitor element can be sufficiently and reliably impregnated with the organic semiconductor in a short period of time. high,
It is possible to provide an electrolytic capacitor that can obtain a large capacitance without variation and has good loss characteristics and leakage current characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明による電解コンデンサの一実
施例を示す図で、第1図は電解コンデンサを示す断面図
、第2図は第1図の電解コンデンサの製造工程における
コンデンサ素子の巻回状態を示す展開斜視図、第3図は
第1図の電解コンデンサの製造工程においてケースに有
機半導体を入れた状態を示す断面図である。 第4図乃至第6図は本発明に従って製造した電解コンデ
ンサと従来技術に従って製造した電解コンデンサとの特
性を比較的に示す図で、第4図は静電容量分布図、第5
図は損失分布図、第6図は漏れ電流分布図である。 1・・・陽極箔、2・・・陰極箔、3・・・スペーサ、
4・・・陽極引出端子、5・・・陰極引出端子、6・・
・コンデンサ素子、7・・・空隙部、8・・・ケース、
9・・・有機半導体溶融液、10・・・封口体、11・
・・有機半導体。 1 第 3 図 第 図 ハ
1 to 3 are diagrams showing one embodiment of an electrolytic capacitor according to the present invention, in which FIG. 1 is a sectional view showing an electrolytic capacitor, and FIG. 2 is a diagram showing a capacitor element in the manufacturing process of the electrolytic capacitor shown in FIG. FIG. 3 is a developed perspective view showing a wound state, and FIG. 3 is a sectional view showing a state in which an organic semiconductor is placed in a case in the manufacturing process of the electrolytic capacitor shown in FIG. 4 to 6 are diagrams comparatively showing the characteristics of an electrolytic capacitor manufactured according to the present invention and an electrolytic capacitor manufactured according to the prior art, and FIG. 4 is a capacitance distribution diagram, and FIG.
The figure is a loss distribution diagram, and FIG. 6 is a leakage current distribution diagram. 1... Anode foil, 2... Cathode foil, 3... Spacer,
4... Anode lead-out terminal, 5... Cathode lead-out terminal, 6...
・Capacitor element, 7...Gap, 8...Case,
9... Organic semiconductor melt, 10... Sealing body, 11.
...Organic semiconductor. 1 Figure 3 Figure C

Claims (1)

【特許請求の範囲】[Claims] 弁作用金属からなる陽極箔と陰極箔間にスペーサを介在
して巻回したコンデンサ素子に有機半導体を含浸してな
る電解コンデンサにおいて、前記コンデンサ素子が、そ
の巻芯部に、少なくとも素子径の1/3以上の直径の空
隙部を有することを特徴とする電解コンデンサ。
In an electrolytic capacitor in which a capacitor element is wound with a spacer interposed between an anode foil and a cathode foil made of a valve metal and impregnated with an organic semiconductor, the capacitor element has a winding core with a diameter of at least 1. An electrolytic capacitor characterized by having a cavity having a diameter of /3 or more.
JP3918090A 1990-02-19 1990-02-19 Electrolytic capacitor Pending JPH03241726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3918090A JPH03241726A (en) 1990-02-19 1990-02-19 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3918090A JPH03241726A (en) 1990-02-19 1990-02-19 Electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH03241726A true JPH03241726A (en) 1991-10-28

Family

ID=12545917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3918090A Pending JPH03241726A (en) 1990-02-19 1990-02-19 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH03241726A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258128A (en) * 2009-04-23 2010-11-11 Nichicon Corp Method for manufacturing electrolytic capacitor
JP2011114026A (en) * 2009-11-24 2011-06-09 Sanyo Electric Co Ltd Method for manufacturing electrolytic capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258128A (en) * 2009-04-23 2010-11-11 Nichicon Corp Method for manufacturing electrolytic capacitor
JP2011114026A (en) * 2009-11-24 2011-06-09 Sanyo Electric Co Ltd Method for manufacturing electrolytic capacitor

Similar Documents

Publication Publication Date Title
US20110232055A1 (en) Method of manufacturing electrolytic capacitor
JPS622520A (en) Manufacture of electrolytic capacitor and electrolytic capacitor manufactured thereby
JPH03241726A (en) Electrolytic capacitor
JP2001284174A (en) Solid electrolytic capacitor and its manufacturing method
EP0285728B1 (en) Solid electrolytic capacitor, and method of manufacturing same
JPH06196371A (en) Manufacture of solid electrolytic capacitor
JPH062675U (en) Solid electrolytic capacitor
JP3548035B2 (en) Manufacturing method of electrolytic capacitor
JPH03231414A (en) Solid electrolytic capacitor
JP2578783Y2 (en) Solid electrolytic capacitors
JP3253126B2 (en) Solid electrolytic capacitors
KR970004277B1 (en) Method of manufacturing solid electrolytic capacitor
JP3198749B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0513286A (en) Solid electrolytic capacitor
JPH06188154A (en) Manufacture of solid electrolytic capacitor
JP3152572B2 (en) Method for manufacturing solid electrolytic capacitor
JPH1174155A (en) Manufacture of solid electrolytic capacitor
JPH09260215A (en) Manufacture of solid electrolytic capacitor
JPH0821515B2 (en) Method for manufacturing laminated solid electrolytic capacitor
JPH0590083A (en) Manufacture of electrolytic capacitor
JPH05243096A (en) Manufacture of organic solid state electrolytic capacitor
JPH0547607A (en) Production of electrolytic capacitor
JPH01205412A (en) Manufacture of solid electrolytic capacitor
JPH07115042A (en) Manufacture of electrolytic capacitor
JP3363508B2 (en) Organic semiconductor solid electrolytic capacitors