JPH062675U - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH062675U
JPH062675U JP4668592U JP4668592U JPH062675U JP H062675 U JPH062675 U JP H062675U JP 4668592 U JP4668592 U JP 4668592U JP 4668592 U JP4668592 U JP 4668592U JP H062675 U JPH062675 U JP H062675U
Authority
JP
Japan
Prior art keywords
capacitor element
organic semiconductor
solid electrolytic
electrolytic capacitor
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4668592U
Other languages
Japanese (ja)
Inventor
信一 金子
Original Assignee
マルコン電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マルコン電子株式会社 filed Critical マルコン電子株式会社
Priority to JP4668592U priority Critical patent/JPH062675U/en
Publication of JPH062675U publication Critical patent/JPH062675U/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】 【目的】 有機半導体の使用量を減少し、かつ引出端子
への有機半導体の付着防止及びコンデンサ素子の機械的
変動を防止し、漏れ電流特性を改善する。 【構成】 金属からなる棒状体6を巻芯として巻回し、
この棒状体6をそのまま残したコンデンサ素子7に有機
半導体を加熱溶融含浸し、ケース8に収納してケース8
開口部を樹脂からなる封口体11で密閉する。
(57) [Abstract] [Purpose] To reduce the amount of organic semiconductor used, prevent the organic semiconductor from adhering to the lead terminal, and prevent mechanical fluctuations of the capacitor element to improve the leakage current characteristics. [Structure] A rod-shaped body 6 made of metal is wound as a winding core,
The organic semiconductor is heat-melted and impregnated into the capacitor element 7 in which the rod-shaped body 6 is left as it is, and the organic semiconductor is housed in the case 8.
The opening is sealed with a sealing body 11 made of resin.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は、素子構成を改良した有機半導体を固体電解質として用いた固体電解 コンデンサに関する。 The present invention relates to a solid electrolytic capacitor using an organic semiconductor having an improved element structure as a solid electrolyte.

【0002】[0002]

【従来の技術】[Prior art]

一般に、乾式箔形電解コンデンサは、例えば高純度アルミニウム箔からなる一 対の陽・陰極箔に同じくアルミニウムからなる一対の引出端子を接続し、前記一 対の陽・陰極箔相互間にスペーサを介して巻回してなるコンデンサ素子に駆動用 電解液を含浸してケースに収納し、このケース開口部を封口体で密閉してなるも のである。 Generally, a dry foil type electrolytic capacitor has, for example, a pair of positive and negative electrode foils made of high-purity aluminum foil and a pair of lead terminals also made of aluminum, and a spacer interposed between the pair of positive and negative electrode foils. The capacitor element formed by winding the capacitor is impregnated with a driving electrolyte solution and housed in a case, and the case opening is sealed with a sealing body.

【0003】 しかして、前記駆動用電解液は、例えばエチレングリコールなどの有機溶媒に アジピン酸アンモニウムなどの有機カルボン酸塩を使用しているが、tanδ特 性改善に限度があり、また、低温で比抵抗が上がり低温特性が極度に悪化し広域 温度範囲で使用するには信頼性に欠けるなど市場要求を満足するためには解決す べき課題をかかえていた。Although the driving electrolyte uses an organic carboxylic acid salt such as ammonium adipate in an organic solvent such as ethylene glycol, there is a limit to the improvement of tan δ characteristics, and at a low temperature. There was a problem to be solved in order to satisfy the market demands, such as an increase in resistivity and extremely low temperature characteristics, and lack of reliability for use in a wide temperature range.

【0004】 そのため、近年駆動用電解液にかえTCNQ錯体からなる有機半導体を用いた ものが種々提案され一部実用化を迎えている。Therefore, in recent years, various types of organic electrolytes made of a TCNQ complex have been proposed instead of the driving electrolyte, and some of them have been put into practical use.

【0005】 コンデンサ素子にTCNQ錯体を含浸化する方法として一般に溶液含浸法、分 散含浸法、さらには真空蒸着法があるが、TCNQ錯体の特性はいろいろの条件 で変化し、極めて扱いにくい物質であるため、使用に当たっては種々の工夫が講 じられている。As a method for impregnating a TCNQ complex into a capacitor element, there are generally a solution impregnation method, a dispersion impregnation method, and a vacuum vapor deposition method. However, the characteristics of the TCNQ complex change under various conditions, and it is an extremely difficult substance to handle. Therefore, various measures have been taken in using it.

【0006】 特に、固体電解質の条件としては、コンデンサ特性としてのtanδ及び等価 直列抵抗に影響するそれ自体としての抵抗値が小さく、かつ温度、特に高温下で も安定した比抵抗値があることが重要である。[0006] In particular, as a condition of the solid electrolyte, there is a small resistance value per se that affects tan δ as a capacitor characteristic and an equivalent series resistance, and a stable specific resistance value at a temperature, especially at a high temperature. is important.

【0007】 以上のことから、コンデンサ素子へのTCNQ錯体の含浸手段として工業的に 素子内部へ満遍なく必要量含浸させるには、従来提案されている特許公報又は技 術文献によって加熱溶融液化処理が有効とされている。From the above, as a means for impregnating a capacitor element with a TCNQ complex industrially, in order to uniformly impregnate the inside of the element with a required amount, the heating melt liquefaction treatment is effective according to the conventionally proposed patent publications or technical literatures. It is said that.

【0008】 なお、加熱溶融液化処理の具体的手段は、外装ケースに入れ加熱溶融させた所 望のTCNQ錯体液にあらかじめ加熱してなるコンデンサ素子を収納し、この素 子を構成する絶縁紙(スペーサ)の繊維と電極箔の微細なエッチングピットを介 して含浸している。The specific means of the heat-melting and liquefying treatment is to store the capacitor element, which is preheated in the desired TCNQ complex solution, which is placed in an outer case and heated and melted, and the insulating paper ( It is impregnated through fine etching pits of the spacer foil and the electrode foil.

【0009】 しかして、コンデンサ素子構成として巻回形の場合、巻芯を引抜いた巻芯孔が 空隙として形成されるため、外装ケースに入れ加熱溶融させたTCNQ錯体液に コンデンサ素子を収納した際、この空隙を介してTCNQ錯体液が飛び出し、引 出端子に付着する。However, in the case of the wound type capacitor element configuration, since the core hole from which the core is drawn is formed as a void, when the capacitor element is stored in the TCNQ complex liquid heated and melted in the outer case, The TCNQ complex solution jumps out through this void and adheres to the lead terminal.

【0010】 TCNQ錯体液の付着が、引出端子の陽極酸化皮膜が形成してある部分であれ ば問題はないが、陽極酸化皮膜の存在しない部分に付着した場合、漏れ電流が増 加すると同時に短絡不良となる問題を抱えると同時に、巻芯孔に流入する分を考 慮して有機半導体としてのTCNQ錯体の使用量を決めなければならないが、T CNQ錯体は高価であるため、市場要求の強いコンデンサのコスト低減化の疎外 要因となっていた。There is no problem if the TCNQ complex solution adheres to the part where the anodized film of the lead terminal is formed, but if it adheres to the part where the anodized film does not exist, the leakage current increases and a short circuit occurs at the same time. At the same time as it has a problem of being defective, the amount of TCNQ complex used as an organic semiconductor must be determined in consideration of the amount flowing into the core hole. However, since the TCNQ complex is expensive, market demand is strong. It was an alienation factor in reducing the cost of capacitors.

【0011】 また、コンデンサ素子の巻芯孔としての空隙部に、封口体として使用するエポ キシ樹脂が十分流れ込まれないで、その後加熱するなどして高温雰囲気に入れた 場合は空隙部の空気が膨脹し、エポキシ樹脂面に上昇し、外観上不良となるほか 、信頼性試験、特に耐湿性などで局部的に樹脂層が少なくなることによる特性変 化が起こる要因をも抱える結果となっていた。Further, when the epoxy resin used as the sealing body is not sufficiently flown into the void as the winding core hole of the capacitor element, and when the epoxy resin is heated in a high temperature atmosphere and the air in the void is not discharged. In addition to swelling and rising to the epoxy resin surface, resulting in a poor appearance, it also had the factor of causing characteristic changes due to a local decrease in the resin layer due to reliability tests, especially moisture resistance. .

【0012】 さらに巻芯孔としての空隙部の存在により、温度サイクル試験などでの僅かな 熱膨脹・収縮が巻芯孔方向に動き易く、その変動による酸化皮膜の亀裂などで漏 れ電流が更に増大してしまう問題をも持っていた。Further, due to the presence of the void portion as the core hole, slight thermal expansion / contraction in the temperature cycle test or the like easily moves toward the core hole, and the leakage current is further increased due to cracks in the oxide film due to the fluctuation. I also had the problem of doing it.

【0013】[0013]

【考案が解決しようとする課題】[Problems to be solved by the device]

以上のように上記構成になる固体電解コンデンサは、コンデンサ素子の巻芯孔 としての空隙部の存在によって、含浸工程中この空隙部からの有機半導体として のTCNQ錯体液が飛び出し、漏れ電流の増大、短絡不良発生の原因となってい ると同時にコンデンサ素子が機械的に変動しやすいことによる諸特性低下の原因 、さらには有機半導体としてのTCNQ錯体使用の無駄と言う問題をも抱える結 果となっていた。 As described above, in the solid electrolytic capacitor configured as described above, due to the presence of the void portion as the winding core hole of the capacitor element, the TCNQ complex liquid as the organic semiconductor jumps out of the void portion during the impregnation process, increasing the leakage current, This is not only a cause of short-circuit failure, but also a cause of deterioration of various characteristics due to mechanical fluctuations of the capacitor element, and a problem of useless use of TCNQ complex as an organic semiconductor. It was

【0014】 本考案は、このような点に鑑みて成されたもので、TCNQ錯体の含浸性を高 め、コンデンサ素子の機械的変動を抑制して諸特性良好で、コスト低減化に大き く貢献できる固体電解コンデンサを提供することを目的とするものである。The present invention has been made in view of the above points, and improves the impregnation property of the TCNQ complex, suppresses mechanical fluctuations of the capacitor element, has various characteristics, and is highly cost-effective. It is intended to provide a solid electrolytic capacitor that can contribute.

【0015】[0015]

【課題を解決するための手段】[Means for Solving the Problems]

本考案による固体電解コンデンサは、任意な箇所に引出端子を取着した弁作用 金属からなる陽極箔と陰極箔間にスペーサを介在して巻回したコンデンサ素子に 有機半導体を含浸してなる固体電解コンデンサにおいて、前記コンデンサ素子巻 芯孔が金属あるいはセラミック又は耐熱性樹脂からなる棒状体にて閉塞されてい ることを特徴とするものである。 The solid electrolytic capacitor according to the present invention is a solid electrolytic capacitor formed by impregnating an organic semiconductor into a capacitor element wound with a spacer interposed between an anode foil and a cathode foil made of a valve metal with lead terminals attached at arbitrary locations. In the capacitor, the core hole of the capacitor element is closed by a rod-shaped body made of metal, ceramic or heat resistant resin.

【0016】[0016]

【作用】[Action]

以上のような構成によれば、コンデンサ素子の巻芯孔としての空隙部が金属, セラミック又は耐熱性樹脂からなる棒状体によって閉塞されているため、有機半 導体としてのTCNQ錯体使用量の無駄をなくし引出端子に付着することなく有 効電極部分にすみやかに含浸され、かつ製造工程中の高温下でもコンデンサ素子 の機械的変動がなく特性劣化要因が解消される。 According to the above configuration, since the void portion as the winding core hole of the capacitor element is closed by the rod-shaped body made of metal, ceramic or heat resistant resin, waste of the amount of TCNQ complex used as the organic semiconductor is saved. The effective electrode part is quickly impregnated without sticking to the lead-out terminal, and there is no mechanical fluctuation of the capacitor element even at high temperatures during the manufacturing process, eliminating the factor of characteristic deterioration.

【0017】[0017]

【実施例】【Example】

以下、本考案の一実施例につき図面を参照して説明する。すなわち、図2に示 すように、まずアルミニウム箔表面をエッチング液で粗面化し表面積を拡大した 後、陽極酸化皮膜を生成した陽極箔1と、アルミニウム箔表面を前記同様エッチ ング液で粗面化し表面積を拡大した陰極箔2間にクラフト紙又はマニラ紙などか らなるスペーサ3を介在し、途中前記陽極箔1及び陰極箔2の任意な箇所それぞ れに陽極引出端子4又は陰極引出端子5を取着して、例えば金属からなる直径1 mmの丸形又は断面が多角形状の角形からなる棒状体6を巻芯として巻回しコン デンサ素子7を形成する。このとき、棒状体6はコンデンサ素子内に残すように する。 An embodiment of the present invention will be described below with reference to the drawings. That is, as shown in FIG. 2, first, the surface of the aluminum foil is roughened with an etching solution to increase the surface area, and then the anode foil 1 on which the anodized film is formed and the surface of the aluminum foil are roughened with the same etching solution as described above. A spacer 3 made of kraft paper or manila paper is interposed between the cathode foils 2 whose surface area has been increased, and the anode lead-out terminal 4 or the cathode lead-out terminal is provided at any place on the anode foil 1 and the cathode foil 2 in the middle. 5 is attached, and a capacitor element 7 is formed by winding a rod-shaped body 6 made of metal, for example, a round shape having a diameter of 1 mm or a polygonal cross section having a polygonal shape as a winding core. At this time, the rod-shaped body 6 is left in the capacitor element.

【0018】 次に、図3に示すように、例えばアルミニウムなどからなるケース8内にTC NQ錯体からなる有機半導体を入れ、この有機半導体を加熱溶融し有機半導体溶 融液9とし、図1に示すように前記コンデンサ素子7を予熱状態でケース8に収 納し、前記有機半導体溶融液9を前記コンデンサ素子7内に含浸し、しかる後、 冷却固化し、含浸されない残余の有機半導体溶融液9をケース内底面部に固化状 態の有機半導体10として、前記ケース8開口部を例えばエポキシ樹脂からなる 封口体11にて密閉してなるものである。Next, as shown in FIG. 3, an organic semiconductor made of a TC NQ complex is put into a case 8 made of, for example, aluminum, and the organic semiconductor is heated and melted to form an organic semiconductor melt 9 which is shown in FIG. As shown, the capacitor element 7 is stored in a case 8 in a preheated state, the organic semiconductor melt 9 is impregnated into the capacitor element 7, and then the capacitor element 7 is cooled and solidified, and the remaining organic semiconductor melt 9 not impregnated. Is an organic semiconductor 10 in a solidified state on the bottom surface of the case, and the opening of the case 8 is sealed by a sealing body 11 made of, for example, an epoxy resin.

【0019】 以上のような構成になる固体電解コンデンサは、コンデンサ素子7の巻芯孔と しての空隙部が金属からなる棒状体6によって閉塞されているため、従来構造の ように巻芯孔を通して有機半導体溶融液9が這い上がる現象はなくなり、よって 必要最小限の有機半導体溶融液9で陽極引出端子4及び陰極引出端子5に付着す ることなく漏れ電流の増大化要因は解消されて有効電極部分にすみやかに含浸さ れ特性劣化要因が解消される。In the solid electrolytic capacitor configured as described above, since the void portion as the winding core hole of the capacitor element 7 is closed by the rod-shaped body 6 made of metal, the solid electrolytic capacitor has the same winding core hole as the conventional structure. The phenomenon that the organic semiconductor molten liquid 9 crawls through does not occur, and therefore the factor that increases the leakage current is eliminated without adhering to the anode lead terminal 4 and the cathode lead terminal 5 with the minimum required amount of organic semiconductor melt 9 and is effective. Immediately impregnating the electrode part eliminates the factor of characteristic deterioration.

【0020】 また、温度サイクル試験などの膨脹,収縮を伴う場合でも、従来のように巻芯 孔がないため、コンデンサ素子の機械的変動の要因はなく、漏れ電流などの特性 改善に大きく貢献できる。Further, even when accompanied by expansion and contraction such as in a temperature cycle test, since there is no winding core hole as in the conventional case, there is no factor of mechanical fluctuation of the capacitor element and it can greatly contribute to the improvement of characteristics such as leakage current. .

【0021】 次に、本考案の実施例Aと従来例Bの比較の一例について述べる。Next, an example of comparison between Example A of the present invention and Conventional Example B will be described.

【0022】 すなわち、幅5mm,長さ25mmの陽極箔と,幅5mm,長さ35mmの陰 極箔を用い、これに幅6mmのマニラ紙と共に直径1mmのアルミニウム丸線に 巻き込みコンデンサ素子を形成し巻芯はそのまま残したコンデンサ素子を、有機 半導体溶融液が収納された直径6.3mm,高さ9.8mmのアルミニウムケー スに収納して製作した実施例Aと、直径1mmの巻芯を用いコンデンサ素子形成 後巻芯を抜き取る点を除き実施例Aと同一で手段で製作した従来例Bの初期及び 温度サイクル試験(−55℃30分,20℃15分,+105℃30分,20℃ 15分を1サイクルとして5回)後の漏れ電流の変化を調べた結果図4に示す通 りで、またこの場合の実施例A,従来例Bにおける有機半導体量を調べた結果、 表1に示す通りであった。That is, an anode foil having a width of 5 mm and a length of 25 mm and an anode foil having a width of 5 mm and a length of 35 mm were used, and a manila paper having a width of 6 mm was wrapped around the aluminum round wire having a diameter of 1 mm to form a capacitor element. A capacitor element, in which the core was left as it was, was placed in an aluminum case having a diameter of 6.3 mm and a height of 9.8 mm in which the organic semiconductor melt was stored, and Example A prepared and a core having a diameter of 1 mm were used. Capacitor element formation Initial and temperature cycle tests of the conventional example B manufactured by the same method as the example A except that the core after withdrawal was removed (-55 ° C 30 minutes, 20 ° C 15 minutes, + 105 ° C 30 minutes, 20 ° C 15 As a result of investigating the change of the leakage current after 5 times (1 minute as one cycle) is shown in FIG. It was as shown in 1.

【0023】[0023]

【表1】 [Table 1]

【0024】 図4,表1からも明らかなように、従来例Bのものは温度サイクル試験による 漏れ電流特性の変動劣化が大きいのに対して、実施例Aのものの変動は僅かで、 本考案の優れた効果が分かる。また、従来例Bと比較して実施例Aは製品の特性 を変えることなく有機半導体の使用量を13%程度減少させることができ、コス ト低減に大きく貢献することも分かる。As is clear from FIG. 4 and Table 1, the conventional example B has a large variation deterioration of the leakage current characteristic due to the temperature cycle test, while the example A has little variation. You can see the excellent effect of. Further, it can be seen that, compared with the conventional example B, the example A can reduce the amount of the organic semiconductor used by about 13% without changing the characteristics of the product, which greatly contributes to the cost reduction.

【0025】 なお、上記実施例では、コンデンサ素子の巻芯孔を閉塞するための棒状体とし て金属を用いるものを例示して説明したが、金属に換え、セラミック又は耐熱性 樹脂を用いてもよい。In the above embodiments, the rod-shaped body for closing the winding core hole of the capacitor element is described by using metal as an example. However, ceramic or heat resistant resin may be used instead of metal. Good.

【0026】 また、上記実施例では、巻芯そのものを残すことによって巻芯孔を閉塞する技 術を例示して説明したが、コンデンサ素子形成後巻芯を取り外し、巻芯孔に別個 に準備した閉塞材を嵌入し、結果として巻芯孔が閉塞されたものであれば同効で ある。In the above embodiment, the technique of closing the core hole by leaving the core itself has been described as an example. However, after forming the capacitor element, the core is removed and prepared separately in the core hole. The same effect can be obtained if a plugging material is inserted and as a result the core hole is closed.

【0027】[0027]

【考案の効果】[Effect of device]

本考案によれば、有機半導体使用量を減少させ、温度サイクルによる漏れ電流 の変動も抑制できる特性良好な有機半導体を固体電解質として用いた固体電解コ ンデンサを得ることができる。 According to the present invention, it is possible to obtain a solid electrolytic capacitor using an organic semiconductor as a solid electrolyte, which can reduce the amount of organic semiconductor used and can suppress the fluctuation of leakage current due to temperature cycle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例に係る固体電解コンデンサを
示す断面図。
FIG. 1 is a sectional view showing a solid electrolytic capacitor according to an embodiment of the present invention.

【図2】図1を構成するコンデンサ素子を示す展開斜視
図。
FIG. 2 is a developed perspective view showing a capacitor element which constitutes FIG.

【図3】有機半導体の加熱溶融状態を示す断面図。FIG. 3 is a cross-sectional view showing a heated and melted state of an organic semiconductor.

【図4】漏れ電流特性分布図。FIG. 4 is a leakage current characteristic distribution chart.

【符号の説明】[Explanation of symbols]

1 陽極箔 2 陰極箔 3 スペーサ 4 陽極引出端子 5 陰極引出端子 6 棒状体 7 コンデンサ素子 8 ケース 9 有機半導体溶融液 10 固化状態の有機半導体 11 封口体 DESCRIPTION OF SYMBOLS 1 Anode foil 2 Cathode foil 3 Spacer 4 Anode lead terminal 5 Cathode lead terminal 6 Rod-like body 7 Capacitor element 8 Case 9 Organic semiconductor melt 10 Solid state organic semiconductor 11 Sealing body

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】 任意な箇所に引出端子を取着した弁作用
金属からなる陽極箔と陰極箔間にスペーサを介在して巻
回したコンデンサ素子に有機半導体を含浸してなる固体
電解コンデンサにおいて、前記コンデンサ素子巻芯孔が
金属あるいはセラミック又は耐熱性樹脂からなる棒状体
にて閉塞されていることを特徴とする固体電解コンデン
サ。
1. A solid electrolytic capacitor obtained by impregnating an organic semiconductor into a capacitor element wound by interposing a spacer between an anode foil and a cathode foil made of a valve metal having lead terminals attached at arbitrary positions, A solid electrolytic capacitor, wherein the core hole of the capacitor element is closed by a rod-shaped body made of metal, ceramic or heat resistant resin.
JP4668592U 1992-06-10 1992-06-10 Solid electrolytic capacitor Pending JPH062675U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4668592U JPH062675U (en) 1992-06-10 1992-06-10 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4668592U JPH062675U (en) 1992-06-10 1992-06-10 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH062675U true JPH062675U (en) 1994-01-14

Family

ID=12754237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4668592U Pending JPH062675U (en) 1992-06-10 1992-06-10 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH062675U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284180A (en) * 2000-03-29 2001-10-12 Nippon Chemicon Corp Solid electrolytic capacitor and method of manufacturing the same
JP2015207681A (en) * 2014-04-22 2015-11-19 日本ケミコン株式会社 Capacitor and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284180A (en) * 2000-03-29 2001-10-12 Nippon Chemicon Corp Solid electrolytic capacitor and method of manufacturing the same
JP4560875B2 (en) * 2000-03-29 2010-10-13 日本ケミコン株式会社 Manufacturing method of solid electrolytic capacitor
JP2015207681A (en) * 2014-04-22 2015-11-19 日本ケミコン株式会社 Capacitor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5707407A (en) Method of forming chip-formed solid electrolytic capacitor without an anode lead projecting from anode member
JPH062675U (en) Solid electrolytic capacitor
JPH05234828A (en) Manufacture of solid electrolytic capacitor
JPH03241726A (en) Electrolytic capacitor
JPH06188154A (en) Manufacture of solid electrolytic capacitor
JP2783932B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JP2578783Y2 (en) Solid electrolytic capacitors
JP3253126B2 (en) Solid electrolytic capacitors
KR970004277B1 (en) Method of manufacturing solid electrolytic capacitor
JPH01205412A (en) Manufacture of solid electrolytic capacitor
JP2811646B2 (en) Manufacturing method of electrolytic capacitor
JP2950898B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
KR930008940B1 (en) Electrolytic capacitor
JPH06181145A (en) Manufacture of electrolytic capacitor
JPH0590082A (en) Manufacture of electrolytic capacitor
JP3551020B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3152572B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0590083A (en) Manufacture of electrolytic capacitor
KR930008939B1 (en) Electrolytic capacitor
JPH05326344A (en) Solid electrolytic capacitor
JPH07115042A (en) Manufacture of electrolytic capacitor
JPH05243100A (en) Manufacture of solid-state electrolytic capacitor
JPH09260215A (en) Manufacture of solid electrolytic capacitor
JP2771767B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0718439U (en) Solid electrolytic capacitor